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. ._. .-_ - ABSTRACT 

There is nothing new in this paper. It contains a pedagogical discussion of 

a very interesting interference effect involving the radiation pattern from a single 

atom which is confined by a multi-well potential. The interference phenomenum 

is a quantum effect with a pattern strength that is proportional to the tunneling 

probability. Extensions of the phenomenon are briefly discussed. 
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1. Introduction 

After viewing the images of individual atoms as provided by electron micro- 

scopes, especially when they have been arranged to spell out the initials of a rather 

well-known company ‘, ’ rt is easy to slip into the error of thinking of atoms as clas- 

sical billiard balls with quantum phenomena becoming important at a smaller dis- 

tance scale-except for exceptional circumstances such as superconductivity. The 

purpose of this note is pedagogical; we will describe the familiar process of the 

radiation of a single photon by an atom. The unusual feature is that the radia- 

tion interferes with itself by virtue of the fact that the atom is in a non-localized .-- 

state with a net symmetry. If the atom is in a multi-well potential, with a finite 

tunneling-probability, the radiation pattern will in general contain structure that 

reflects the geometric arrangement of the wells. The magnitude of this variation is 

proportional to the quantum tunneling probability. 

New laboratory techniques in the manipulation of individual atoms have opened 

up new possibilities in both experiment and theory. This paper discusses the in- 

terference pattern expected from a single atom bound in a multi-well potential is 

discussed. Suitable binding potentials should be available to realize this type of 

interference, e.g., in molecules with an appropriate structure2, by selecting suitable 

defects on the surface of a solid3, or by an appropriate configuration of external 

electromagnetic fields in a Stern-Gerlach interferometer4. 

To simplify our discussion and to permit an emphasis on the physics of the 

interference phenomena, we will consider the problem of radiative decay of an 

excited hydrogen-like (alkali) atom bound in a double well potential that is a 
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function of the center-of-mass coordinate only. The nonrelativistic Hamiltonian 

Hy; 7 be + eA(re))2 + & (&I - eA(rp))2 + V(q + ~(2) , (14 
P 

where r’ = Fe - Fp and R’ = (Mer’, + Mprfp)/M~ (see Appendix B for a complete 

set of definitions). The potential V(r) is the atomic binding potential; W(R) is 

the center-of-mass potential that is assumed to have two well-separated minima at 

2 E &I?/2 in the example treated below. 

The standard electromagnetic interaction is then given by the linear current 

interaction: 

J - A = + p’c . &re) - + gp . ;b(pp) , 
e P 

(l-2) 
.-,... . 

. which can be rewritten in relative coordinates (see Appendix B) as 

The last term can be safely neglected in the limit of large Mp and small k (the 

dipole approximation limit). Let us now turn to a discussion of photon emission 

from a free and then a bound atom. 



I 

- 

.P - 
-- r, - .- 

2. Single Atom-Dipole Emission 

As a warmup, and for Iater use, we will first consider the radiation of a single 

photon of momentum k from an atom in the dipole approximation for two different 

situations: a free atom 

interaction Hamiltonian 

and an atom bound in a center-of-mass potential. The 

is approximated as 

H’ = J./l= G P;.x(,) ,-ik.R 
T 

L Ze -ik.r -z 

(2.1) 

HI = e 4 - -ik.R 
M P, - 6 e Eve -ik.R 

7 (2.2) 
r 

where e is the photon polarization vector, and standard manipulations lead to 

First we will discuss the emission from a ‘spinless’ free atom and thereby choose 

the wave functions as: 

Initial State 1;) = eipsR lp) Ip) = 2p state 

(24 
Final State If) = eiP”R Is) Is) = 1s state 

with energies EP and E,, respectively. The transition matrix element then becomes 

- M = (s 1 v 1 p) / e-i(P’+k’P)‘Rd3R = (s I v I p) (ZTL)~S(P” + $ - $) , 

_ 

(2.5) 

and the differential decay rate is written succinctly as 

- Rate - c PI2 = c lb I ?J IP) 12P = Rfree 

PO1 

(2.6) 

where EP - E, = ko = I ICI, and recoil energy has been neglected. 
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If th e  a to m  is in  a  s imp le  c o n fin i n g  p o te n tia l  W s(R), in  a  state o f e n e r g y  E s  

wi th we l l - separa ted  e n e r g y  levels,  th e  w a v e  fu n c tio n s  fo r  th e  t ransi t ion in  wh ich  

on ly  th e  state o f th e  re lat ive w a v e  fu n c tio n  c h a n g e s  c a n  b e  wri t ten 

Ini t ia l  S ta te  I4  =  d (R)  IP ) 

Fina l  S ta te  If>  =  4 (R)  I4  7  
(2 .7 )  

with ene rg ies  g i ven  by  E s  +  E P  a n d  Es  +  E ,, respect ively.  T h e  t ransi t ion m a trix 

e l e m e n t fo r  r ema in i ng  in  th e  state Es  whi le  th e  in terna l  state c h a n g e s  is th e n  

.-- M =  (s lv lp) /d3Re -ik’R $ 2 ( R )  E  (s 1  v lp)  F(k)  , ( 2 .8 )  

w ith -  F f.1 : _  E , =  k,, =  lkl as  b e fore.  T h e  d e c a y  rate is wr i t ten as  

R a te  =  R ~ ,,IF(k)12 , ( 2 .9 )  

w h e r e  F(k)  is th e  fo r m  factor  fo r  th e  c e n ter -o f -mass (C-M)  b o u n d  state, m e a s u r i n g  

its abi l i ty to  a b s o r b  a  m o m e n tu m  transfer  o f k. 



3. One Atom-Double Well 

Following the notation and level of approximation of the preceding discussion, 

let us now consider the case in which the atom is in a C-M double well potential. 

The initial state is assumed to be the lowest symmetric eigenstate in the well- 

separated double well and will be approximated as 

where the normalized functions d(R) peak at R = 0. The energy of the state 

is E+ +.-EP where E+ = ER - TET/~ (T is the exponentially behaved overlap 

factor defined below), and ET is a positive reasonable number of order ER which 

is easily ,computed given the form of the potential. For clarity, we write the above 

as 

Qi = I+) = N+ Id@+) + w->I IP) * (3.2) 

The corresponding anti-symmetric (spatial) state is 

I-) = N- [4@+) - @-)I 1~) > (3.3) 

with energy E- + Ep where E- = ER + TET/~. 

_ The normalization factors are: 

1 
- = 2[1 f T] , where T = 
Nl J d3R$(Rt)$(R-) . (34 

For a gaussian trial function, the C-M wave function, tunneling factor T and form 
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factor F(k) are 

$(R) = N e-R2/2a2 , T = e-D2/4a2 and F(k) = emazk214 . (3.5) 

The decay process will lead to both symmetric and antisymmetric final states: 

I+) = N+ MW + 4uw I4 
(3.6) 

I-> = iv- WW - W-)I I4 
with energies Eh + E,, respectively. The transition matrix element to the sym- 

metric final state is 

(tl H’I \E‘i) = Nt (S I v I p) J d3R emikaR[gi(R-t-) + 4(R-)12 ._- 
= Ni (s 1 v lp) { ei(1/2)k’DF(k) + e-i(1/2)k*DF(k) +- 2J} , 

. ._, . . . _ 
. wherek=E++Ep-E+-E, =EP-E,,and 

Jti J d3R ,-ik.R 
swww-) oc J &R ,-ik.R e -(1/a2)[R2+(1/4)D2] 

J = F(k)T , 

for a gaussian wave function. Thus I kl = Ep - E,, as before, and 

(+IH’I Qi) = (S I v I P) F(k) 
(cosz;T) . 

The transition matrix element to the antisymmetric state can be written 

(-IH’I Qi) = (S I v Ip) N+N- { ei(112)D’i-F(k-) - e-i(1~2)k-*DF(k-)} 

P-7) 

(3.8) 

W) 

(3.10) 

where k- =E+$E,-E--E, =k-TE T, and the difference between k and 

k- has been retained in the phase factor only. 
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Assuming that the detector sums the counts from photons of energy k and k-, 

the total decay rate from the symmetric initial state is then 

Rate = heelF I2 A+ 3 (3.11) 

where the angular modulation factor A+ contains the interference terms of interest; 

it is given by 

A+ = {(f$g2t&} ) (3.12) 

where for convenience we have introduced 

.-- 

t9 = ;Dek and 8- = ;D.k- E ep-T$) (3.13) 

. ._, .-_ _ 

and defined 
c = case 

S- = sine- E S-CT 

Thus to first order in T we find 

A+ = ET c(l-c)-csTe 1 . 

In the limit where ET << k, the pattern becomes6 

A+ = 1 t 2T c(1 - c) , (3.16) 

(3.14) 

(3.15) 
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4. Physical Interpretation 

The matrix element leading to the symmetric final state, 

(+lH.‘l $i) = ” * {J d3R cikaR [f$(R+) + ~(R-->12 > (4.1) 
= . . . 

{J 
d3R ,-ik*R 2 [4 (R+)+cj2(R-)+2)(R+)4(R-)I} 7 

has the expected peaks at f D/2 and a small (overlap) peak at R = 0. The 

anti-symmetric final state produces no peak at R = 0, 
.-- 

(--1~‘1-2cli) = , . * {J d3Re-ik’R MR+) - W-)1 [SW+> + @-)I > (44 
= .*. {J d3R ,-ik.R 2 

[4 CR+) - 81olj . 

If there were no peak at R = 0 and if ET << k:, so that T = 0 and S- % s, then the 

total rate has no angular dependence. Interference arises from the overlap peak at 

R = 0 which is coherent with the charge peaks at R = &i D by virtue of tunneling. 

5. Initial ODD state 

Following the previous discussion, we write 

xi = N-[$(R+) - $(R-)I IP) 9 
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andthenwith k+~k+TETandO+ S O(l+TF), 

(+IH’I xi) = N+N- (8 1~ Ip) Jd3Re-ik+*R[Q(Rt) + 4(R-)] [4(Rt) - $(R-)] 

= (s 12, lp) F(k) i ;$ and 

(-IH’I xi) = N? (S 1 v 1~) Jd3Re-ik*R[$(R+) - d(R-)12 

= (44P) w (ccy;T) . 

Thus the total rate for this initial state is 

Rate = &eelW12 A- , 

with 

A- = {@$)?+A}, 

and to first order in T , we find 

A- 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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6. Extensions-Conclusions 

If the initial state has probability p+ to be in the symmetric state, and hence a 

probability p- = 1 -p+ to be in the antisymmetric state, the resultant first order 

angular dependence is 

A = I-(p+-p-)T c(l-c)-cs (64 

Thus if the initial state is a SO/50 mixture of the symmetric and antisymmetric 

wave functions, the first order terms in T will cancel, and there will be no angular 

dependence to first order in the total rate. .-- 

Thus the statement made in the abstract is now proven; there is nothing new 

in this-pa@er. 
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A P P E N D IX  A  

A lte r n a t ive F ina l  S ta tes  

If th e  e n e r g y  spl i t t ing in  th e  fina l  states is zero,  i.e . E T  =  0 , th e n  a n y  o r th o g o n a l  

l i near  c o m b i n a tio n  o f th e  d e g e n e r a te  pa i r  .k as  va l id  as  a n y  o ther .  T o  i l lustrate 

this,. cons ide r  th e  set: 

IL )  =  G t) 1 4  

IR) =  & 2  
( A 4  

[4 @ -) - W (R+ )I Is>  

w h e r e  IL )  h a s  th e  a to m  in  th e  left we l l  w a v e  fu n c tio n  a n d  IR) h a s  th e  a to m  m o s tly 
.-- 

in  th e  r ight  we l l  w a v e  (but  o r thogona l i ty  is re ta ined) .  T h e n  star t ing f rom a n  ini t ial  

state wi th a  g i ven  s y m m e try, th e  re levant  m a trix e l e m e n ts are:  ._ , .-. _  

IQ i) =  
l&&T  

W W  f W - ) 1  1 ~ )  

(L IH’I @ i) =  fiim  (3  1 ~  IP ) F(k) [e ie  t T ] 

( A 4  

( A .3 )  

(RIH’I S i) =  5  d &  d &  ( S  I v lp )  F(k)  [ztT +  eD ie  F  T  e io  -  T’] -  

( A 4  

R a te  =  R e e e IF(k) j2 A &  ( A 4  

A A  =  {(~ )2 t& T } ~  (A-6 )  

wh ich  is exact ly- the s a m e  resul t  as  b e fo re  in  th is  lim it o f E T  =  0 . 
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APPENDIX B 

Standard Coordinate Transformation 

In the text we have used the standard coordinate transformations to relative 

and center-of-mass variables: 

NOW use--the fact $hat & e ?e + & e r’P = &OT * 2 i- p’, o 7 to write: 

. _, ,_. _ I%oT = gp t 2% 
(B-2) 

j% = 

and, of course, 

&OT 7 P.3) 

where the reduced mass is given by 

1 1 -E $+-* 
Mr e MP 
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