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Abstract 
Recently a single-channel prototype of the proposed PEP- 
II longitudinal feedback system was successfully demon- 
strated at SPEAR and ALS on single-bunch beams. The 
phase oscillations are detected via a wide-band pick up. 
The feedback signal is then computed using a digitalsignal 
processor (DSP) and applied to the beam by phase modu- 
lating the rf. We analyze results in the frequency- and the 
time-domain and show how the closed-loop transfer func- 
tions can be obtained rigorously by proper modeling of the 
-various components of this hybrid continuous/digital sys- 
tem. 

The technique of downsampling was used in the experi- 
]ments to reduce the number of computations and allowed 
the use of the same digital hardware on both machines. 

I. INTRODUCTION 

. 
It has’been proposed that the longitudinal synchrotron 

oscillations in storage rings can be supressed using a DSP- 
based bunch-by-bunch feedback system [l]. In the bunch- 
by-bunch approach, each bunch is treated as an individual 
oscillator driven by an unknown disturbance. The phase 
of each bunch is detected, a feedback signal particular to 
that bunch is computed using a digital signal processor, 
and is applied to that bunch on the following turn. The 
idea is that since this approach deals with each bunch on 
an individual basis, it can be extended to the multibunch 
case. The coupling would then be lumped into the un- 
known driving term. This technique would work if the 
coupling between the bunches is sufficiently weak. The 
programmable nature of the DSP-based feedback system 
and the technique of downsampling makes it possible to 
use-the same digital hardware on different machines. 

A single-channel prototype of this system was demon- 
strated successfully at SPEAR and, more recently, at ALS 
on single-bunch beams. We present some of the results of 
these experiments and show how they can be rigorously 
analyzed by appropriate modelling of the different compo 
nents in the feedback system. 

II. EXPERIMENTAL SETUP . 

The basic experimental setup used on both machines is 
shown in Figure 1. Since no wide-band kicker was available, 
the feedback was applied to the beam by phase modulating 
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Figure 1: Experimental setup used at SPEAR and ALS. 

the rf. A compensator (not shown) wss included before the 
rf cavity to extend its bandwidth to beyond the frequency 
range over which the.beam dynamics are interesting. The . 
component k represents an attenuator that was used to 
vary the loop gain. The d. M represents downsampling ‘. 
This process had very little effect on the experiment as a 
whole. 

Points A, B, and C represent points in the system be- 
tween which transfer function measurements were made. 

III. MODEL OF SINGLE-BUNCH BEAM 
WITH FEEDBACK 

In this section we obtain theoretical expressions for the 
transfer functions from points A to B,2 !&-B(S), and from - 
B to C, T’-,c(s). From these expressions, the closed-loop 
transfer functionis obtained. Due to the large number of 
components in the loop, the modelling of delays plays an 
important role. 
A. Model of the Beam 

We model the beam phase oscillations, r, with respect to 
the rf as obeying the simple harmonic oscillator equation 
[4], except that we modify this equation to allow for a delay, 
Tdi, in the response: 

i: +ti?w&, i +w; 7 = -A u(t - Tdl) (1) 
where w, is the synchrotron frequency, I& is the damping 
term, A is a gain constant, and ~(2 - Tdi) is the driving 
input to the system, delayed by Tdl . These parameters can 
be easily extracted from the plots of the open-loop transfer 
functions of the system. Laplace transforming equation( 1) 
yields the open-loop beam transfer function: 

(2) 

‘Thin was used to reduce the numb- of computations by allowing 
only one out of every M data samples to get to the DSP, see [Z] 

‘“I” here denotes the Laplace frequency variable. 
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W e assume that, apart from contributing to the delay 
Tdi and to the gain A, the frequency responses of all the 
other components in the branch A --, B are “flat” over 
the range of frequencies where the beam dynamics are of 
interest. Hence we take B(s) to be our model for this 
branch, i.e., TA,B(.v) = B(s). 
B. Model of the Feedback 

The objective of the feedback is  to measure r and pro 
cess  it to produce a feedback s ignal Ufb that damps the 
synchrotron osc illations. Ideally, this could be done us- 
ing differential feedback [3], that corresponds to filtering r 
with a differentiator, H(s)  = -Kdijj 8, where Kdijj is  a 
constant. However, ideal differentiators have the unfortu- 
nate. property-of amplifying high-frequency noise. Hence, 
the DSP was used to implement a finite impulse response 
(FIR) digital filter [5] that approximates a differentiator 
over a finite frequency range. The transfer function of the 
FIR filter is  given by 

H(s)  = K, 5 h(n)e-“T*” , (3) 
n=l 

where K, is  the gain of the filter, {h(n))? are the coeffi- 
c ients of the FIR filter, and T, is  the sampling rate. The 
coefficients used at SPEAR and ALS were given by: 

A is  an adjustable parameter which gives control over the 
phase response of H(s). In this s ingle-channel prototype, 
additional delays due to the hardware exist, so we modify 
H(s)  to allow for these: 

H(s)  = K& h(r+CrTnn) e-8T1a. (5) 
n=l 

Once again, assuming that apart from contributing to a 
delay Tds and to the gain K,,, the frequency responses of all 
the other components in the branch B -+ C are flat we can 
take TB-C(S) = H(s). Th e only unknown parameters here 
are K, and Tds. These are obtained from measurements of 
the transfer function TEL.c(s). 
C. Closed-Loop Response 

Through the modelling process above, we have reduced 
the complicated system of F igure 1 to that shown in F igure 
2. 

F inding the c losed-loop beam transfer function, 
T i14,(s), is  now trivial: it is  s imply given by 

T;!+,(s; = B(s) 
1 + k  H(s)B(s)’ 

.RESULTS AND DISCUSSION 

Since much more data was available from the trial at 
ALS than at SPEAR, we focus on those results here, 
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Figure 2: Model of the experimental setup used at 
SPEAR and ALS. 
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Figure 3: ALS measured versus fitted TA+B(s). 

though the results from both experiments were very s imi- * 
lar. The ALS measured (solid) versus fitted (dashed) open- 
loop beam and DSP transfer functions are shown in F igures 
3 and 4, respectively. In general, the agreement is  good, 
except for the faster roll off of the measured responses. 
This roll off was probably due to the sample and hold of 
the DA&. The roll off at very low frequencies in the beam 
transfer function could have been the result of the response 
of any of the other components, whose frequency responses 
were assumed to be flat. 

F igure 5 compares the ALS measured versus theoretical 
c losed-loop responses, for several different loop gains. No- 
tice that the damping (as measured by the width of the 
resonances) increases with loop gain for loop gains of -2 to 
-19dB. However, at the larger loop gains of 24 and 29dB, 
the feedback actually began to drive new resonances at 
other frequencies. Thus we conclude that the c losed-loop 
system using FIR feedback is  conditionally stable, i.e., it 
is  stable only over a finite range of loop gains. This means 
that there is  actually a limit to the amount of damping 
that this type of feedback can provide. 

F igure 6 shows the impulse responses corresponding to 
the loop gains above, obtained by inverse Fourier trans- 
forming the frequency responses above. As expected, the 
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Figure 4: ALS measured versus fitted Z’n+c(s). 
N = 6, A = 260’. 
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damping time constant is large for both very low and very 
high loop gains and is the shortest at 19dB (approximately 
two cycles), which is quite sufficient for accelerator physics 
purposes. 

Despite their unusual appearance, these results were ac- 
tually anticipated, as a result of an analysis similar to the 
one above. 
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In summary, we have presented an analysis of results 
from the trials of a single-channel feedback system on 
single-bunch beams at SPEAR and ALS. The results were 
analyzed by modelling each branch of the feedback system 
with a transfer function. The theoretical and measured 
closed-loop performance were in close agreement. Such a 
rigorous approach is necessary in the analysis, and more 
importantly, in the design of realistic feedback systems, 
such as the proposed PEP-II multi-bunch feedback system. 
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Figure 5: ALS measured versus fitted T2+B(s) for loop 
gains of -2,19, 24 and 29dB. 
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Figure 6: ALS closed-loop impulse responses for loop 
gains of -2,19, 24 and 29dB. 
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