
SLAC-PUB-6144 
April 1993 
(A) 

PERSISTENT WAKEFIELDS ASSOCIATED WITH WAVEGUIDE DAMPING OF 
HIGHER ORDER MODES* 
Norman M. Kroll and Xintian Lin 

University of California, San Diego, La Jolla, CA 92093 
Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 

Abstract 
By means of an analytic model and numerical simula- 

tions we demonstrate that the wake of a waveguide damped 
cavity contains a persistent component which decays as 
tm3f2 and thus is dominant at sufficiently large values oft. 
Because there are scenarios for which the effect gives rise 
to unacceptable beam instability, it cannot be ignored, but 
it seems likely that such an outcome can be avoided with 
proper design. 

1 Introduction 
The passage of a bunch of charged particles through an 
accelerator cavity generates a wakefield which may have 
a deleterious effect on the motion of subsequent bunches 
which pass through the cavity. The effect is often cu- 
muiative from bunch to bunch and from cavity to cavity 
and may-lead to beam breakup [l]. One solution to this 
problem which has received extensive study is to drain the 
wakefield energy out of the cavity by means of waveguides 
coupled to the cavity and feeding into matched termina- 
tions+2]: The effectiveness of this procedure has typically 
been assessed by evaluating the resultant Qezi of higher 
order cavity modes, thereby determining their exponen- 
tial damping rate. The purpose of this paper is to point 
out the existence of an additional effect which leads to 
a wakefield which falls off as i-312 rather than exponen- 
tially. Because this effect always dominates at sufficiently 
long times, we refer to it as the persistent wake. It con- 
sists of a superposition of the frequencies of the various 
waveguide cutoff frequencies and may be understood as 
arising physically from the fact that the group velocity of 
each waveguide mode vanishes at its cutoff frequency. As 
we shall see below, for sufficiently heavy damping, it may 
dominate before the arrival of the second bunch. A simi- 
lar phenomenon with essentially the same physical origin 
which occurs in the decay of unstable quantum states has 
received extensive study. 

2 The Dielectric Cavity Model 
As a simple model of a cavity heavily damped by waveg- 
uides, we consider a waveguide which has a finite section 
of length h filled with dielectric. The configuration is illus- 
trated in Fig. 1. 

For brevity, we confine our attention to fields whose 
transverse configuration is that of the TEic waveguide 
mode. There is always at least one trapped cavity mode 
in the dielectric, symmetric with respect to the y-z plane, 
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Figure 1: Dielectric cavity model 

and with resonant frequency below the cutoff frequency of 
the dielectric free portion of the waveguide. This mode 
has an electric field distribution suitable for accelerating 
particles in the z direction along the z axis. There are 
also damped modes associated with multiple reflections 
between the two dielectric-free space interfaces which have 
frequencies above the cutoff of the free space portion of the 
waveguide. Hence it provides us with a reasonable model 
of a waveguide damped accelerator cavity. 

To further simplify the problem we look only at the 
on axis transverse deflecting field B, generated by a unit 
charge moving relativistically in the z direction and dis- 
placed by the infinitesimal distance d, from the .z axis, 
as shown in Fig. (1). Defining the transverse wake func- 
tion Wl as BY/d, evaluated on the z axis, and solving 
Maxwell’s equations for our configuration we find 

The integrand of Eq. (1) has a pair of branch points 
where I vanishes, corresponding to the cutoff frequency in 
the dielectric free waveguides, and the Riemann surface of 
the integrand therefore has two sheets. In addition to the 
branch points the integrand has poles where D1 vanishes. 
Causality and time reversal invariance tell us that we can 
choose the sign of 1 so that there are no complex singu- 
larities in the complex plane cut along the real axis to the 
left and right of the branch points and extending to plus 
and minus infinity. These specifications define what is re- 
ferred to as the physical sheet of the Riemann surface. We 
choose the parameters of the cavity so that there are no 
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tf@pecl deflecting modes in order that we may expect WA 
to-decay rapidly after the passage of the charge. Hence the 
only singularities on the physical sheet are the two branch 
points. The integral in Eq. (1) is taken along the entire 
real axis of the physical sheet with infinitesimal detours 
above them. 

The second sheet of the Riemann surface is reached by 
crossing the branch cuts from the physical sheet. It has an 
infinite number of complex poles. These occur in groups of 
four, symmetrically distributed with respect to both axes. 
There may also be pairs of real poles between the branch 
points. 

After the particle leaves the cavity (t > b/c), the inte- 
gral over the semi-circle at infinity in the lower half plane 
vanishes. We use it to close the integration path of Eq. 
(I’) and shrink it to the form shown in Fig. (2). Here the 
upper half plane and the region between the two indicated 
branch cuts is a part of the physical sheet, while the re- 
mainder of the lower half plane is on the second sheet. In 
shrinking the contour integral to the two discontinuity in- 
tegrals along the branch cuts, we must pass through the 
poles which have been exposed on the second sheet, and 
we must retain a residue from each of them. Thus we have 
expressed Wl as an expansion in terms of the discrete ex- 
ponentially damped cavity modes plus a contribution from 

the branch cut integrals, It is this latter contribution which 
provides the persistent wake. 

Figure 2: Contour for Calculating WA 

We define the persistent wake function W, as the contri- 
bution from the branch cut discontinuity integrals, and to 
simplify the discussion we redefine t as w,t and w as w/w,. 
The cut discontinuity can then be written as dmF(w) 
where F is analytic in the neighborhood of the branch 
point. Making use of partial integration, we obtain the 
large t asymptotic behaviour as follows: 
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Here G, which has the same analyticity properties as F, 
is given by 

G(w) = 
F(w)w - F(1) I dF 

w= - 1 dW (3) 

The dominant asymptotic behavior comes from the first 
term. Carrying out the integral we find 

WP(t) = -zHi2)(t)F(1) + c c 2t 
. . (4 1 

which decays as ts3f2. Here HP) is the zeroth order 
Hankel function of the second kind. Because the second 
term is subject to the same manipulations as the first, it 
falls off as tT5i2, and by repeating the process one can get 
a sequence terms falling off with increasing powers of l/t. 

The full expression for Wl has been evaluated numeri- 
cally. Highly damped successive reflections from the inter- 
faces appear at early time, but as shown in Fig. (4),the 
asymptotic limit takes over quite rapidly. 
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Figure 3: Asymptotic behavior of the wake field 

3 2-D simulation 

For our simulation structure we have taken a cavity with 
four damping waveguides with the cross section shown in 
Fig. (4a). The scale is chosen so that the cavity has an 
accelerating mode at 11.424 GHz. The waveguide cutoff 
for the lowest mode is 14.27 GHz. Two damped dipole 
modes were identified with MAFIA frequency domain cal- 
culations. Their frequencies, 17.365 and 34.297 GHz, and 
Q’s, 3.74 and 9.0 were determined using Kroll-Yu [3] and 
Kroll-Lin [4] for the former, and because the latter was 
above cutoff for two waveguide modes, Kroll-Kim-Yu [5] 
was required. A MAFIA time domain computation de- 
termined the wakefield excited by a Gaussian line charge 
bunch displaced from the origin. The wakefield obtained 
for a uZ of 2.6 mm is described by Figs. (4 b,c,d). The 
abscissa represents the distance of a synchronous trailing 
bunch behind the excitation bunch, a typical value being 
42 cm. Fig. (4b) h s ows the persistent wake dominating 
after 25 cm. The logarithmic plot of the averaged ampli- 
tude shown in Fig (4~) exhibits perhaps three exponential 
damping rates. The straight line fit shown determines a 
damping rate of 44.33 m-l. This is to be compared with 
the unresolved pair of decay rates of 48.64 m-l and 39.92 
m -’ from the first and second dipole modes. The second 
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Figure 4: (a): 2D strongly damped structure, the dot refers to beam path in third dimension. (b): Dipole wake field 
as a function of distance= t * c. (c): log plot of the same wake field, dashed line refers to the best exponential fit. (d): 
log-log plot, dashed line is tm312 

slope of 27.6 m-l (straight line is not shown) was asso- 
ciated with a high frequency mode beyond the range of 
our frequency domain simulation. The log-log plot of Fig 
(4.2d) compares the persistent wake with a te3i2 straight 
line. 

4 Concluding Remarks 

The magnitude of the wake at 42 cm appears to be large 
enough to cause some beam blow up. We have also studied 
the-extreme case of the cavity formed by two waveguides 
intersecting at right angles. While no damped dipole reso- 
nances could be identified, indicating extreme higher order 
mode damping, the persistent wake was four times as large, 
and the beam blow up would be disastrous. This suggests 
that an iris which decreases the damping tends to decou- 
ple the cavity from the persistent wake, and hence that 
better results could be obtained by further decreasing the 
damping. Detuning the persistent wake by distributing 
the waveguide cutoff frequencies, which should be simpler 
than detuning the HOM’s, would also be expected to be 
effective. It is also likely that the effect would be negligible 

_ in the choke mode cavity damping scheme [6]. 
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