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Abstract 
A design for a 90” bend for the TEsr mode in over- 

moded circular waveguide is presented. A pair of septa, 
symmetrically placed perpendicular to the plane of the 
bend, are adiabatically introduced into the waveguide be- 
fore the bend and removed after it. Introduction of the 
curvature excites five propagating modes in the curved sec- 
tion. The finite element field solver YAP is used to calcu- 
late the propagation constants of these modes in the bend, 
and the guide diameter, septum depth, septum thickness, 
and bend radius are set so that the phase advances of all 
five modes through the bend are equal modulo 2~. To a 
good approximation these modes are expected to recom- 
bine to form a pure mode at the end of the bend. 

I. INTRODUCTION 
Some designs for the Next Linear Collider[l] (NLC) 

tr-ansmit power from the source (a klystron or the output 
of a pulse compressor) to the accelerator structure in the 
TEei mode of overmoded circular waveguide in order to 

. have small transmission loss. The waveguide run from the 
_ ._ -source to the accelerator includes some 90” bends. Ideally 

these bends would be loss-less. 
Two algorithms and some results are presented for 

the design of one type of overmoded waveguide bend. A 
curved section of waveguide connects two straight sections 
as shown in Figure la. The curvature in the bend is con- 
stant so the waveguide follows a 90“ arc with radius of 
curvature pe between the two straight sections. The cross- 
section of the waveguide is uniform throughout the curved 
section, but the cross-section is not simply a circle. The 
cross-section and radius of curvature pe will be chosen so 
that the incoming wave propagates through the curved sec- 
tion with negligible mode conversion. This is the principal 
form of loss considered here. Reflection and wall losses 
are only considered heuristically. The straight sections are 
adiabatic tapers from and to circular waveguide. 

II. TELEGRAPHIST’S EQUATION 
Curvature in overmoded waveguide causes coupling 

between the straight guide modes. Such coupling is af- 
forded by the generalized telegraphist’s equations[2], which 
have been applied to curved circular guide[3]. In terms of 
the forward and .backward wave amplitudes, a$, these are 

da* 
2 = F:i C (C&a: + Cz,a,) , 

dz ” 
(1) 
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Figure 1. Outer geometry (a) and cross-section (b) of the 
bend. The cross-section’s dashed line is a symmetry plane. 

where C,,,, = Pm are the propagation constants and the 
other C,,,, involve inner products of the transverse fields. 

The power transfer between two modes in a curved 
section is limited by the difference in their propagation 
constants. The TEsl-TM11 degeneracy presents a prob- 
lem, so the degeneracy is split by introducing partial septa 
perpendicular to the bend plane as shown in Figure lb. 
The modes can no longer be found analytically, but the Pm 
can be computed using SUPERFISH[I]. 

If pc ) d/2 then the coupling is weak and the TEer- 
like mode amplitude varies little along the bend. A small 
amount of power will beat in and out of the nth coupled 
mode in an arc length lb 1: 27r/]/?,, - /&I, where o indicates 
the TEsl-like mode. The interaction with each mode can- 
cels when the relative phase advance is a multiple of 27r. 
By adjusting the cross-section and p. the p’s are manipu- 
lated so that the three propagating modes coupled to first 
order all beat out at the end of the 90’ bend. 

This is the approach first taken. However, a compact 
bend which cannot rely on the above assumption is de- 
sired. As the coupling coefficients become comparable to 
the mode spacings, the beat lengths are altered, and modes 
coupled to second order may be important. The coupling 
coefficients C,, are required to verify parasitic mode sup- 
pression at the end of the bend. Since the C,,,, are not 
easily obtained from the field solver, a different approach 
was taken. 

III. MODES IN CURVED GUIDE 
A curved guide can be treated as a portion of a cylin- 

drically symmetric structure. For the 90” bend the struc- 
ture starts at 4 = 0 and ends at 4 = x/2. The fields 
in the waveguide can be decomposed into modes with az- 
imuthal dependence eim+. In the axisymmetric waveg- 
uide paradigm the waves propagate along 4 with propa- 
gation constant tn. Compare this with the phase eia* for 
waves propagating along z with propagation constant p in 
straight waveguides. The curved guide does not close on 
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itself so  there is n o  requ i rement  that m  b e  a n  integer.  
T h e  finite e lement  f ield solver  Y A P [5] is capab le  of 

comput ing  the f requenc ies  of the m o d e s  of ax isymmetr ic  
structures for any  rea l  m. Non- in tegra l  m  is a l lowed.  Y A P  
was  used  to compute  d ispers ion d iag rams for curved gu ide  
with var ious cross-sect ions. O n e  such d ispers ion d iag ram is 
shown  in F igure  2. A  d ispers ion d iag ram for curved gu ide  
looks simi lar to d ispers ion d iag rams for straight gu ide.  
However ,  the s imple  d ispers ion formula  w2/c2 =  kz + p 2  for 
a  straight wavegu ide  conta in ing n o  med ia  does  not  app ly  
to curved gu ide.  This can  b e  seen  best  in  f igure 2, whe re  
the d ispers ion curves a re  not  para l le l  l ines. A  powe r  ser ies 
of the form 

w 2  
-=k ,2+a l (32+a2(34+. . .  C 2  

approx imates  the d ispers ion curves well .  T h e  cutoff k,” a n d  
the coeff icients o i  d e p e n d  o n  p C  a n d  o n  the cross-sect ion R  
of the gu ide.  W h e n  p C  is la rge  then cxi Cy  1  a n d  the cut- 
offs kz are  approx imate ly  the s a m e  be tween  straight a n d  
curved gu ide  with the s a m e  cross-sect ion. In the la rge  p C  
limit the two app roaches  descr ibed in this pape r  a re  equ iv-  
alent.  

8  
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Figure  2. D ispers ion d iag ram of the curved gu ide  for the 
first des ign  l isted in Tab le  1. T h e  d a s h e d  l ine is the dr ive 
f requency 11 .424  GHz.  T h e  dot ted l ine cor responds  to the 
speed  of l ight a long  the center  of the gu ide.  

IV .- S C A T T E R ING A T  T H E  I N T E R F A C E  
There  is potent ia l ly s o m e  ref lect ion at the interface be -  

tween  the straight wavegu ide  a n d  the curved wavegu ide .  A  
genera l i zed  scatter ing m a trix S i  for the p ropaga t ing  m o d e s  
in the straight a n d  curved gu ides  can  b e  constructed. 

T h e  scatter ing m a trix S b  for a  b e n d  over  ang le  C $ b  
can  b e  easi ly compu ted  g iven  S i  for the stra ight- to-curved 
interface a n d  the p ropaga t ion  constants ml a n d  m 2  for the 
two p ropaga t ing  m o d e s  in the curved gu ide.  T h e  examp le  
above  has  ml =  22 .85  a n d  m 2  =  16.18.  T h e  next  m o d e  is 
evanescent  with ms  =  i11.38.  T h e  t ransmiss ion coeff icient 
for the (straight gu ide)  fundamenta l  m o d e  for var ious b e n d  
ang les  4 6  was  computed.  A t &  =  2?r / (ml  - m 2 )  =  0 . 9 4 1  
the t ransmiss ion is near ly  perfect. A t this b e n d  ang le  the 
two p ropaga t ing  waves  in the curved gu ide  arr ive at the 
output  e n d  of the b e n d  with the s a m e  relat ive phases  they 
h a d  at the input  e n d  of the bend .  T h e  p ropaga t ing  f ield 
at the output  is the s a m e  as  at the input  except  for a n  
overa l l  phase,  so  waves  a re  faithfully t ransmit ted th rough  
the b e n d  with n o  m o d e  convers ion.  

As  a n  example ,  the scatter ing m a trix for the straight- T h e  evanescent  waves  at the interfaces have  decayed  
to-curved interface in a n  o v e r m o d e d  rec tangular  H-p lane  sufficiently in  the curved gu ide  so  that they can  b e  ne -  
wavegu ide  b e n d  was  compu ted  us ing  a  mode-match ing  g lected in the t ransmiss ion calculat ions for &  =  0.941.  
m e thod. On ly  TE,e  m o d e s  we re  cons idered  so  the f ields This examp le  leads  to the pr inc ipal  des ign  cr i ter ion for 
a re  un i fo rm vertically. In the straight gu ide  p ropaga t ing  this type of o v e r m o d e d  wavegu ide  bend :  the phases  e ”‘i+b  
a long  y the m o d e s  a re  E , cc sin(27rnzl tu)  whe re  0  5  x 5  w  must  b e  ident ical  for al l  m o d e s  p ropaga t ing  in the curved 
is the hor izonta l  d o m a i n  of the wavegu ide .  In the curved gu ide.  In addi t ion,  evanescent  m o d e s  shou ld  b e  sufficiently 
gu ide  the m o d e s  involve Besse l  funct ions. They  a re  E , cc above  cutoff so  that they decay  wel l  over  the length  of the 
AJm(kp )  +  B Y ,,,(b )  w h e r e  pc  - w /2  L  p  5  pc  +  w /2  bend ,  a n d  thus can  b e  neglected.  

a  

a n d  k =  w/c is the dr ive f requency.  Note  that m  is rea l  for 
p ropaga t ing  m o d e s  a n d  imag inary  for evanescent  modes .  

T h e  bounda ry  condi t ions E , =  0  at p  =  p C  f w/2 
y ie ld a  character ist ic equa t ion  for the p ropaga t ion  con-  
stants m. Solut ions we re  ob ta ined  by  numer ica l ly  inte- 
grat ing Besse l’s equat ions  a n d  us ing  a  shoot ing  m e thod to 
m a tch the bounda ry  condi t ions.  This y ie lded numer ica l  
va lues for m 2  for bo th  p ropaga t ing  ( m 2  >  0)  a n d  evanes-  
cent  ( m 2  <  0 )  modes .  T h e  f ield E , for each  m o d e  was  
ob ta ined  similarly. 

T h e  norma l i zed  genera l i zed  scatter ing m a trix S i  was  
compu ted  for a n  examp le  with w/X =  1 .36  a n d  pc /X =  
3.87,  whe re  X  is the f ree space  wavelength .  The re  a re  two 
p ropaga t ing  m o d e s  in the gu ides.  Us ing  1 4  m o d e s  for the 
f ield expans ion  o n  each  s ide of the interface, the compu ted  
scatter ing m a trix for the interface is 

[ 

4.10-y=@  8 .1O-*B  0 .982  0 .190  
s,= 8.10-' .  8 .10- ' / -122D -0 .190 0 .982  

8  0 .982  -0 .190 3.10-y& 8 .10~ '&  
0 .190  0 .982  1  (3)  

8.10-" / - -4o & l o - & @  

where  [a,~, usz, a,l, a ,#’ is the incoming  wave  vector. T h e  
wave  ampl i tudes as,, a n d  a c n  are  for the m o d e s  in the 
straight a n d  curved gu ides,  respect ively.  

Not ice that the ref lect ion ampl i tude  is less than 1 0 m 3 . 
If o n e  assumes  the ref lect ions a re  simi lar for bends  with dif- 
ferent cross-sect ions but  s imi lar curvature,  then  ref lect ion 
at the stra ight- to-curved interface can  b e  neglected.  T h e  
ref lected powe r  wil l  b e  neg l ig ib le  as  long  as  resonances  a re  
avo ided.  T h e  pr inc ipal  concern,  then,  is m o d e  convers ion.  

V . A R O U N D  T H E  B E N D  

2  



.- - 
- -- r. .- 

Table 1 
90” Overmoded Waveguide Bends 

d(cm) 1 (cm) w (cm) pc (cm) ml m2 m3 m4 m5 fc6 (GHz) 
4.372 0.986 0.465 31.786 72.873 60.873 56.873 52.873 28.874 11.536 
4.275 0.971 0.611 36.655 83.867 67.867 63.867 59.867 23.868 11.819 
4.358 1.054 0.593 38.754 89.034 73.034 69.034 65.034 25.033 11.579 
3.940 0.765 0.476 23.891 53.870 41.870 37.870 33.870 9.871 12.726 
4.157 0.904 0.622 33.894 77.212 61.212 57.212 53.212 17.213 12.163 

Mode 1 (“TErr”) Mode 2 (“TEsi”) Mode 3 (“TEsr”) Mode 4 (“TEer”) Mode 5 (“TMir”) 
Figure 3. Electric field patterns for the five propagating modes of the first design in Table 1. _. .-- 

VI. 90” -BEND DESIGN 
Designs for a 90” bend with a cross-section as shown in 

Figure lb .w.e.r’e computed. The phases emin/z for the five 
lowest propagating modes excited by the incoming wave 
can be fixed relative to each other by adjusting the four 
parameters: d, pC, 1 and w. Propagating modes not excited 
by the incoming wave (due to symmetry) are neglected. 
Dispersion diagrams were computed using YAP and the 
bend parameters were adjusted so that the phases were the 
same. This corresponds to the propagation constants mi 
differing from one another by multiples of 4. The cutoff 
(m = 0) frequency of higher order modes were computed in 
order to discard designs with more than five propagating 
modes at 11.424GHz. Table 1 lists the parameters for 
five solutions. It also lists the propagation constants for 
the five lowest modes and the cutoff frequency fcs for the 
sixth lowest mode. 

The cross-section in Figure 1 and the dispersion dia- 
grams in Figure 2 correspond to the first design in Table 1. 
The field patterns for the propagating modes are shown in 
Figure 3. At cutoff the field patterns for the modes in 
curved guide are similar to the corresponding modes in 
straight guide, but for large m the second and third modes 
are mixed. This is evident in the field plots and in the 
dispersion diagram, where it appears that the second and 
third curves are repelling each other. These modes arise, 
with the introduction of the septa, from the TEz1 and TEsr 
modes of circular guide. The incoming wave is similar to 
the fourth mode, which is a TEeI-like mode. 

The cutoff frequency for the sixth mode of the first 
design appears close to cutoff. The estimated propagation 
constant using the straight guide formula is me 2 i10.7 

and the decay amplitude over the length of the waveguide 
is eimsa/2 = 5 x 10-8. 

VII. FURTHER WORK 
Further designs can be found, perhaps with smaller 

radii of curvature and shorter septa so that the bend will 
have smaller wall losses and be easier to manufacture. 

A variation of the YAP field solver will compute the 
evanescent mode8 in curved guide. With these modes a 
mode-matching algorithm can be employed to calculate the 
scattering matrix Si for the straight-to-curved guide inter- 
face, and then verify that reflections are negligible and that 
the design criterion is appropriate. 

Calculation of the wall losses through the bend and 
mode-conversion losses (due to manufacturing errors) also 
requires knowledge of Si in order to obtain the mode am- 
plitudes in the bend as well as the evanescent fields near 
the interface. 
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