
I
:

.Y - - _-- f .

SLAC-PUB-6135
April 1993
w

The Gismo Project*

William Atwood
Stanford Linear Accelerator Center, Stanford, CA 94309

Alan Breakstone
University of Hawaii, Honolulu, HI 968‘22

David Britton
McGill University, Montreal, PQ, H3A 2T8 Canada

Toby Burnett
University of Washington, Seattle, WA 98195

David Myers
CERN, CH-1211, Geneva, 23 Switzerland

Gary Word
Rutgers University, Piscataway, NJ 08855

Introduction -

_ .-.I6 the quest to understand the fundamental structure of the universe,

high-energy particle physicists smash together subatomic particles at a handful of

accelerator complexes around the world. The enormous energy and the grand size

of these machines, such as the 27 km circumference Large Electron-Positron (LEP)

collider in Geneva, or the 83 km circumference Superconducting Super Collider

(SSC) under construction in Texas, contrasts with the tiny scales on which matter

is being probed. These machines are designed to examine distances as small as

lo-l6 centimeters and to investigate particles that live for only a picosecond or

less before decaying. These scales are far beyond the perception of the unaided

senses so the particle physicist must rely heavily on computers to design, control,

simulate, and interpret such experiments.

Su@nitted to C++ Report

* Work supported in part by Department of Energy contracts DE-AC03-
76SF00515 and DEAC03-83ER-40103; Natural Sciences and Engineering
research Council Canada; National Science Foundation; and National Science
Foundation grant PHY-92-24 196.

I
:

The detectors used to capture the signatures of the particles that fly out

from these subatomic collisions are of colossal scale and complexity. For example,

the particle detector ZEUS at the recently commissioned HERA electron-proton

collider in Germany is the height of a four story building, weighs 3600 tons and

records 257,000 channels of data up to several times per second. The trigger

decision, the decision on whether to record an event for future analysis offline,

requires a tremendous amount of computing power to assimilate the large quantity

of data in a fraction of a second.

The ZEUS experiment has a three-level trigger, each level performing an

increasingly sophisticated analysis culminating in a third-level trigger composed

of a lOOO-MIP array of Silicon Graphics processors. For experiments now being

planned, data rates may exceed 10 Mbytes/second, and the amount of archival

storage needed may exceed 50 Tbytes/year (yes, 5 x 1013 bytes/year). .--
These huge detectors are typically a composite of many different detection

.j
elements each of which returns different information about the particles such as . ._ .-_ _
their position, momentum, energy, and particle type. The process of associating

and interpreting the raw data taken by the various detector elements and extracting

the quantities which allow an understanding of elementary particle physics is

-referred to as reconstruction. This is a very complex process and relatively little

of it can be done as the data are taken. Instead, the data from each collision

(usually called an event) are written to some permanent storage medium, usually

magnetic tape or disk, for later analysis. The data analysis thus begins with the

event reconstruction in which the raw data from all detector elements are combined

to make hypotheses as to what types of particles were produced, and to estimate

their energies, momenta, and angular distributions. This analysis relies heavily on

_ the results of simulations which predict how the various detector elements respond

to different types of particles passing through them. Individual events may be

studied, or else subsequent analysis may group together events of the same or

similar type,‘and probabilities of that type of event occuring may be calculated.

These probabilities, expressed in the form of cross sections (see the sidebar), are

2

.s- -
-- t, - .-

then compared to theoretical predictions based on the present understanding of the

physical processes involved in the collision. In this way, the basic physics is inferred

from studies of colliding particles. Consequently, the simulation of each detector

element and of the detector as a whole is not only crucial in optim ising the detector

performance at the design stage, but is equally important in the understanding of

the underlying physics once the data has been recorded.

The simulation sequence starts with a computer generated collision between

two particles which produces an event containing up to several thousand additional

particles. This part of the simulation code is called an event generator and is

independent of the properties of a specific detector. A typical event is shown in

Fig. 1. As the particles produced in the initial collision are propagated outwards

by the simulation program , they interact with the materials in the detector and

eventually stop, annihilate, decay into other particles, or else escape completely .--
from the detector. All these processes must be simulated, and in addition, the

interactions of the particle with the various measuring devices must be calculated.
. ._ .-_ _

The signals produced by the measuring devices in response to the interaction of

the particles are what the physicist analyses.

At first glance, the simulation of this complex system of detectors may seem to

be both difficult and of lim ited application, but in essence the problem is simply

one of propagating particles though matter and simulating their fundamental

interactions. This generalization leads to a wider application for the project

described in this article than is apparent at first sight. Medical physicists use

particles in treatments such as cancer therapy and in diagnostic work such as

Positron Emission Tomography (PET) scans. In both of these applications, the

results are interpreted through the simulation of particles traversing the material

_ of the human tissue. Many other groups of physicists also need to simulate the

tracking of particles through material, where the particles are either generated

from accelerators or come from outer space as cosmic rays. Thus there are many

groups that need tools to propagate particles through matter and to simulate the

same basic processes.

3

c

.s- -
-- ,, - .I

The processes of detector simulation and event reconstruction lend themselves

quite naturally to an object-oriented approach. There are many general properties

of detectors, such as their geometrical shape and their response to particles,

which can be abstracted. Likewise event reconstruction can be abstracted as a

collection of reconstructed particles, each of which has certain general properties,

such as a trajectory through space. In the remainder of the article we will discuss

how an object-oriented approach is used in the Gismo project and comment on

the strengths and weaknesses of C++ as an object-oriented language within this

context.

History

The Gismo (Graphical Interface for Simulation and MonteCarlo with Objects)

project began in the summer of 1990 as a prototype to test the applicability of

objectzoriented techniques to detector simulation and event reconstruction. It

was written using the Objective-C language with a graphical user interface (GUI)

designed using the NeXT Interface Builder. Several of us now engaged in the

project were impressed by this effort and wished to expand the project so that

it could be a more complete physics tool, usable by a larger segment of the

high-energy physics community. Others saw Gismo as being applicable to a wide

range of simulation tasks in more diverse fields. About twenty physicists and

programmers from eleven institutions, from Hawaii to Geneva, Switzerland, formed

a collaboration in 1991. We have held two workshops, one at the Stanford Linear

Accelerator Center (SLAC) in July, 1991, and the other at the University of Florida

in January, 1992. At these workshops we defined the goals of the project and

discussed details of their implement at ion. .

Gismo Goals and Decisions

Gismo is designed specifically to speed up the process of detector design,

simulation, and event reconstruction. For the design process, it is of paramount

importance that changes in the geometry of the detector may be made quickly

and easily and in a manner which is not prone to introducing errors. For the

4

simulation of events it is important that Gismo be flexible enough that the user

may choose the level of detail to which the simulation is performed. For example,

in some studies it may be sufficient to parameterize the response of many detector

elements in a way that allows the rapid simulation of many events. For other

studies it will be important to simulate the interactions in great detail and pay

the price in the required CPU time. The reconstruction of events by Gismo must

also be implemented by a flexible scheme that allows the user to investigate the

effects of different detector elements independently and to try out new methods of

interpreting the information provided by the detectors. By fulfilling these needs,

Gismo will serve both as a tool for designing new generations of high-energy

physics detectors and as a tool with which present day detectors may be more

easily understood. Thus, Gismo will have users who only deal with it interactively

through the GUI or via batch processing; customizers who need to know more

&bout-Gismo ‘hooks” to allow them to customize the simulation for their particular

detector; and finally developers who write the more abstract classes defining the

progr%n’s overall architecture.

At the workshops, we chose Unix to define the generic environment in which

Gismo would be developed. The project is organized into a platform independent

kernel, with interfaces to detector and event I/O, a graphical display, and a GUI

(see Fig. 2). The kernel and I/O should be suitable for batch applications. Both

detector simulation and event reconstruction should be available in one program.

Gismo will also allow an easy hookup to existing and future tools, such as event

generation packages written by other high-energy physicists. Most of the existing

tools are written in FORTRAN, while some of the tools to be used in the future are

written in C++, for example the event generation program MC++* [Leif Lonnblad

and Anders Nilsson. The MC++ Event Generator Toolkit-version 0. Computer

Physics Communications, 71 (August 1992) 1.1.

The source code for the kernel is further divided into a number of subprojects

which separate different aspects of the simulation problem and which provide an

easy way to assign tasks among the collaborators with minimal interference among

5

.ir -
-- c - .-

the widely-scattered programmers. The major subprojects are general tool classes:

mathematics classes, geometry classes, classes for the propagation of particles,

classes for the interactions of particles, classes related to the GUI and graphics,

and m iscellaneous support routines.

Most of the Gismo collaborators came from a FORTRAN background with

little experience with other languages and essentially no previous experience with

object-oriented program m ing. Those of us who participated in the prototype

project did have experience with object-oriented program m ing using Objective-C,

and one of us had additional experience with Eiffel. However, we all had a great

deal of experience with large software projects typical in the simulation and analysis

of high-energy physics experiments.

At the workshops there was a great deal of discussion on the choice of a

progrZi.m m ing language. Clearly we were only interested in an object-oriented

language, yet we were very concerned by the lack of standards compared to FOR-

TRAN.-We felt it was unrealistic to continue to use Objective-C from the Gismo

prototype since the language is not widely supported. C++, on the other hand, has

compilers available on all the platforms of interest to the Gismo group, although

some felt that the language appeared too complex and had a very awkward syntax.

In addition, the lack of a current IS0 or ANSI standard means that there are

platform dependent differences which would have to be avoided. Since we had

essentially no experience with C++, there was some trepidation in deciding to use

this to rewrite Gismo, but we felt that there were no viable alternatives.

Having made the decision to use C++, we discussed the issue of base class

libraries. Unfortunately, physicists are not accustomed, to paying for software,

so in order to gain wide acceptance in our field we could not base Gismo on a

commercial product. We therefore investigated the use of the NIHCL and GNU

C++ class libraries, but felt that both carried too much excess baggage in the form

of unneeded classes and deep class hierarchies. We were also concerned that the

lack of standards m ight mean that class libraries could change with future releases

6

.--
-- r. - .-

such that we would have to rewrite major parts of our code in order to remain

compatible. Finally, we worried that, again due partly to the lack of standards,

there would be class name conflicts if we needed to include more than one base

class library. Thus, since our needs were modest and the C++ language encourages

a shallow class hierarchy, we opted to write our own very lim ited base class library

and so reduce one of our portability concerns.

Experience with Object-Oriented Design and C++

We were quite concerned that it m ight take a long time to learn how to

implement object-oriented design and to program efficiently and effectively in

C++. In practice, it typically took a few months to learn enough C++ to write

meaningful classes for the Gismo project. The major time-consuming step was,

and remains, object-oriented design. We found that the best attitude to have

when writing Gismo code was to consider it as prototype code which may need

frequent major revisions as shortcom ings are uncovered and, indeed, most of the

subprojects have undergone several iterations. Now, about a year after this effort

began, we are still rewriting large sections of code, but the process does seem to

be converging. Undoubtedly the use of a design tool with skeleton code generation

would help.

We decided to write the code in a very conservative fashion, trying to avoid

using features that may not be universally available. For example, although C++

compilers which handle templates are widely available, we do not yet have such a

compiler on one of our major development platforms (the NeXT). We have therefore

chosen to not take advantage of this very nice feature of the language. We have

compiled the Gismo kernel using the NeXT C/Objective-C/C++ compiler which

is based on GNU version 1.37, the Borland version 3.1 compiler, and GNU’s gee 2.0

compiler on Sun, DEC and RS/6000 workstations. So far we have not encountered

any major portability problems.

We have been very pleased with the debugging environment provided by our

development platforms for use with C++. Our main experience is with the GNU

7

c

I
:

gdb debugger on the NeXT. We find this debugger is easy to use, allowing us quickly

to find and fix many problems. Unfortunately, though, for “memory scribbling”

problems, the inability to set debugger conditions to test for the change of one

or more particular memory locations (i.e., to set “watch points”), as opposed to

when a particular source code line is reached, is a major drawback. One of us tried

PURIFY, from Pure Software, on part of the code, and considers it worthwhile to

use such a product to test the integrity of the complete program.

Some of the non-object-oriented features of C++ have also been useful. First,

it is strongly typed: misspelling the name of a variable or function is always caught

by the compiler. The const attribute of structures provides a way to prevent

modification of an object when it is not appropriate. Function name overloading

and default parameters give convenient flexibility to function names, allowing the

samename to be used with different numbers and types of arguments. We have

used operator overloading to define operations on 3- and 4-vectors. We like being

able to declare and initialize variables as they are needed. . ._ .-_ _

However, there are some features we would like to see incorporated in C++ in

the future. In particular, an exponentiation operator, such as exists in FORTRAN,

would be very useful to us. Also we could use some means of handling exceptions,

such as is envisioned for future versions of C++ and which has been described in

some of the textbooks.

Coming from a FORTRAN world without encapsulation, inheritance,

polymorphism, or dynamic binding, it took a while to utilize these features of

C++ to our advantage. Now it would be difficult to go back to a language

without them. The advantages that the textbooks advertise are manifest. We have

_ enforced encapsulation by never making data members of Gismo classes public,

even though C++ allows this. ‘We use inheritance, polymorphism and dynamic

binding extensively. For example, in the geometry subproject, we use dynamic

binding in writing the code to calculate the intersection point of a straight line or

a helix with any one of several shapes of surfaces without knowing until run time

8

exactly what kind of surface is used. Another example occurs in the propagation of

particles from the collision point through the detector for which the trajectory may

be either a straight line or a helix depending on whether the particle is electrically

charged and whether there is a magnetic field present (see the sidebar on particle

propagation for more details). Furthermore, the type of medium varies among the

different detector elements. Dynamic binding allows us to write the code without

the case statements which would be required in FORTRAN. This makes the code

easier to write (and to understand later) than has been the case with FORTRAN.

Dynamic memory allocation in the language does much of the tedious bookkeeping

for the programmer, so that he or she can concentrate on more fundamental issues.

This greatly speeds up the debugging process. Unfortunately, lack of garbage

collection still leaves plenty of room for memory leaks.

%ismO Project-Status and Future Plans

So far, most of our development of the GUI and graphics has been on NeXT . ._ .-. _
workstations, where Display PostScript has been used for drawing, although the

graphics package has also been ported to an X-window environment. We have

written code in the Gismo kernel which interfaces between geometrical objects and

-the drawing package. The GUI is written using the NeXTstep Interface Builder,

which we find to be a very powerful tool. The GUI allows a user easily to input

detector components, define materials, initiate particle propagation, and display

the results. A similar effort is planned for the X-window environment.

Another part of the project is to write an I/O package to support object

persistence. This is particularly important to allow the user to store and retrieve

those objects created interactively with Gismo, such as detector descriptions and _

the individual simulated events, including reconstructed quantities. It might be

possible to use an object-oriented database system to do this, but the functionality

we require is-far too modest to justify the high cost of such systems. Also, as noted

earlier, we do not want to tie the Gismo kernel to any commercial package.

9

For the more distant future, we are contemplating connecting Gismo to a CAD

package to allow better and more detailed communication between the engineers

and physicists in an experiment. For example, one could input a detailed detector

design from a CAD system and simulate its response to the processes of interest to a

physicist. In addition, we want to incorporate various event generators into Gismo

which will allow Gismo to simulate a wider variety of physics processes. Finally,

we plan to connect Gismo event output to various analysis tools that others in our

field are developing to allow a seamless transition from detector design, through

event generation, detector simulation and event reconstruction, to detailed physics

analysis, and even publication!

Conclusion

In summary, the Gismo project is an ambitious effort to modernize the process

of high-energy -physics detector design, simulation, and event reconstruction using

the increased computational power available with Unix workstations. We hope

that.Gismo will gain wide acceptance both in the field of high-energy physics as

well as in other disciplines of science. This effort capitalizes on the advantages

of object-oriented programming using the C++ language. Undoubtedly C++

successfully achieves what Bjarne Stroustrup set out to do: namely to incorporate

support for object-oriented programming into C. We have found the language

has strengths, such as being widely available and C compatible, but it also has

weaknesses. The major problem is the complexity of the language which makes

it difficult to learn; witness the text books with 600 pages. Currently, there is a

lack of standards for both the language and for the basic class libraries. We look

forward to improvements in the language and particularly to standardization and

the inclusion of exception handling.

Sidebar on High Energy Physics

Particle physicists study the most basic constituents of matter and their

fundamental _ interactions by colliding beams of particles with other beams

of particles or with stationary targets. Knowledge about the fundamental

10

.s- -
-- r. - .-

constituents of our universe is extracted by studying how often various types

of collisions occur, what particles are produced in these collisions, and what

subsequently happens to the particles created. Typically the particles produced in

the initial collision decay rapidly into other particles which in turn may also decay

until eventually only long-lived particles remain. The physicist observes these final

state particles in massive detectors, and by measuring their energies, angles, and

momenta, tries to piece together the complex series of decays.

There are known to be four basic interactions among elementary particles: the

strong interaction which is responsible for the binding of protons and neutrons

in nuclei; the electromagnetic interaction which keeps electrons bound to nuclei

in atoms; the weak interaction which governs most radioactive decays; and the

gravitational interaction which is so weak in comparison to the other three that its

effects cannot be seen in particle collisions. The division between these different .--
interactions is somewhat arbitrary in that they may be just different aspects of a

single .unified interaction. For example, the electromagnetic and weak interactions
. ._, .-_ _

are now known to be just different aspects of a single electroweak interaction.

Particles which make up matter are divided into two general classes based

on these interactions: leptons, such as the electron, which do not have strong

Interactions; and hadrons, such as the proton and neutron, which do. Hadrons are

believed to be composed of more elementary constituents called quarks. Hundreds

of different kinds of hadrons, made up of different combinations and types of quarks,

have been observed. There is clear experimental evidence for five quark types,

and it is strongly believed that a sixth will soon be found. Similarly, five types

of leptons have been observed, and there is strong evidence for the sixth. The

interactions between constituent particles are explained by the exchange of other

_ particles called gauge bosons. For example, the electromagnetic interaction, giving

rise to light, is due to an exchange of photons (in common terms, particles of light)

which are a type of gauge boson. Similarly, the neutral Z and charged W gauge

bosons are responsible for the weak interaction, and yet other gauge bosons called

gluons produce the strong interaction.

11

Knowledge about the different interactions and constituents of matter is gained

by studying particle collisions. The probability that a reaction will end up with

a particular final state of particles from an initial state defined by the particle

beams (or beam and target material) is typically measured. These initial and final

states are characterized by the types of particles, their energies and trajectories,

and perhaps other properties, such as polarization. The reaction probabilities are

expressed as effective cross sectional areas (cross sections) of the particle collisions.

The sizes of these cross sections are tiny compared to everyday scales. They range

from typically 1O-42 cm 27 for the weak interaction, up to 1O-25 cm2 for the strong

interaction. These small cross sections set the parameter scales necessary for the

design and construction of particle accelerators so that useful event rates may be

observed. They also set the scale for the size of the detectors that are built to do

the experiments. The more massive the particle, the higher the energy needed to

create-it, and the bigger the accelerators and the detectors must be.

12

How Particles Propagate I! . 1.
The propagation of particles through 3-dimensional geometries is illustrated by the following C++ code and pictures. Polymorphism is used to allog
generalized messaging of both different types of Rays as well as different types of geometrical objects. The recursive nature of C is used to follow,4

L while keeping track of the location of all daughter (grand daughter, great grand etc.) particles resulting from interactions or decays. .A

void Particle::propagate(const Medium* stuff)
C

const Medium *newStuff = stuff;

while (status==STATUS-ALIVE)
{

atuf f = newstuff;

// return a Ray that estimates the trajectory

Ray *segment = trajectory(stuff);

vate member function of Particle
Choose which type of Ray

// Ask the Medium for a distance along ray

step = stuff-BdistanceToLeave

(*segment, detector, newstuff);

Ray Helix

// Perform the step, taking all physics into account

stepBy(step, *segment, stuff);

if (detector I= 0) detector->score(*this);

x

// Add (Ray *)segment to track (List of Rays)

track->addSegment(segment);
I

A Tube of Aluminum
B, = +2.0 Tesla

// Now recurse: make sure that all of the children '

// of a particle's decays or interactions propagate

// out of the medium in which they were created
if (status==STATUS-DECAYED1 Istatus-=STATUS-INTERACTED)

for(int i-0; i<numChildren(); i++)
child(i)->propagate(stuff);

Figure 1. An event display, looking along the beam direction, of a neutral Z

particle decaying into four “‘jets” of particles using the SLD detector at the Stanford

Linear Collider. The curved lines are trajectories of charged particles reconstructed

from the measurements in the inner cylindrical detectors, while the trapezoidally

shaped boxes represent energy deposited in the outer detectors.

Batch Use

/

GUI

_ I---I

Interactive Use

Figure 2. Illustration of the relationship of the Gismo kernel to detector and

event I/O, the graphical display, and the graphical user interface.

