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Introduction - 

_ .-.I6 the quest to understand the fundamental structure of the universe, 

high-energy particle physicists smash together subatomic particles at a handful of 

accelerator complexes around the world. The enormous energy and the grand size 

of these machines, such as the 27 km circumference Large Electron-Positron (LEP) 

collider in Geneva, or the 83 km circumference Superconducting Super Collider 

(SSC) under construction in Texas, contrasts with the tiny scales on which matter 

is being probed. These machines are designed to examine distances as small as 

lo-l6 centimeters and to investigate particles that live for only a picosecond or 

less before decaying. These scales are far beyond the perception of the unaided 

senses so the particle physicist must rely heavily on computers to design, control, 

simulate, and interpret such experiments. 
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The detectors used to capture the signatures of the particles that fly out 

from these subatomic collisions are of colossal scale and complexity. For example, 

the particle detector ZEUS at the recently commissioned HERA electron-proton 

collider in Germany is the height of a four story building, weighs 3600 tons and 

records 257,000 channels of data up to several times per second. The trigger 

decision, the decision on whether to record an event for future analysis offline, 

requires a tremendous amount of computing power to assimilate the large quantity 

of data in a fraction of a second. 

The ZEUS experiment has a three-level trigger, each level performing an 

increasingly sophisticated analysis culminating in a third-level trigger composed 

of a lOOO-MIP array of Silicon Graphics processors. For experiments now being 

planned, data rates may exceed 10 Mbytes/second, and the amount of archival 

storage needed may exceed 50 Tbytes/year (yes, 5 x 1013 bytes/year). .-- 
These huge detectors are typically a composite of many different detection 

.j 
elements each of which returns different information about the particles such as . ._ .-_ _ 
their position, momentum, energy, and particle type. The process of associating 

and interpreting the raw data taken by the various detector elements and extracting 

the quantities which allow an understanding of elementary particle physics is 

-referred to as reconstruction. This is a very complex process and relatively little 

of it can be done as the data are taken. Instead, the data from each collision 

(usually called an event) are written to some permanent storage medium, usually 

magnetic tape or disk, for later analysis. The data analysis thus begins with the 

event reconstruction in which the raw data from all detector elements are combined 

to make hypotheses as to what types of particles were produced, and to estimate 

their energies, momenta, and angular distributions. This analysis relies heavily on 

_ the results of simulations which predict how the various detector elements respond 

to different types of particles passing through them. Individual events may be 

studied, or else subsequent analysis may group together events of the same or 

similar type,‘and probabilities of that type of event occuring may be calculated. 

These probabilities, expressed in the form of cross sections (see the sidebar), are 
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then compared to theoretical predictions based on the present understanding of the 

physical processes involved in the collision. In this way, the basic physics is inferred 

from  studies of colliding particles. Consequently, the simulation of each detector 

element and of the detector as a whole is not only crucial in optim ising the detector 

performance at the design stage, but is equally important in the understanding of 

the underlying physics once the data has been recorded. 

The simulation sequence starts with a computer generated collision between 

two particles which produces an event containing up to several thousand additional 

particles. This part of the simulation code is called an event generator and is 

independent of the properties of a specific detector. A  typical event is shown in 

Fig. 1. As the particles produced in the initial collision are propagated outwards 

by the simulation program , they interact with the materials in the detector and 

eventually stop, annihilate, decay into other particles, or else escape completely .-- 
from  the detector. All these processes must be simulated, and in addition, the 

interactions of the particle with the various measuring devices must be calculated. 
. ._ .-_ _ 

The signals produced by the measuring devices in response to the interaction of 

the particles are what the physicist analyses. 

At first glance, the simulation of this complex system of detectors may seem to 

be both difficult and of lim ited application, but in essence the problem  is simply 

one of propagating particles though matter and simulating their fundamental 

interactions. This generalization leads to a wider application for the project 

described in this article than is apparent at first sight. Medical physicists use 

particles in treatments such as cancer therapy and in diagnostic work such as 

Positron Emission Tomography (PET) scans. In both of these applications, the 

results are interpreted through the simulation of particles traversing the material 

_ of the human tissue. Many other groups of physicists also need to simulate the 

tracking of particles through material, where the particles are either generated 

from  accelerators or come from  outer space as cosmic rays. Thus there are many 

groups that need tools to propagate particles through matter and to simulate the 

same basic processes. 

3 

c 



.s- - 
-- ,, - .I 

The processes of detector simulation and event reconstruction lend themselves 

quite naturally to an object-oriented approach. There are many general properties 

of detectors, such as their geometrical shape and their response to particles, 

which can be abstracted. Likewise event reconstruction can be abstracted as a 

collection of reconstructed particles, each of which has certain general properties, 

such as a trajectory through space. In the remainder of the article we will discuss 

how an object-oriented approach is used in the Gismo project and comment on 

the strengths and weaknesses of C++ as an object-oriented language within this 

context. 

History 

The Gismo (Graphical Interface for Simulation and MonteCarlo with Objects) 

project began in the summer of 1990 as a prototype to test the applicability of 

objectzoriented techniques to detector simulation and event reconstruction. It 

was written using the Objective-C language with a graphical user interface (GUI) 

designed using the NeXT Interface Builder. Several of us now engaged in the 

project were impressed by this effort and wished to expand the project so that 

it could be a more complete physics tool, usable by a larger segment of the 

high-energy physics community. Others saw Gismo as being applicable to a wide 

range of simulation tasks in more diverse fields. About twenty physicists and 

programmers from  eleven institutions, from  Hawaii to Geneva, Switzerland, formed 

a collaboration in 1991. We have held two workshops, one at the Stanford Linear 

Accelerator Center (SLAC) in July, 1991, and the other at the University of Florida 

in January, 1992. At these workshops we defined the goals of the project and 

discussed details of their implement at ion. . 

Gismo Goals and Decisions 

Gismo is designed specifically to speed up the process of detector design, 

simulation, and event reconstruction. For the design process, it is of paramount 

importance that changes in the geometry of the detector may be made quickly 

and easily and in a manner which is not prone to introducing errors. For the 
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simulation of events it is important that Gismo be flexible enough that the user 

may choose the level of detail to which the simulation is performed. For example, 

in some studies it may be sufficient to parameterize the response of many detector 

elements in a way that allows the rapid simulation of many events. For other 

studies it will be important to simulate the interactions in great detail and pay 

the price in the required CPU time. The reconstruction of events by Gismo must 

also be implemented by a flexible scheme that allows the user to investigate the 

effects of different detector elements independently and to try out new methods of 

interpreting the information provided by the detectors. By fulfilling these needs, 

Gismo will serve both as a tool for designing new generations of high-energy 

physics detectors and as a tool with which present day detectors may be more 

easily understood. Thus, Gismo will have users who only deal with it interactively 

through the GUI or via batch processing; customizers who need to know more 

&bout-Gismo ‘hooks” to allow them to customize the simulation for their particular 

detector; and finally developers who write the more abstract classes defining the 

progr%n’s overall architecture. 

At the workshops, we chose Unix to define the generic environment in which 

Gismo would be developed. The project is organized into a platform independent 

kernel, with interfaces to detector and event I/O, a graphical display, and a GUI 

(see Fig. 2). The kernel and I/O should be suitable for batch applications. Both 

detector simulation and event reconstruction should be available in one program. 

Gismo will also allow an easy hookup to existing and future tools, such as event 

generation packages written by other high-energy physicists. Most of the existing 

tools are written in FORTRAN, while some of the tools to be used in the future are 

written in C++, for example the event generation program MC++* [Leif Lonnblad 

and Anders Nilsson. The MC++ Event Generator Toolkit-version 0. Computer 

Physics Communications, 71 (August 1992) 1.1. 

The source code for the kernel is further divided into a number of subprojects 

which separate different aspects of the simulation problem and which provide an 

easy way to assign tasks among the collaborators with minimal interference among 
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the widely-scattered programmers. The major subprojects are general tool classes: 

mathematics classes, geometry classes, classes for the propagation of particles, 

classes for the interactions of particles, classes related to the GUI and graphics, 

and m iscellaneous support routines. 

Most of the Gismo collaborators came from  a FORTRAN background with 

little experience with other languages and essentially no previous experience with 

object-oriented program m ing. Those of us who participated in the prototype 

project did have experience with object-oriented program m ing using Objective-C, 

and one of us had additional experience with Eiffel. However, we all had a great 

deal of experience with large software projects typical in the simulation and analysis 

of high-energy physics experiments. 

At the workshops there was a great deal of discussion on the choice of a 

progrZi.m m ing language. Clearly we were only interested in an object-oriented 

language, yet we were very concerned by the lack of standards compared to FOR- 

TRAN.-We felt it was unrealistic to continue to use Objective-C from  the Gismo 

prototype since the language is not widely supported. C++, on the other hand, has 

compilers available on all the platforms  of interest to the Gismo group, although 

some felt that the language appeared too complex and had a very awkward syntax. 

In addition, the lack of a current IS0 or ANSI standard means that there are 

platform  dependent differences which would have to be avoided. Since we had 

essentially no experience with C++, there was some trepidation in deciding to use 

this to rewrite Gismo, but we felt that there were no viable alternatives. 

Having made the decision to use C++, we discussed the issue of base class 

libraries. Unfortunately, physicists are not accustomed, to paying for software, 

so in order to gain wide acceptance in our field we could not base Gismo on a 

commercial product. We therefore investigated the use of the NIHCL and GNU 

C++ class libraries, but felt that both carried too much excess baggage in the form  

of unneeded classes and deep class hierarchies. We were also concerned that the 

lack of standards m ight mean that class libraries could change with future releases 
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such that we would have to rewrite major parts of our code in order to remain 

compatible. Finally, we worried that, again due partly to the lack of standards, 

there would be class name conflicts if we needed to include more than one base 

class library. Thus, since our needs were modest and the C++ language encourages 

a shallow class hierarchy, we opted to write our own very lim ited base class library 

and so reduce one of our portability concerns. 

Experience with Object-Oriented Design and C++ 

We were quite concerned that it m ight take a long time to learn how to 

implement object-oriented design and to program  efficiently and effectively in 

C++. In practice, it typically took a few months to learn enough C++ to write 

meaningful classes for the Gismo project. The major time-consuming step was, 

and remains, object-oriented design. We found that the best attitude to have 

when writing Gismo code was to consider it as prototype code which may need 

frequent major revisions as shortcom ings are uncovered and, indeed, most of the 

subprojects have undergone several iterations. Now, about a year after this effort 

began, we are still rewriting large sections of code, but the process does seem to 

be converging. Undoubtedly the use of a design tool with skeleton code generation 

would help. 

We decided to write the code in a very conservative fashion, trying to avoid 

using features that may not be universally available. For example, although C++ 

compilers which handle templates are widely available, we do not yet have such a 

compiler on one of our major development platforms  (the NeXT). We have therefore 

chosen to not take advantage of this very nice feature of the language. We have 

compiled the Gismo kernel using the NeXT C/Objective-C/C++ compiler which 

is based on GNU version 1.37, the Borland version 3.1 compiler, and GNU’s gee 2.0 

compiler on Sun, DEC and RS/6000 workstations. So far we have not encountered 

any major portability problems. 

We have been very pleased with the debugging environment provided by our 

development platforms  for use with C++. Our main experience is with the GNU 
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gdb debugger on the NeXT. We find this debugger is easy to use, allowing us quickly 

to find and fix many problems. Unfortunately, though, for “memory scribbling” 

problems, the inability to set debugger conditions to test for the change of one 

or more particular memory locations (i.e., to set “watch points”), as opposed to 

when a particular source code line is reached, is a major drawback. One of us tried 

PURIFY, from Pure Software, on part of the code, and considers it worthwhile to 

use such a product to test the integrity of the complete program. 

Some of the non-object-oriented features of C++ have also been useful. First, 

it is strongly typed: misspelling the name of a variable or function is always caught 

by the compiler. The const attribute of structures provides a way to prevent 

modification of an object when it is not appropriate. Function name overloading 

and default parameters give convenient flexibility to function names, allowing the 

samename to be used with different numbers and types of arguments. We have 

used operator overloading to define operations on 3- and 4-vectors. We like being 

able to declare and initialize variables as they are needed. . ._ .-_ _ 

However, there are some features we would like to see incorporated in C++ in 

the future. In particular, an exponentiation operator, such as exists in FORTRAN, 

would be very useful to us. Also we could use some means of handling exceptions, 

such as is envisioned for future versions of C++ and which has been described in 

some of the textbooks. 

Coming from a FORTRAN world without encapsulation, inheritance, 

polymorphism, or dynamic binding, it took a while to utilize these features of 

C++ to our advantage. Now it would be difficult to go back to a language 

without them. The advantages that the textbooks advertise are manifest. We have 

_ enforced encapsulation by never making data members of Gismo classes public, 

even though C++ allows this. ‘We use inheritance, polymorphism and dynamic 

binding extensively. For example, in the geometry subproject, we use dynamic 

binding in writing the code to calculate the intersection point of a straight line or 

a helix with any one of several shapes of surfaces without knowing until run time 
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exactly what kind of surface is used. Another example occurs in the propagation of 

particles from the collision point through the detector for which the trajectory may 

be either a straight line or a helix depending on whether the particle is electrically 

charged and whether there is a magnetic field present (see the sidebar on particle 

propagation for more details). Furthermore, the type of medium varies among the 

different detector elements. Dynamic binding allows us to write the code without 

the case statements which would be required in FORTRAN. This makes the code 

easier to write (and to understand later) than has been the case with FORTRAN. 

Dynamic memory allocation in the language does much of the tedious bookkeeping 

for the programmer, so that he or she can concentrate on more fundamental issues. 

This greatly speeds up the debugging process. Unfortunately, lack of garbage 

collection still leaves plenty of room for memory leaks. 

%ismO Project-Status and Future Plans 

So far, most of our development of the GUI and graphics has been on NeXT . ._ .-. _ 
workstations, where Display PostScript has been used for drawing, although the 

graphics package has also been ported to an X-window environment. We have 

written code in the Gismo kernel which interfaces between geometrical objects and 

-the drawing package. The GUI is written using the NeXTstep Interface Builder, 

which we find to be a very powerful tool. The GUI allows a user easily to input 

detector components, define materials, initiate particle propagation, and display 

the results. A similar effort is planned for the X-window environment. 

Another part of the project is to write an I/O package to support object 

persistence. This is particularly important to allow the user to store and retrieve 

those objects created interactively with Gismo, such as detector descriptions and _ 

the individual simulated events, including reconstructed quantities. It might be 

possible to use an object-oriented database system to do this, but the functionality 

we require is-far too modest to justify the high cost of such systems. Also, as noted 

earlier, we do not want to tie the Gismo kernel to any commercial package. 
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For the more distant future, we are contemplating connecting Gismo to a CAD 

package to allow better and more detailed communication between the engineers 

and physicists in an experiment. For example, one could input a detailed detector 

design from a CAD system and simulate its response to the processes of interest to a 

physicist. In addition, we want to incorporate various event generators into Gismo 

which will allow Gismo to simulate a wider variety of physics processes. Finally, 

we plan to connect Gismo event output to various analysis tools that others in our 

field are developing to allow a seamless transition from detector design, through 

event generation, detector simulation and event reconstruction, to detailed physics 

analysis, and even publication! 

Conclusion 

In summary, the Gismo project is an ambitious effort to modernize the process 

of high-energy -physics detector design, simulation, and event reconstruction using 

the increased computational power available with Unix workstations. We hope 

that.Gismo will gain wide acceptance both in the field of high-energy physics as 

well as in other disciplines of science. This effort capitalizes on the advantages 

of object-oriented programming using the C++ language. Undoubtedly C++ 

successfully achieves what Bjarne Stroustrup set out to do: namely to incorporate 

support for object-oriented programming into C. We have found the language 

has strengths, such as being widely available and C compatible, but it also has 

weaknesses. The major problem is the complexity of the language which makes 

it difficult to learn; witness the text books with 600 pages. Currently, there is a 

lack of standards for both the language and for the basic class libraries. We look 

forward to improvements in the language and particularly to standardization and 

the inclusion of exception handling. 

Sidebar on High Energy Physics 

Particle physicists study the most basic constituents of matter and their 

fundamental _ interactions by colliding beams of particles with other beams 

of particles or with stationary targets. Knowledge about the fundamental 
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constituents of our universe is extracted by studying how often various types 

of collisions occur, what particles are produced in these collisions, and what 

subsequently happens to the particles created. Typically the particles produced in 

the initial collision decay rapidly into other particles which in turn may also decay 

until eventually only long-lived particles remain. The physicist observes these final 

state particles in massive detectors, and by measuring their energies, angles, and 

momenta, tries to piece together the complex series of decays. 

There are known to be four basic interactions among elementary particles: the 

strong interaction which is responsible for the binding of protons and neutrons 

in nuclei; the electromagnetic interaction which keeps electrons bound to nuclei 

in atoms; the weak interaction which governs most radioactive decays; and the 

gravitational interaction which is so weak in comparison to the other three that its 

effects cannot be seen in particle collisions. The division between these different .-- 
interactions is somewhat arbitrary in that they may be just different aspects of a 

single .unified interaction. For example, the electromagnetic and weak interactions 
. ._, .-_ _ 

are now known to be just different aspects of a single electroweak interaction. 

Particles which make up matter are divided into two general classes based 

on these interactions: leptons, such as the electron, which do not have strong 

Interactions; and hadrons, such as the proton and neutron, which do. Hadrons are 

believed to be composed of more elementary constituents called quarks. Hundreds 

of different kinds of hadrons, made up of different combinations and types of quarks, 

have been observed. There is clear experimental evidence for five quark types, 

and it is strongly believed that a sixth will soon be found. Similarly, five types 

of leptons have been observed, and there is strong evidence for the sixth. The 

interactions between constituent particles are explained by the exchange of other 

_ particles called gauge bosons. For example, the electromagnetic interaction, giving 

rise to light, is due to an exchange of photons (in common terms, particles of light) 

which are a type of gauge boson. Similarly, the neutral Z  and charged W  gauge 

bosons are responsible for the weak interaction, and yet other gauge bosons called 

gluons produce the strong interaction. 
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Knowledge about the different interactions and constituents of matter is gained 

by studying particle collisions. The probability that a reaction will end up with 

a particular final state of particles from an initial state defined by the particle 

beams (or beam and target material) is typically measured. These initial and final 

states are characterized by the types of particles, their energies and trajectories, 

and perhaps other properties, such as polarization. The reaction probabilities are 

expressed as effective cross sectional areas (cross sections) of the particle collisions. 

The sizes of these cross sections are tiny compared to everyday scales. They range 

from typically 1O-42 cm 27 for the weak interaction, up to 1O-25 cm2 for the strong 

interaction. These small cross sections set the parameter scales necessary for the 

design and construction of particle accelerators so that useful event rates may be 

observed. They also set the scale for the size of the detectors that are built to do 

the experiments. The more massive the particle, the higher the energy needed to 

create-it, and the bigger the accelerators and the detectors must be. 
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How Particles Propagate I! . 1. 
The propagation of particles through 3-dimensional geometries is illustrated by the following C++ code and pictures. Polymorphism is used to allog 
generalized messaging of both different types of Rays as well as different types of geometrical objects. The recursive nature of C is used to follow,4 

L while keeping track of the location of all daughter ( grand daughter, great grand . . . . etc.) particles resulting from interactions or decays. .A 

void Particle::propagate(const Medium* stuff) 
C 

const Medium *newStuff = stuff; 

while (status==STATUS-ALIVE) 
{ 

atuf f = newstuff; 

// return a Ray that estimates the trajectory 

Ray *segment = trajectory(stuff); 

vate member function of Particle 
Choose which type of Ray 

// Ask the Medium for a distance along ray 

step = stuff-BdistanceToLeave 

(*segment, detector, newstuff); 

Ray Helix 

// Perform the step, taking all physics into account 

stepBy(step, *segment, stuff); 

if (detector I= 0) detector->score(*this); 

x 

// Add (Ray *)segment to track (List of Rays) 

track->addSegment(segment); 
I 

A Tube of Aluminum 
B, = +2.0 Tesla 

// Now recurse: make sure that all of the children ' 

// of a particle's decays or interactions propagate 

// out of the medium in which they were created 
if (status==STATUS-DECAYED1 Istatus-=STATUS-INTERACTED) 

for(int i-0; i<numChildren(); i++) 
child(i)->propagate(stuff); 



Figure 1. An event display, looking along the beam direction, of a neutral Z 

particle decaying into four “‘jets” of particles using the SLD detector at the Stanford 

Linear Collider. The curved lines are trajectories of charged particles reconstructed 

from the measurements in the inner cylindrical detectors, while the trapezoidally 

shaped boxes represent energy deposited in the outer detectors. 
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Figure 2. Illustration of the relationship of the Gismo kernel to detector and 

event I/O, the graphical display, and the graphical user interface. 


