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In hadron scattering processes with large momentum transfer Q2, of the order 

of the center of mass energy s, we evaluate the physical quantities of interest by 

performing perturbative QCD calculations of parton cross sections as series expan- 

sions in the strong coupling constant cr,. Since the calculation of the coefficients 

in the series becomes quickly complicated as one goes to higher orders in the ex- 

pansion, only very few coefficients are usually computed, that is calculations are 

performed at a fixed (and small) order in ad. 

At the Tevatron, LHC and SSC hadron colliders a new kinematical region, the 

semihard region, characterized by scattering processes with s >> Q2 >> A&,, 

becomes important. In this region the momentum transfer is large enough to allow 

perturbative QCD calculations, but so much smaller than the center of mass energy 

that processes with production of a large number of partons become relevant. In the 

series expansion of the parton cross section each coefficient contains the logarithm 

_ of alarge ratio of kinematical invariants, of the order of In (s/Q2), and the effective 

expansion parameter becomes the product oS In (s/Q2), which may be O(1). Thus 
. .-. -_ - 

in the series expansion we have to retain many higher orders, which open up several 

real channels and are the cause of the abundant production of partons. To keep all 

this into account properly it is useful to have techniques that resum all the orders 

in the effective expansion parameter. To this end it is necessary to have analytical, 

albeit approximate, expressions for multiparton amplitudes. 

In the semihard region, the leading contribution to scattering processes always 

comes from the exchange of a particle of highest spin, in our case a gluon, in the 

crossed channel”’ . In the case of multiple gluon emission the rapidity interval 

between the scattered partons is filled with gluons. In the multi-Regge kinematics, 

which yields the leading logarithmic contribution to the cross section, the rapidi- 

_ ties of the emitted gluons are strongly ordered. Fadin, Kuraev and Lipatov”] 

computed long ago the multigluon amplitude in the multi-Regge kinematics. This 

amplitude contains all the virtual radiative corrections, whose effect is to reggeize 

the gluons exchanged in the crossed channel*‘]13’ . Balitsky, Fadin, Kuraev and Li- 

patov (BFKL)“] computed then the total parton-parton cross section, by putting 

2 



-Lx- -  

th e  m u l t i -g luon amp l i t ude  in  th e  m u l t i -Regge p h a s e  s p a c e , in tegra t ing o u t th e  ra-  

p id i t ies o f th e  p r o d u c e d  g luons ,  a n d  reduc ing  th e  d e p e n d e n c e  o f th e  cross sect ion 

o n  th e  g l u o n  t ransverse m o m e n ta  to  th e  reso lu t ion  o f a n  in tegra l  e q u a tio n . In  

th is  e q u a tio n  th e  in f rared rea l  a n d  vir tual  d i ve rgences  exact ly  cance l  a n d  th u s  th e  

e igenva lues  d o  n o t d e p e n d  o n  th e  in f rared cutoff. T h e  to ta l  pa r ton-par ton  cross 

sect ion is fo u n d  th e n  to  h a v e  a  p o w e r  g r o w th  wi th s, wi th th e  p o w e r  d e p e n d i n g  o n  

th e  e i genva lue  o f th e  in tegra l  e q u a tio n . V ia  th e  o p tical th e o r e m  th e  to ta l  par ton-  

pa r ton  cross sect ion is re la ted  to  th e  fo rwa rd  elast ic  par ton-par ton  scat ter ing wi th 

co lor -s ing le t  e x c h a n g e  in  th e  c rossed  c h a n n e l , th e  per turbat ive  Q C D  p o m e r o n . 

A n o the r  m u l tig l u o n  ampl i tude ,  th e  Parke-Tay lo r  amp l i t ude”’ , wh ich  is a  t ree-  

leve l  m u l tig l u o n  amp l i t ude  in  a  hel ic i ty basis ,  wi th a  par t icu lar  cho ice  fo r  th e  g l u o n  

hel ic i t ies, is ava i lab le  in  th e  l i terature. It is n o t speci f ic  to  a  par t icu lar  k i n e m a tical 

- reg ion .  It h a s  b e e n  u s e d  to  m a k e  a p p r o x i m a te  ca lcu la t ions o f th e  four -  a n d  f ive- 

jet p r o d u c tio n  ra tesR , wh ich  h a v e  b e e n  fo u n d  to  b e  in  g o o d  a g r e e m e n t wi th th e  
d & a !?  - . 

In  th is  p a p e r  w e  w a n t to  cons ide r  th e  Parke-Tay lo r  m u l tig l u o n  ampl i tude ,  fo r  

th e  p r o d u c tio n  o f a n  arbi t rary n u m b e r  o f g luons ,  in  th e  m u l t i -Regge k i n e m a tics, 

s tudy th e  co lo r  flo w s  o f th e  p r o d u c e d  g l uons  o n  th e  L e g o  p lot  in  a z i m u tha l  a n g l e  

a n d  rapidi ty,  a n d  c o m p u te  th e  to ta l  g l uon -g l uon  cross sect ion.  S ince  th e  vi r tual  

rad ia t ive cor rect ions a re  m iss ing in  th e  Parke-Tay lo r  ampl i tudes ,  w e  wi l l  h a v e  to  cut  

o ff th e  in f rared rea l  d i ve rgences  a n d  w e  e x p e c t th e  s lope  o f th e  p o m e r o n  t rajectory 

to  d e p e n d  o n  th e  in f rared cutoff. 

W e  wi l l  fin d  th a t in t roduc ing  a n  in f rared cutoff is n o t e n o u g h , a n d  w e  a lso  h a v e  

to  regu la te  th e  behav io r  o f th e  amp l i t udes  in  th e  ul t raviolet ,  to  avo id  th e  r ise o f 

_  a n  unphys ica l  s ingular i ty  in  th e  to ta l  c ross sect ion.  T h e  s a m e  h a p p e n s  a lso  in  th e  

B F K L  m u l tig l u o n  amp l i t ude  if w e  neg lec t  th e  c o n tr ibut ion o f th e  vi r tual  rad ia t ive 

correct ions.  Thus  a  m u l tig l u o n  amp l i t ude  wi thout  v i r tual  rad ia t ive cor rect ions 

s e e m s  inherent ly  i l l -sui ted fo r  th e  ca lcu la t ion  o f a  fu l ly  inc lus ive q u a n tity, l ike th e  

to ta l  c ross sect ion.  

3  



Parke-Taylor amplitudes in the multi-Regge kinematics 

A tree-level multigluon amplitude can be written in an SU(N,) Yang-Mills 

theory as 

M, = c tr(~a1XaZ...Xa”)m(pl,~l;P2,~2;...;pn,~n), 
[1,2,...,n]’ 

(1) 

where al, a2, -,an, pl,m, ---Tpn) and 61, ~2 , . . . . cn are respectively the colors, mo- 

menta and helicities of the gluons, X’s are the color matrices in the fundamental 

representation of SU(N,) and th e sum is over the noncyclic permutations of the 

set [l, 2, . . . . n]. The gauge-invariant subamplitudes m(pr, ~1; p2, ~2; . . . . pn, En) enjoy 

several properties “’ , like incoherence to leading order in l/NC 

C lMn12 = NFm2 (NZ-1) C [Im(Pl,~1;P2,~2;.--;Pn,~n)12+O(N,-2)], (2) 
colors ._ -_ _ [1,2,...,n]’ 

and cyclical and reversal symmetry 

m(Pl~ cl; P2, c2; ...; Pn, en) = m(p2, f2; ..*; Jha, $a; ply cl) 

m(Pn, h;Pn-1, h-1; ...;p2, E2;Pl, cl) = (-l)nm(pl, cl;p2,62; . . ..&a. En). 
(3) 

If we assume that all the gluons are outgoing, the subamplitude for the maxi- 

mally helicity violating configuration (-, -, +, - . . , +) is given by15’ 

(4) 

where the spinor product is defined as < pq >= F(p)$+(q), with 

k(P) = &=75)+(P)* ti(P) is a massless Dirac spinor, normalized in such a way 

that I < pq > I2 = 2(p - q). 

4 



By replacing the Parke-Taylor subamplitudes (4) into (1) and using the in- 

coherence to leading order in the number of colors (2), we obtain the square of 

the multigluon Parke-Taylor amplitudes, summed over colors and the maximally 

helicity violating configurations, to leading order in l/N,. From this we straight- 

forwardly derive the n-gluon production squared Parke-Taylor amplitude (fig. l), 

averaged over colors and helicities of the incoming gluons 

IM(PA,P0,Pl,...,Pn+l,PS)12 = 2 4($- 1) (t~,2)“+~ N;+2 

c 
4 

c 
1 

sij 
i>j iA,O,l ,..., n+l,Bl, SAOsOl ’ ’ ’ %n+lsn+l,BsAB ’ 

where we label the incoming gluon momenta as PA and PB, and 

(5) 

i,j = A,0 ,..., n + 1, B. The overall factor 2 at the beginning of the right hand .-- 
side of (5) is present only in the inelastic case n # 0, and keeps into account the 

different maximally helicity violating configurations (-,-,+,. . .,+) and (+,+,-,- - -,-). 
._ -_ _ 

We parametrize the momenta of the produced gluons in terms of the rapidity 

‘I, and the momentum pi and the azimuthal angle 4 in the plane transverse to the 

beam axis. Then the kinematical invariants are given by 

SAi = fi I$i,ll em” 

SBi = fi Ip’;,lI e’li (6) 
Sij = 2 lp’i,ll IGj,Ll [cosh(rli - Vj) - mS(di - +j>], 

where s = SAB is the center of mass energy of the scattering process and 

7, j = 0, . . . . n + 1. Now we want to specify the n-gluon production squared Parke- 

Taylor amplitude to the semihard regime, where s >> m2 >> AtcD, and & N m2 

is the characteristic value of the transverse momentum of the produced gluons. To 

pick -up the leading contribution in Zn(s/m2) we consider the multi-Regge kine- 

matics, where the gluon rapidities are strongly ordered 

‘,‘A N 70 >> 91 >> --* >> 7jn+l 31 ?)B. (7) 
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In this kinematics the sum over helicities becomes 

c Stj = 4S4 (1 + O(S-l)), (8) 
i>j 

with ;,j = A,0 ,..., n + 1, B. If we assume that s-channel helicity conservation for 

the incoming gluons holds, which is the case in multi-Regge kinematics’2’31, then 

we have 2n+2 possible helicity configurations in the n-gluon production amplitude. 

Indeed, fixed the helicity configuration for the incoming gluons, s-channel helicity 

conservation allows for 2n different helicity configurations for the n + 2 outgoing 

gluons. Then the sum over the four helicity configurations for the incoming gluons 

gives the figure quoted above. Thus from (8) together with the extra factor 2 in 

(5), for n # 0, due to the different maximally helicity violating configurations 

(-,-,+,-,+) and (+,+,-,-,-), we see that the Parke-Taylor amplitudes count cor- ._- 
rectly the number of helicity configurations for the elastic case n = 0 and for the 

1-gluon production case. 
. .-. -_ - 

To study the color ordering of the gluons we introduce the reduced squared 

amplitude 

IM(PA,P0,P1,...,Pn+l,PB)12 =s4 c 
1 

lA,O,l ,..., n+l,Bl, SAO SO1 ' ' ' Sn,n+l Sn+l,B sAB 
7 (9) 

and the function 

Fij = 
erli-% 

2[msh(%-qj)- COS($i - 4j)]' 
(10) 

In the multi-Regge kinematics Fij becomes 

Fij = 
1 + O(e-(“i-qj)), if vi > qj; 

&Vi-b 1 7 if f7i < ?)j. 

(11) 

where we assumed that the rapidity interval between any two gluons is large 

enough that we can neglect the azimuthal-correlation term in (10). Thus in the 
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Parke-Taylor amplitudes in multi-Kegge kinematics (7) the azimuthal correlation 

between the produced gluons is not a leading order effect. We notice, though, that 

in the BFKL multigluon amplitudes”’ there is azimuthal correlation between the 

produced gluons, due to the propagators of the gluons exchanged in the t channel. 

Only at the end of the day, in the solution of the BFKL integral equation, we do 

realize that the azimuthal correlation is a subleading effect. 

-In considering the sum over colors, we have to sum over all the non-cyclic 

permutations of the set [A, 0, l,..., n+l, B) in (9). To do so, let us fix the position 

of gluon A in the set and move gluon B one step at a time to the left, and for each 

position of gluon B we consider all the permutations of the n + 2 outgoing gluons. 

This will exhaust all the non-cyclic permutations of the set above. They are not all 

different, though, since for each color ordering in (9) there is the reversed ordering 

-which, because of (3), yields the same contribution 

[A, 0, . . . . m, B, m + 1, . . . . n + l] = [n + 1, . . . . m + 1, B, m, . . . . 0, A] 
. ._. -_ - 

=[A,n+l,..., m+l,B,m ,..., O]. 
(12) 

To begin with, let us consider the color ordering [A, 0, l,..., n+l, B], plus all 

the permutations of the outgoing gluons. By using the kinematical invariants of 

(6) and the function Fij, the reduced squared amplitude (9) becomes 

2 
l~(PA,W,P1,...,Pn+lrPB)12 = nnzl 3 CfiF,,i+l, (13) 

i 0 Pi,1 c7 i=O 

where CC represents the permutations of the n + 2 outgoing gluons in the color 

_ configuration [A, 0, 1, . . . . n + 1, B], while keeping fixed the incoming gluons A and 

B. In fig.2 we represent the color configuration [A, 0, l,..., n+l, B] in terms of 

color. lines in the fundamental representation of SU( NC). Permuting the outgoing 

gluons in the color ordering [A, 0, 1,. . . , n+l, B], we see that the only permutation 

which respects the strong rapidity, ordering (7) is the identity g(i) = i, all the 
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others giving a contribution that, because of (ll), is O(e-lAqijl). Thus, to leading 

order in rapidity, the reduced squared amplitude (13) becomes 

s2 IM(PA,m,Pl, ...tPn+l,PB)12 = ny+l p 
[l + O(e-I*eijl)]. 

(14 
t=O i,l 

Now let us take the color ordering [A, 0 ,..., j-l, j+l,..., n+l, B, j], where 

j = 0, . . . . n + 1 and we consider all the permutations of the n + 1 gluons between 

gluons A and B. The squared amplitude is 

IM(PA,PO ,...rPj-l,Pj+l,...,Pn+l,PB,Pj)12 = 

Fi-G-1 Fj-l,j+l Fj+l,j+z - * * Fn,n+l * 
(15) 

This corresponds to the configuration of fig.3(a), which we untwist in fig.3(b). 

The-untwisted diagram can be conventionally thought of as a double-sided Lego 

plot in rapidity and azimuthal angle’” . In this picture C, in (15) represents 

the permutations of the n + 1 gluons on the “front” of the Lego plot. We notice 

that the parameters of the gluon on the “back” of the Lego plot do not appear 

in (15). For each gluon that we bring to the back of the Lego plot, there is one 

permutation, the identity b(i) = i, that gives a leading contribution to (15) and 

yields a strong rapidity ordering of the gluons on the front of the Lego plot. Any 

other permutation violates this rapidity ordering and is O(e-lA”ijl). Then the 

leading contribution to (15) is 

IM(PA, PO , . . ..Pj-l.Pj+l, . . ..Pn+lrPB.Pj)12 = tn + 2, n;&.#L P + O(e-lA9ijw 

(16) 

If we move gluon B one more place to the left we have the color ordering 

[A, 0 ,..., j-l, j+l,..., k-l, k+l,..., n+l, B, k, j], where j, Ic = 0, . . . . n + 1, and we 
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consider all the permutations of the gluons to the left of gluon B, independently 

from the ones to the right. The corresponding squared amplitude is 

~~~L~~~~FO,l”‘Fj-l,j+l...Ft-l,~+~...Fn,n+~Fj,~’ (17) l-L ‘, . 

with the configuration of fig.4(a), and its untwisted version fig.4(b), with two 

gluons on the back of the Lego plot. CO,,, represents the permutations of the 

gluons on the front and on the back of the Lego plot. In fig.4(b), for each two 

gluons that we bring to the back of the Lego plot there is one permutation of the 

gluons on the front, the identity OF(i) = i, that gives a leading contribution to the 

squared amplitude, and conversely for each set of n gluons on the front there is the 

-identical permutation of the two gluons on the back US(i) = i, that gives a leading 

contribution. So, in order to have the leading order in rapidity, we must take the 

identical permutation both on the front and the back of the Lego plot, which yields 

a strong rapidity ordering of the gluons on the two sides of the Lego plot. Since 

there are (“t2) such configurations which respect the strong rapidity ordering of 

the gluons on the front and the back of the Lego plot, the leading contribution to 

(17) is 

[l + o(e-l*VijI)]. (18) 

Then in general, given a color configuration to which corresponds an untwisted 

_ diagram that has m gluons on the back of the Lego plot, there are (nz2) color 

configurations which respect the strong rapidity orderings of the gluons on the 

front and the back of the Lego plot and give a leading contribution to the squared 

amplitude. Then, to leading order in rapidity, the reduced squared amplitude (9) 

becomes 
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IM(P~,Po,Pl,...,pn+l,pB)l~ = F2 
rI 

.f;” d [l + O(e-lAPijl)]. (19) 
i=O Pi,L 

From (5), (8) and (19), we can now write the n-gluon production squared 

Parke-Taylor amplitude, averaged over colors and helicities of the incoming gluons, 

to leading order in rapidity in the multi-Regge kinematics, as 

W(PAJXJ ,--+,PR+IYPB)~~ = 2 t2g,2Nc)n+2 
NC2 - 1 

s2 [I+ o(e-I*Wl)]. (20) 
ny?J-j & 

As mentioned after (5), th e overall factor 2 at the beginning of the right hand side 

-,of (20) is missing in the elastic case n = 0. .-- 

We finally notice two features of the multigluon amplitudes which do not de- 

pend:on the particular kinematics chosen: i) in the Parke-Taylor amplitudes there 

is interaction only between gluons on the same side of the Lego plot; ii) the two 

sides of the Lego plot are indistinguishable. Property i) is hinted in (17); property 

ii) holds because of the reversal symmetry (3) and (12), which is not peculiar of 

the multigluon amplitudes (1) at the tree-level’101 and implies that for each color 

ordering with nF gluons on the front and nB gluons on the back of the Lego plot 

there is a color ordering with nB gluons on the front and nF gluons on the back 

which yields the same contribution to (9). 

It is clear that also the BFKL amplitude must admit a distribution of the 

produced gluons on a double-sided Lego plot. We have not been able, though, to 

make such an identification. 

Parke-Taylor gluon-gluon total cross section 

We are now in the position to compute the n-gluon production and the gluon- 

gluon total cross sections from the Parke-Taylor amplitudes in the multi-Regge 

kinematics. In order to dispose of the infrared divergences we will cutoff the gluon 
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transverse momenta pl at a characteristic scale m. This corresponds to the follow- 

ing experimental setting: in hadron-hadron scattering, we tag two jets at a large 

rapidity interval on the Lego plot and count all the accompanying jets produced in 

between, and we require that all the jets have transverse momentum larger than a 

cutoff m’11”21. The phase space for the production of n + 2 gluons in multi-Regge 

kinematics, where s >> m2 and J?~ N m2 and the gluon rapidities are strongly 

ordered (7), can be written as 

where we have used the conservation of energy and longitudinal momentum to fix 

the rapidities of the gluons at the extremes of the Lego plot. 

The case where two gluons become collinear, and the related function Fij (10) 

blo%s’u~, is not included in the multi-Regge kinematics. It may appear, though, 

as a contribution at the boundary of the integration in the phase space (21). To 

rule this out, we strictly enforce the strong rapidity ordering (7), i.e. we assume 

that any two gluons cannot get closer in rapidity than a fixed cutoff ii, defined 

in such a way that (11) is valid over the whole phase space and the azimuthal 

correlation is negligible everywhere. The exact value of v is actually unimportant, 

since in the leading logarithmic approximation the whole rapidity interval VA - VB 

is defined up to an additive constant. In the following we will assume that a cutoff 

q has been introduced and we will neglect it. It is worth recalling though that the 

BFKL multigluon amplitudes do not have such a problem at the boundary of the 

phase space, since there is an explicit cancellation of the real and virtual infrared 

contributions in the BFKL integral equation. 

Using (20) and (21), we can compute the n-gluon production cross section. 

For n = 0 we obtain the tree-level elastic cross section, i.e. the Born term for 

gluon-gluon scattering 
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8 7W2N2 
=elas = N,2-1 2k2” (22) 

in agreement with ref.11. As we see from (21), in the n-gluon production cross 

section 

an = & J dITn+21M(PA,W,...,Pn+l,PB)12, (23) 

the integrals over transverse momentum are linked by the b-function. We disen- 

tangle them using the integral representation in impact parameter b space of the 

S-function, and obtain 

(2~)~ S2;g . i=op~J ) = 27r T&J, [Ko;;‘] n+2, (24) 
0 

where we have introduced the modified Bessel function &Co, and the cutoff m to 

regulate the infrared behavior of the transverse momentum. Since Ko(s) is expo- 

nentially decreasing for x >> 1 and increases only logarithmically for x << 1, 

Ko(x) N - (r+lni), (25) 

with 7 the Euler-Mascheroni constant, the integral over the impact parameter b 

is well defined. The transverse-momentum-conserving b-function has provided two 

more powers of the momentum in the denominator of the left hand side of (24), 

and thus has suppressed the ultraviolet growth of the transverse momentum, as 

expected, since the ultraviolet divergences are an artifact of the loop corrections 

_ and do not appear at tree level. 

We perform the integrals over the gluon rapidities, bound by the rapidity inter- 

Vd f10-7,1n+l 2! VA--B = h(S/m2) b e t ween the gluons at the extremes of the Lego 

plot, using the strong ordering (7). Then, fixing x = h and z = @  ln(s/m2 j 

and using (24), th e n-gluon production cross section (23) becomes 
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.s- - 
-- r, - .I 

8 2?r(r2N2 O” 9 
Un = 

NC2 - 1 ,“2 ’ 2 J 
dx x Ko”+2(x). 

0 

It shows the growth in rapidity characteristic of the multi-Regge kinematics. Since 

the main contribution to the integral over the impact parameter comes from its 

lower end, we may use the approximation (25) for Ko. Then the integral over the 

impact parameter in (26) h as a factorial growth which approximately compensates 

the factorial in the denominator, due to the integration in rapidity. Thus the series 

(26) becomes geometrical. Using (22) and (26), we can write the total cross section 

for gluon-gluon scattering as 

8 atot = NC2 - 1 
dx x K:(x) ezKo(‘) - l/4 . (27) 

The integral shows an exponential growth in a double logarithm, which for a large 

enough- z leads to a singularity, i.e. the series constructed from (26) is not inte- 

grable, even though the single terms (26) in the series are. We remark that the 

BFKL total cross section”’ does not share such a behavior, since the virtual ra- 

diative corrections precisely cancel the doubly logarithmic growth of the real ones, 

and one is left over with an exponential growth in rapidity. 

Performing the integral over the impact parameter in (27), we obtain 

8 UY2N2 
Qtot = @-I+ 

--yz I-(1 - z/2)4 1 
q2- 2) - 5 1 - (28) 

-where I? is the Euler gamma function. When z 2 2, the total cross section becomes 

singular.* The singularity comes from the lower end in the integral over the impact 

_ parameter, i.e. from the ultraviolet behavior of the transverse momenta. That is 

because the reasoning which follows (24) applies only to finite n, but not to the 

infinite resummation (27). 

* Conversely, we may integrate each term in the series before resumming it, using the ap- 
proximation (25), and we obtain utd N (1 - ~/2)-~ for z w 2, in agreement with (28). 
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W e  n o tice, th o u g h , th a t th e  t ransverse m o m e n tu m  o f e a c h  o f th e  p r o d u c e d  

g l uons  c a n n o t g r o w  b e y o n d  a  va lue  p m o z  <  4 , b e c a u s e  o f e n e r g y  conservat ion .  

Thus  w e  regu la te  th e  in tegra l  ove r  th e  i m p a c t p a r a m e ter  in  (26)  requ i r ing  th a t 

b  >  l lpmaz,  a n d  w e  eva lua te  it us ing  (25)  a n d  th e  sadd le -po in t  a p p r o x i m a tio n . A s  

l o n g  as  i) n  +  2  <  2  l og  % , th e  in tegra l  is we l l  a p p r o x i m a te d  by  

/ 
dx  x K :+2(x )  - (n  +  2)!, 

m /p m o t 

a n d  th e  n -g l uon  cross sect ion o n  h a s  a  g e o m e trical g r o w th ; 

w h e n  i i )n+2  >  2  l og  y, th e  in tegra l  is b e tte r  a p p r o x i m a te d  by  

J 
m /rho=  

dx  x K o ”+2(x )  N  (2)  2  l o g n + 2  E , 

a n d  th e  n -g l uon  cross sect ion b e h a v e s  l ike 

. .- - _  . 1  1  
U n N p -  p & ,, n! Zn  log  

n + 2  P m a z  
m ’ 

If P m a z  =  O (m),  th e n  cond i t ion  ii) is eas i ly  fu l f i l led a n d  th e  n -g l uon  cross sect ion 

s h o w s  a  l/m 2  behav io r ,  typical  o f very  h i g h  e n e r g y  cross sect ions,  tim e s  a n  expo -  

n e n tia l  g r o w th  in  rapidi ty,  in  a g r e e m e n t wi th th e  B F K L  theory ;  if p m a z  =  O (G),  

th e n  cross sect ions wi th a  smal l  n u m b e r  o f g l uons  exhib i t  a  g e o m e trical g r o w th  

a n d  cross sect ions wi th a  l a rge  n u m b e r  o f g l uons  exhib i t  a  l/s behav io r ,  tim e s  a n  

e x p o n e n tia l  g r o w th  in  a  d o u b l e  logar i thm.  It l ooks  l ike th e  latter c ross sect ions 

m ight  g ive  a  smal l  c o n tr ibut ion to  th e  to ta l  c ross sect ion,  b u t, as  l o n g  as  z >  2 , 

- th e  e x p o n e n tia l  g r o w th  w ins  ove r  th e  l/s behav io r .  In d e e d  th e  c o n tr ibut ion o f th e  

n -g l uon  cross sect ions,  wi th l a rge  n , to  th e  to ta l  c ross sect ion b tO t is 

c o n  with P m a x  n  +  2  >  2  l og  ---m - (32)  
n  

wh ich  d o m i n a tes  ove r  th e  c o n tr ibut ion o f o n  wi th smal l  n  to  b to t, as  l o n g  as  z >  2 . 

In  th e  B F K L  theory ,  th e  vi r tual  cor rect ions supp ress  th e  e x p o n e n tia l  g r o w th  in  th e  

1 4  



double logarithm by not allowing the gluon transverse momenta to become much 

larger than m. 

(32) shows the doubly logarithmic growth, typical of a kinematical regime 

where there is a strong ordering both in rapidity and transverse momentum. So 

even if we have explicitly suppressed this regime, as said in the discussion which 

follows (21) since it does not belong to the multi-Regge kinematics, it does reappear 

in the total cross section. It would happen the same in the BFKL total cross section 

if we neglected the virtual radiative corrections. Indeed if in the BFKL integral 

evolution equation we suppressed the term that describes the reggeization of the 

gluon exchanged in the t channel, i.e. we discarded the virtual radiative corrections, 

there would be no cancellation of the divergences in the eigenvalue of the integral 

equation, and in the BFKL total cross section we would have to regulate by hand 

the ultraviolet growth of the transverse momentum, obtaining the same behavior 

as in (32). 

. This shows an inherent difference between the Parke-Taylor and the BFKL 

multigluon amplitudes. Because of the cancellation of the virtual and real infrared 

contributions in the BFKL integral equation, the BFKL amplitudes are particularly 

suited for the calculation of a fully inclusive quantity, like the total cross section. 

For such a quantity the Parke-Taylor amplitudes do not fare well. They may be 

better suited for the calculation of exclusive quantities, like the n-gluon production 

cross section (26), h w ere the excessive growth due to the lack of virtual radiative 

corrections may be taken care of by using appropriate kinematical cuts, as we have 

seen above. 
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FIG U R E  C A P T IO N S  

1)  T h e  n -g l uon  p r o d u c tio n  ampl i tude .  

2 )  M u l tig l u o n  amp l i t ude  in  th e  co lo r  c o n fig u r a tio n  [A , 0 , l,..., n + l , B ]. 

3 )  (a)  M  u  i It g l  u o n  amp l i t ude  in  th e  co lo r  c o n fig u r a tio n  

[A , 0  ,..., j-l, j+ l,..., n + l , B j], a n d  (b)  its u n twisted vers ion.  

4 )  (a)  M u l tig l u o n  amp l i t ude  in  th e  co lo r  c o n fig u r a tio n  

[A , 0  ,..., j-l, j+ l,..., k-l,k+l,..., n + l , B , k, j], a n d  (b)  its u n twisted vers ion.  
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