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Abstract 
A perturbation theory for broadband impedance cal- 

culations has been developed, allowing evaluation of 
impedances for an accelerating structure of a rather arbi- 
trary shape. General formulas are given for the longitudi- 
nal and transverse impedances. The method is checked by 
calculating impedances and comparing results with those 
for structures previously studied. Several new results, in- 
cluding impedance of a taper, are presented. 

I. INTRODUCTION 
The interaction of a beam with the beam environment 

in accelerators is usually described in terms of the coupling 
impedances, with most of the impedance calculations per- 
formed using numeric codes. This paper describes a per- 
turbation theory for the impedance calculations baaed on 
Kirchhoff’s equations, analogous to the Born series in the 
scattering theory. A perturbation theory of this kind was 
used in the time domain by Novokhatsky [l], and by the 
author [2] for more general structures in the frequency do- 
main. A cylindrical symmetry is implied in most cases, 
unless ‘&is’ stated otherwise, although the method also 
may be applied to study impedances of structures without 
cylindrical symmetry. ring. 

II. ILLUSTRATION: THE METHOD 
Consider a well known electrostatic problem: find the 

field of a point-like charge e placed at distance t = a from 
an ideal conducting z, y plane. The field potential for .z > 0 
is a superposition of the potential 4ext of a charge in free 
space and the potential of the image charge -e at z = 
-a. This result may be obtained using Green theorem [3] 
volume: 

4@) = 4ext (2) +/ $ 
(1) 

x [G(& k) ‘?’ 4(k) - 4(8’) V’ G(R, ii’)] . 

Solve (1) by iterations: 4 = 4@) + 4(l) +.. . . . In the zeros 
approximation, 4(O) = 4ext. In the nth approximation 

4(Z) = A+(Z) - e/[(z + a)* + r211/* 

x[i+(;)2+(;)3...], (2) 

giving the correct answer. 

*Work supported by Department of Energy contract 
DE-AC03-76SF00515. 

Note that although the final result satisfies the boundary 
condition, the result of any finite number of iterations does 
not. Hence, the solution is exact for each iteration, but the 
boundary conditions are satisfied only approximately. 

The perturbation method based on Kirchhoff’s integral 
equation gives [4] the impedances for the monopole and dipole 
modes 

x [G& $11 r=(l(t) r,=o(I,) ~044 - 4’) e-ik(z-z’) . 

(3) 
@l)(k) = _ Z ikrro -4 

0 2n J d4 cos 2(4 - 4’) J dtdz’ 

The transverse impedance then is given by the Wenzel- 
Panofsky theorem. 

Equations (3) and (4) give a close form of the longitudinal 
and transverse impedances for a cylindrically symmetric beam 
pipe, with an arbitrary variation of the pipe radius U(Z). From 
these equations it is also easy to obtain the longitudinal and 
transverse wakefields. 

III. EXAMPLES OF LONGITUDINAL 
IMPEDANCE 

For a hole in a beam pipe, 
impedance 

the imaginary part of the 

W2 
2kL 

ImZ,(k) = J (27r)*a*c o 
f$ sin(z) . 5 

If the slot is short kL < 1, then 

reproduces the Kurennoy’s result [4]. The impedance increases 
with L for short slots kL << 1, and goes to a constant for 
kL >> 1. 

For a shallow cavity (b - a) < a, g < a, k [g* + (b - 
a> 1 * ‘I2 << 1 the longitudinal impedance obtained from simula- 
tions with the code TBCI for long bunches is inductive [5]. We 
obtain for this case 

L = z;f&!2 f(A) ) (7) 
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Figure 1. The real part of the longitudinal impedance of 
.a cavity as a function of the Dome-Lawson parameter: 
g/a = 3.0, b/a in the range 2.0 - 6.0. The transition 
from the regime of a cavity to the regime of a step is 
shown. 

where ,! = K. Banes g/i: - a) and f(A) z 1. For small A < 1 it gives 
> * 

For a shallow collimator the inductance 

L = Zo(b - a>* ln 

47ra [ 1 fi +(3/Z) 7 (8) 

which is similar to the TBCI result 

L _ Zo(b- 4” 

(TQ) 

Impedance of a cavity in the high-frequency limit kg >> 1, 
ka >> 1. has been studied before [7]. The real part of the 
impedance is 

112 Rezl= 2 (5) . (9) 
For this geometry, the general formulathe expression for the 
real part of the impedanceis given by the interval -k < p < k: 

_ Re Z,(“)(k) 
k 

(10) IV. CONCLUSION 

x ; (k - p) [J&-h) - Jo(Slb)]* . 

At high frequencies, ka >> 1, kb >> 1, we obtain the 
Dome-Lawson result (9). 

For very large gaps g, the impedance does not depend on 
g, but depends on both radii. Transition from the regime of a 
cavity to the regime of a step occurs [7] at g N k(b - a)*. 

The result of the numerical integration of Eq. (10) is shown 
in Fig. 1. 
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Figure 2. The frequency dependence of the impedance 
of a collimator. The impedance is constant for small 
ka and rolls off at large frequencies. The roll-off starts 
at frequencies dependent on the ratio of the radii. 

The impedance of a collimator can be derived similarly to 
the impedance of a cavity. The impedance calculated from this 
formula is shown in Fig. 2. 

The radius of a taper varies linearly from u to b > u at 
distance L. The longitudinal impedance is 

Zl(‘)(k) = 3 ln 
0 

kZo(a’)* 
$ + 87r S(k) 1 (11) lr 

where 

L 

S(k) = JJ dp drdr’ exp{i(p - k)(z - 2’)) 
0 (12) 

The integral (12 can further be reduced to a single integral. 

Results of the numerical integration of Eq. (12) are shown 
in Figs. 3, 4, and 5. 

The perturbation method described above reproduces nu- 
merous previously known analytical results. This method al- 
lows us to obtain all these results in a unified way as extreme 
cases of the same formula, and to demonstrate the transition 
from one case to another; for example, from the regime of a 
cavity to the regime of a step, or from a single cavity to a peri- 
odic array. The method can be generalized to more complicated 
geometries. 
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-Figure 3. The real part of the longitudinal impedance 
of a taper, with large p = b/a. 
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Figure 4. The real part of the longitudinal impedance 
of a taper, for small (p - 1) << 1. 
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Figure 5. The transition from (p- 1) << 1 to (p- 1) 21 1. 

ACKNOWLEDGMENTS 
I am thankful for discussions with K. Bane, S. Kheifets, 

M. Sands, M. Zolotarev, and B. Zotter. 

;i; 

[31 

PI 

[51 

PI 

PI 

REFERENCES 
A. V. Novokhatsky, preprint INP, Novosibirsk (1989). 
S. Heifets, “Diffraction Model of the High-Frequency 
Impedance,” Phys. Rev. D 40, 9, 3097-3106 (1989). 
J. D. Jackson, Classical Electrodynamics (Wiley, New 
York, 1975). 
S. S. Kurennoy, “On the Coupling Impedance of a 
Hole or Slot,” CERN SL/91-29 (AP)/rev (1991). 
K. L. F. Bane, “The Calculated Longitudinal Impedance 
of the SLC Damping Ring,” SLAC-PUB-4618 (1988). 
S. Heifets and S. Kheifets, “High Frequency Limit of 
the Longitudinal Impedance,” Part. Accel. 25, 2-4, 
61-72 (1990). 
J. J. Bisognano, S. Heifets, and B. C. Yunn, “The 
Loss Parameters for Very Short Bunches,” CEBAF- 
PR-88-005 (1988); P. B. Wilson, LEP-70/62 (1978). 

3 


