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Abstr-acl 
.The ever-increasing demand for better performance from 

cirwlar accelerators requires improved methods to calibrate 
the optics model. We present a linear pertmbation approach to 
the calibration problem in which the modeled BPM-to- 
corrector response matrix is expanded to first order in 
quad&pole strengths. The result is numerically fit to the 
measured response matrix yielding qu4rupole strength em. 
corrector strength errors, and BPM line&y factors. The large 
number of degrees of freedom in the fit allows a 
comprehensive error analysis, including the determination of 
BPM resolutions. In this way, a self-consistent first order 
optics model of SPEAR was generated which reproduces the 
measured tunes. 

I. INTRODUCTION 

*In the ‘Course of developing an optics model for storage 
rings, a series of corrector kicks is typically applied to the 
beam and the resulting orbit shift is measured. Then, by 
simuftan$&Iy analyzing the horizontal and vertical orbit 
perturbations (and perhaps a measurement of dispersion), the 
on-line model is numerically verified, or updated if necessary. 
In the analysis procedure, the fitting parameters can include 
quadrupdle strengths, corrector strengths, or beam energy 
errors, for instance. Although this multi-track analysis method 
improves the agreement between model and measurement, it 
is a manual process restricted to a limited set of measurements 
and fitting variables. 

Recently however, a method for fast calibration of the 
optics model (CALIF) has been developed which automates 
the fitting procedure to include the full set of horizontal and 
vertical response matrix measurements. This method was 
originally based on a linear perturbation approach used for 
phased-army antenna design [ 11. but with re-interpre4ation for 
the application to accelerators. The matrix formalism allows 
us to expand the set of variable quadrupole strengths, solve for 
corrector strength and BPM linearity calibration factors, and 
estimate the BPM resolutions for the measured data set. The 
updated optics model, including statistically correlated error 
bars for all fitted quantities, can then be used. to predict Twiss 
parameters at every element in the storage ring. 

II. THE CALIFALGORITHM 
The objective bf the CALIF algorithm is to obtain a 

consistent computer model of the as-built machine based on a 
set of difference orbit measurements. Using a, first-order 

l Work supported by the Department of Energy Contract 
DE-AC03-76SFoo515. 

perturbation approach, we seek modeling errors in the 
following parameters 

l Quadrupde gradients 

l Ccrrector scale factors 

l BPM scale factors 
l BPM resolution erra~ 

including a comprehen&e QIO~ analysis of the results. From 
the difference orbit measurements, we first determine the 
BPM-wtcx response matrix coef%ents 

+j= AxatBPMi 
b 

(11 .-I 

Ax’atcorrectorj 
which are then compared to the perturbed expression for the 
computer model prediction, namely, 

(2) 
4 dkq = 

where CG and aC”/Jk, are the computer-model response- 
matrix coefficients and their derivatives with respect to the 
gradient of a par&t&r quadruple or quadrupole family, 
respectively. The C” and dc”/ak,are easily calculated 
with accelerator modeling codes such as COMFORT [2]. The 
Sk* are the sought-after gradient errors needed to explain the 
measured response-matrix coeflicients F”. 

The solution of Equation 2 is strongly affected by errors 
in the linear-scale factors for both the correctors and BPMs. 
To take these affects into account, we augment the leftYhand 
side of Equation 2 by variable corrector-scale factors, xJ, and 
BPM scale factors, y*, to arrive at a relation among the 
unknown quadrupole-gradient errors, corrector scales, and 
BPM scales, 

(3) 

. . 
Furthermore, each c” has an intrinsic measurement 

error due to the limited resolution of the BPMs which is given 
by 

a( BPM i) 
&’ atcorrecorj’ 

We initially assume the same value of a for all BPMs. 

(4) 
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Now we are in a position to use Equation 3 in a linear 
least-squares fit, either for the corrector scales XJ and the 
gradient errors 8kq while keeping the BPM scales fixed, cr for 
the BPM scales and the gradient errors while keeping the 
corrector scales fixed. In SPEAR eight quadrupole families, 
thirty correctors (x and y, respectively) and twenty-six BPMs . . 
yield up to a maximum of 1560 measured C’J. Since only 
about sixty parameters are fitted, we have a huge number of 
degrees of freedom which allows a careful error analysis. 

The organization inside the CALIF code is as follows: 
first a setup file is read that contains status bits of the variable 
parameters to be included in the fit, the filenames of the 
measured difference orbits, and the computer model Cii files. 

Then, according to Equation 3, a matrix A is constructed 
in which the columns are related to the fitting parameters xj . . 
and 6kq, and the rows are related to the C’J. Each row is 
weighted according to its associated measurement error, given 
by Equation. 4. In the next step, this over-determined set of 
linear equations is inverted. Using informal, but obvious 
notation, we get 

where (AT/o A/cJ)-~ is the covariance matrix from which the 
fit errors on (xj: &q)T are deduced. The colon in Equation 5 
indicates partitioning of the corrector scale and quadrupole- 
strength error vectors. 

Next, the BPM resolution errors are deduced by 
calculating the contribution of each BPM to the total x2 for 
the problem. The BPM resolutions are then resealed so that 
each-BPM contributes equally, and the x2 is forced to unity. 
Inconsistent (noisy) BPMs are rejected at this stage. This 
procedure is iterated until the x2 remains close to unity, which 
typically takes one to three iterations. 

In a final step, the updated solution for the corrector 
scales remains constant, and an iterative procedure similar to 
the one just described is launched in order to fit the BPM scale 
factors y1 and the quadrupole gradient errors. 

The procedure for alternately fitting the corrector scales 
and the BPM scales is iterated typically four times until a self- 
consistent set of gradient etrors, corrector scales, BPM scales, 
and BPM resolution errors is found. A normal run for SPEAR 
us_ually involves a total of about fifteen fits, where each fit 
takes about one minute on a VAX8700. The bulk of this time 
is spent inverting the matrix needed for the calculation of the 
covariance matrix. 

Recently, the CALIF program and associated drivers used 
to compute 4 x 4 response matrix elements have been updated 
to include arbitrary numbers of quadrupole, corrector, and 
BPM elements. These modifications make it possible to apply 
the CALIF program to most storage rings. For machines with 
strong focusing, the linearity of the partial derivatives may be 
valid only in a restricted range. In this case, the step size used 

for the quadrupole strengths in each iteration of the fitting 
procedure can be adjusted to achieve faster convergence. 

III. EXPERIMENTAL RESULTS 

The first application of the CALIF program was carried 
out using measurements of the bare SPEAR lattice, with all 
insertion devices and skew quadrupoles turned off. The 4 x 4 . . 
corrector response matrix C’J was measured relative to a 
flat-orbit configuration where the beam was steered to the 
center of the BPMs. Due to the long time required to measure 
the response matrix, only one measurement was made for each 
horizontal and vertical corrector. The peak closed-orbit 
perturbations were about 2-3 mm in SPEAR, and the tune 
shift produced by the corrector kicks was within the frequency 
line width as measured by the spectrum analyzer. 

Next, we extracted the on-line optics model for 
computation of the theoretical corrector-response matrix, and 
its derivatives with respect to the qmuhupole family strengths. 
The derivatives were computed with COMFORT [23 b 
evaluating ACU/Akq for values Akq on the order of 1 x lo- 4 . 
Finally, a set-up tile was compiled directing CALIF to the 
measured data and computed response matrices. 

The results of the CALIF computation are listed in the 
following table. Only a few of the horizontal correctors and 
BPMs are shown as examples: 

7 
g 
QFA 
QDA 

;F 
QD 

?2%3fj- 
,0:3700 (“) 
-0.2543 
0.7711 

-0.7214 
0.4714 
0.4301 

-0.665 1 

w Tnitial V& m Value Em>r 
HCORRl 1.0 0.839 0.023 
lBB2T 1.0 1.051 0.025 
2BB2T 1.0 1.156 0.029 

BPM Initialwu 
WIS 1 1.0 
lS2 1.0 
2S3 1.0 

Tune Initial Final Ws 
Qx 6.864 6.834 
QY 6.635 6.753 

Enor 
0.188E-03 
0.135E-03 
0.843E-03 
0.102E-02 
0.442E-03 
0.538E-03 
0.218E-03 
0.157E-03 

EdmLku 
0.017 
0.03 1 
0.026 

6.838 
6.749 

From the table, we find that the tunes of the calibrated 
model agree in both planes to within 0.004 with the measured 
tunes. Since the tunes were not part of the fitting procedure, 
this result gives us confidence in the fidelity of the calibrated 
model. For the quadrupole strengths, we found deviations of 
less than 0.01m-2. with error bars of less than f0.001. The 
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corrector scale errors were in the range of cl0 percent, with 3 
percent accuracy. These results indicate that the matrix “A” 
discussed in Section II was well conditioned. 

For the BPM resolutions, we found the‘ average vertical 
value of (T was about 100 microns, which is a plausible result 
for SPEAR. In the horizontal plane, the resolutions were 
larger, about 200-250 microns, possibly due to the button 
geometry or longitudinal misalignment of components in 
SPEAR. Following the installation of new BPMs and re- 
alignment of SPEAR, we will repeat the process and compare 
results. The entire process, including measurement and data 
analysis, takes only about two hours. 

IV. CONCLUSION 
A conceptually simple and fast way to calibrate the linear 

optics model for storage rings was developed and tested on 
SPEAR with great success. One of the primary advantages of 
this technique is that the problem has a large number of 
degrees of freedom that allow a careful error analysis of the 
solution. When applied to SPEAR, for instance, the eight 

quadrupole magnet strength errors were found to generally be 
less than O.Olm-*, with error bars less than kO.001. With these 
emrs corrected, the model tunes now agree to within 0.004 
with the measured tunes in both the horizontal and vertical 
planes. This calibrated model for SPEAR now gives us 
excellent agreement between simulated orbits and the 
measured orbit data, and accurately computes the Twiss 
parameters at every element in SPEAR. 
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