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ABSTRACT

We assume, in the first place, that two kinds of processes occur in Nature: the strictly
continuous and causal ones, which are governed by the Schroedinger equation; and those
implying discontinuities, which are ruled by probability laws. In the second place, we
adopt a postulate ensuring the statistical sense of conservation laws. These hypotheses
allow us to state a rule telling in which situations and to which vectors the system’s state
st collapse. The way our proposed approach works is illustrated with some examples

and with the analysis of a particular measurement problem.



WHICH NATURAL PROCESSES HAVE THE SPECIAL
STATUS OF MEASUREMENTS?

1. Our Starting Point

The formulation of quantum theory usually accepted by the partisans of the orthodox

interpretation can be summarized in the following way (Jammer, 1974, pp. 5; Cohen-
Tannoudji, 1977, pp.215-222):
(A) To every system corresponds a Hilbert space 3 whose vectors (state vectors,
wave functions) completely describe the states of the system.
(B) To every dynamical variable A corresponds uniquely a self-adjoint operator A
acting in 3. It has asociated the eigehvalue equations
A la]V> = a la}V> (1)
- .. (visintroduced in order to distinguish between the different eigenvectors that
-may correspond to one eigenvalue a;), and
Ty lajy> <ajVl =1 (2)
(where I is the identity operator). If i or v is continuous, the respective sum has
to be replaced by an integral.
(C) For a system in the state I®> the probability that the result of a measurement of A
lies between a' and a" is given by 112, where Il is the norm of
> = (g - Iy) D> 3)
~ and I, is the resolution of the identity belonging to A.
(D) Schroedinger Equation: The evolution in time of the state vector I®> is determined
by the equation
in did>/dt = H P>, " (4)
where H represents tﬁe Hamiltonian of the system.
(E) Projection Postulate: If a measurement of A yields a result between a' and a", then

. the state of the system immediately after the measurement is an eigenfunction
‘l Of Ia" - Ia'.



Many physicists, particularly experimenters, think that the state vector refers to an
individual system and that its quantum jumps are real (Gisin, 1992). We share this point
of view. Nevertheless, quantum theory does not provide a rule to fix unambiguously the
precise conditions under which these reductions occur. We consider this the worst flaw
this theory confronts (Burgos, 1990a). As Bell (1984) points out, “during ‘measurement’
the linear Schroedinger evolution is suspended and an ill-defined ‘wavefunction collapse’
sakes over. There is nothing in the mathematics to tell what is ‘system’ and what is
‘apparatus,’ hothing to tell which natural processes have the special status of
‘measurements.’ Discretion and good taste, born from experience, allow us to use
quantum theory with marvellous success, despite the ambiguity of the concepts named
above in quotation marks” (emphasis added). As Bell (1990) does, we also think that
“‘apparatus’ should not be separated off from the rest of the world into black boxes, as if
it were not made of atoms and not ruled by quantum mechanics.” This is why we assume
that measuring devices are just physical systems, and as such they have to be treated on
the same footing with every other physical system.

The main object of the present article is to propose a rule that makes clear when the
Schroedinger evolution takes place, and when the state vector is projected. To achieve
this purpose we are going to assume, in the first place, that postulates (A) and (B) written
above are valid. In the second place, we shall claim that two kinds of processes occurr in
Nature: the strictly continuous and causal ones, which are governed by the Schroedinger

equation; and those implying discontinuities, where the wave function changes in a non

- strictly deterministic way, which are ruled by probability laws. Moreover, we are going

to say that both are spontaneous (i.e. they happen without the intervention of any
observer) and irreducible to one another (Burgos, 19844, 1984b, 1987a).

From this starting point we shall face the problem of finding a rule that tells us (i) in
which situations and to which vectors the system’s state must collapse; and (ii) what is
the probability for this happen. The part (i) of our proposed rule will be stated in Section
2. For doing so we are going to assume that conservation laws have a statistical sense in
every case (Burgos, 1993), including those in which the wave function is reduced. For
pa&{ii) of this rule we shall adopt the following version of Born’s postulate: If according

to (i) a system in the normalized state



D> =cq lup>+cp lup> (5)
(where <ujlup> =817 and ¢1 2 = <uj 7/®> = 0) can jump to the state luj>, then the
probability for this happen is P = Icllz‘ On the contrary, if according to the first part of
our rule, i.e. (i), the state vector I®> cannot be projected to any lu> # |P>, then the

Schroedinger evolution must follow.

2. The Importance of Conservation Laws

v

In this article we shall assume that the state of the system can be represented by a vector
|®> of the Hilbert space and that it has a Hamiltonian H such that dH/ot = 0.

Let A be a dynamical variable referring to a system (object or thing) S. The corresponding
operator A satisfies (1). The mean value of A for the system S in the normalized state

I®> is |
) <A> = <D|AlD>. (6)
If'A fulfills the conditions
L 3AE=0 (7a)
and
(A, H] =0, (7b)

and the process is governed by the Schroedinger equation, it is easy to demonstrate that

<A> does not change over time. It is said that A is a constant of the motion (Cohen-
- Tannoudji, 1977, pp.247). On the contrary, for processes not ruled by the Schroedinger
. equation it has not been proven that the validity of conditions (7) implies that <A>
' remains a constant. Moreover, it has been shown that in processes involving projections
(traditionally called measurement-like processes), the mean value <A> concerning the
individual system S (given by (6)) may change even if relations (7) are satisfied (Pearle,
1986; Burgos, 1993). However, the average of the changes of <A>, which is obtained
by repeating the process many times, is practically zero (Burgos, 1993). Taking into
account these analyses, we shall assume that if conditions (7) are fulfilled, then A must be
conserved in a statistical sense, both in cases where the process is ruled by probability
laws and in those where it is governed by the Schroedinger equation. It is worth noticing
ﬂﬁj’sinc‘e in the latter cases the mean value <A> remains a constant in individual
processes, a fortiori the average of <A> is also <A>.



In order to establish our postulate in a precise way, let us consider a generic orthonormal

set {luj>} (i=1,2,...) such that we can write

D> =2 ¢j lup>. (8
We have <ujluj> = Sij- The mean value of A in the state lu;> is <ujlAlu;>. (For reasons
we are going to see below we can restrict this treatment to cases in which the set {luj>} is

denumerable.) We now state

v o

Postulate I: If relations (7) are satisfied, the validity of

<®D|AID> = I |c; 12 <uj Aluj> 9)
is a necessary condition for projections of the state > given by (8) to the vectors of the
set {lu;>} to happen, i.e. for jumps like

P> => lu;> (10a)
or |
‘ > = luy> (10b)
etc:, to occur.

Let us look at the meaning of this postulate in the following way: if Id®> collapses to lu;>,
the mean value of A changes from <®|Ald> to <ujlAlu;>. The probability of this
particular reduction taking place is lcilz. Now, if the process is repeated many times
starting with the same initial state |®>, the average of the different <ujlAlu> (i=1, 2,...)

‘obtained in the different projections must be close to the sum in (9), and so to the initial

‘ mean value <@IAI®>. This is why we say that the validity of equation (9) ensures the

" statistical sense of the conservation of A.

A first consequence of Postulate I is that it forbids collapses of the wave function to the
vectors of some orthonormal sets and, in particular, of some complete bases (for which
(2) is satisfied).

To show that our assertion is right, let us consider a unidimensional harmonic oscillator.
The operator H that represents the Hamiltonian fulfills conditions (7) and has associated
eigenvalue equations of type (1), which we explicitely write as follows:

e Hlv{> =E; Iv{> 1D
(where i = 0, 1,...). In the basis {lw;>) defined by



lwg> = 232 vg> + (1/3)12 1v 1> (12a)
lwi> = (1/3)12 vg> — 2/3) 12 Iv> (12b)
lwi> = lvi> (12¢)

for i = 2, the state lv> is given by

vo> = Z; d; Iwi> = 2312 twg> + (1/3)12 1wy > (13)
?.Ild the corresponding mean value of the Hamiltonian is <vglHIvg> = Eq. Since
551012 <wilHlwi> = (5/9) Eg + (4/9) Eq, (14)
we obtain
<voHIvg> # Z; 1d;12 <w;Hiw;>. (15)

As a consequence, Postulate I prevents lvg> jumping to the vectors of the basis {Iwi>}.
On the contrary, it is evident that the equation.

<PHID> = T (cjl2 <v;Hlvi> (16)
' isrealized for every 1> = Z; ¢i Ivi>, and so Postulate I allows it to be reduced to the
vectors of the basis {lvi>}.
Now- let us consider an operator having a continuous spectrum. For instance, if px

represents a component of the linear momentum and satisfies (7), collapses to the
eigenvectors of py are allowed by Postulate I. Nevertheless, since these eigenvectors are

not in the Hilbert space, projections to them are forbidden. This is why we are going to

exclude every reduction to eigenstates belonging to sets for which 1 is continuous.

- Our next analysis will be restricted to situations in which the system has only three

dynamical variables: the Hamiltonian, A and B. We shall assume that the corresponding
operators satisfy equations (7) and have discrete spectra. Under these conditions, let us
consider the following two cases.

Case (i): If [A, B] =0, the set {H, A, B} is a complete set of compatible operators. The
vectors of its unique common.basis will be denoted by [E; a; bx>, where Ej, aj and by are

respectively the eigenvalues of H, A and B. As the relations

<@HIP> = % j | (¢ j k% < aj b!HIE; aj bx> (17a)
< . <DAIR>=X5 ici,j k12 <Ej aj byl AIE; aj by> (17b)
<@[BID> = 5 ; 1 (cj j kI <Ej aj byIBIE] aj b> (17¢)



are satisfied for every state
D> = 2 5 k i,j,k Ei 3 bk>, (18)

Postulate I does not prohibit projections like |®> = IE; aj by>.

Case (ii): If [A, B] # 0, the operators A and B do not have a common basis. Let us
suppose, however, that {H, A} and {H, B} are two complete sets of compatible
operators. In the basis of the former, every state |®> can be written
- D> =3 5 ¢ j IEj 3>, (19)
and in the basis of the latter we have
D> =%  dj x IEj bx>. (20)
As
<®[BID> = T j (¢ j12 <E; ajlBIE; aj>
+ X je Ci,j*ci,j' <E; ajIBIEj aj> (21)
and the second sum is in general non null, in these cases Postulate I prevents collapses to
the vectors of the basis {IEj a;>}. A similar argument shows that reductions to the states
of {IE; bi>} are in general also forbidden. Nevertheless, we can write I®> = Z;0, It;>,
where
> = (161,172 2 i IE; 2> (22)
is the normalized projection of |®> into the eigensubspace of the Hamiltonian
corresponding to the eigenvalue E;, and o = ( % |ci,jI2) 12 The orthonormal set { It;>} is
not a basis. (Notice that It;> depends on Id> and does not fulfill (2).) Since

- <@HID> = Tjlay12 <tjlHit>, (23a)
<@|AID> = 50512 <t Alty> | (23b)
and

<®[BId> = Zjlo;l2 <;/Blt;>, (23c)

jumps like |®> = It;> are allowed by Postulate 1.

Our next step wil be to assume that |d> has a tendency to collapse to the eigenstates
of operators fulfilling conditions (7). Nevertheless, this tendency should not become
actualized if projections it induces result in a violation of Postulate I or lead the state
ve¥tor oufside the Hilbert space.



A particular simple situation arises when all of the operators for which (7) are valid
belong to the same complete set of commuting operators having discrete spectra, as in the
case (i) we dealt with above. Then, if {lu;>} is the unique common basis of all of these
operators, equation (9) is necessarily satisfied for each one of them whatever be the state
|d>. This basis will be called the preferential basis of the system. According to our

analysis reductions to its vectors are allowed.

‘On the contrary; if not all of the operators fulfilling (7) commute, or their spectra are at
least partially continuous, or the set they constitute is not complete, the system does not
have a preferential basis. However, if for the system in the state I®> there is a

~ denumerable set {lu;>} such that all of the operators for which (7) is valid fulfill (9) (as in
the case (ii) treated above), we shall say that it is a preferential set of the system in the
state Id>. According to our analysis collapses to its vectors are allowed.

Unlike preferential bases, preferential sets are not unique. In the case (ii) we dealt with
above {lt;>} is a preferential set. We shall see that there are others.

Letus write &> = X Is;>, where Isj> = Nj Zj=j 410 Itj> (i = 1, 3,..), the number N;
is a normalizing constant and B; = <sjl®>. As

<®[HID> = 3;1B;12 <sjHls;>, (24a)
<D|AID> = T;1B;12 <s;ilAlsp> (24b)

and
 <®[BID> = %;1B;12 <s;IBls;>, (24c¢)

Postulate I does not prevent reductions as P> = [s;>.

The sets {It;>} and {Is;>} are both preferential sets with the following difference: the

vectors of the latter are linear superpositions of the vectors of the former, and the
converse is false. Projections to the vectors of {it;>} make actual the tendency the system

has to jump to the eigenstates of the operators fulfilling (7) in the highest degree allowed
by Postulate L. '

If there is a unique preferential set {luj>} such that the vectors of every other preferential
set can be written as linear superpositions of the lu;>, the set {luj>} will be called the

m%ximal preferential set of the system in the state I®>. A preferential basis is, thus, a



maximal preferential set whose vectors do not depend on P> (and so fulfill the closure
relation (2)).

We shall say that the vectors of the preferential basis or of the maximal preferential set are
preferential states. It is worth noticing that they are stationary states.

Now we present the rule announced in Section 1 (for cases which satisfy the restrictions
imposed at the beginning of Section 2).
Rule I: The state
D> =X cj lu> (25)
can be projected to lu;> iff lu;> is a preferential state; the probability of this happening is
icil2. If the system in the state Id> has neither a preferential basis nor a maximal

preferential set, the Schroedinger evolution must follow.
- Before concluding this section let us make the following comments.

m(a) Rule I tells us in which sitouations natural processes having the special status of
- ) _in'é,asurements are going to result. Nevertheless, it does not say anything about
the instant the system will jump into a preferential state. Concerning this point we
confront the same problem faced in the traditional treatment of the measurement
problem. In our approach, the vector |d> given by (25) may be considered an
unstable state that eventually decays to one of the stable states lu;>, so the
probability that the system survives in the unstable state should decrease with
_ time accordin g to an exponential law (Cohen-Tannoudji, 1977, pp.338). The

details will be analysed elsewhere.

- (b) An ensemble of systems initially in the same state I®> given by (25) will finally be
distributed in the different preferential vectors lu;>. The corresponding processes
are ruled by probability laws, so they are irreversible and entail an increase of
entropy. On the contrary, processes governed by the Schrodinger equation are
reversible and do not entail any change of entropy. In our view, time
trreversibility has its roots in quantum jumps (Burgos, 1990b). In this sense it
could be said that the increase of entropy is the macroscopic result of quantum

P mechanical laws (Landau, 1958, pp.30-31). In other words: collapses build

10



time’s arrow up since they fix the past and leave uncertain the future. A similar

idea was first proposed by Phipps (1973) and developped by Noyes (1975).

(c) Those who think that every quantum process is determined by the Schroedinger

equation face the puzzle of the entanglement. According to Ghirardi et al. (1988),
“if pushed to its extreme consequences, it leads to the conception of the universe
as an unbroken whole whose parts have lost any individual entity.” This is why,
in their opinion, “quantum entanglement is the enemy to be defeated.” In our
approach quantum jumps break entanglements when the preferential vectors are
factorized states. However, it is important to notice that if this condition is not

realized, collapses produce entanglements.

3. Some Examples

In order to show how our approach works, let us consider the following simple

examples.

'W(-i) The free particle: The operators H, py, Py» Pz Ly, Ly and L,, which respectively

" represent the Hamiltonian and the components of the linear and angular

momenta, fulfill conditions (7). However, since the operators H, px, py and p,

have continuous spectra, projections to their eigenstates are forbidden; and since
Ly, Ly and L, do not commute, Postulate I prohibits collapses to their
eigenvectors. The free particle does not have a preferential basis and does not
seem to have a maximal preferential set for the states it is normally supposed to
be in. Its evolution should be determined by the Schroedinger equation.

(i) A spinxin a homogeneous magnetic field B = B; k: The operators that interest

- here are H, and Sy, Sy and S; (which represent the three components of the

spin). We have H = —=yB, S, where v is the gyromagnetic ratio. The operators
Sx and Sy do not satisfy (7), but S; does. The spectra of H and S are discrete.
The preferential basis of this system is {I+>, I->}, the basis of the eigenstates of
Sz. So a spin initially in the state

D> = cy 4> +c_ I=> (26)

- has probability Ic_{_l2 of jumping to I+> and probability lc_I2 of jumping to I->.

L SN : .
(iii) A spin in an inhomogeneous magnetic field

11



B(r) =Bx()i+ By(r)j + B,(r) k, 27
where r is the position: the components of the field vary with r, and now

H(r) = =y[Bx(r) Sx + By(r) Sy + B,(r) S;]. (28)
As the operators Sy, Sy and S do not fulfill conditions (7), their eigenvectors
are not preferential states, and collapses to them are forbidden. In particular, a
spin in the magnetic field of a Stern-Gerlach device (whose strongest component

i is B;) cannot be projected to the eigenstates of S,. The study of H, which

depends on r, lies beyond the scope of this article.

(iv) The benzene molecule: In an idealized model y1> and hy)> represent the only
two states of the molecule which correspond to the two possible positions of the
three double bonds. Since Iy1> and hyp> are not eigenvectors of H, they are not
preferential states. On the contrary, the basis {lu1>, lup>} where H is diagonal
and <ujplHlup> # <uplHlup>, is the preferential basis of the molecule. An
ensemble of them will finally be distributed in the states lu1> and lup>. The fact

. - that the lowest level of energy is

| <upHlu1> < <y1H 1> = <yplHhyp>, (29)
is supposed to explain that the benzene molecule is more stable than expected
(Cohen-Tannoudji, 1977, pp.411).

4. The Measurement Problem

‘'We have not imposed on the system (or object) S the restriction of being isolated (as the

- free particle or the benzene molecule analyzed in Sec. 3), or in interaction with other

objects through, for instance, a magnetic field. We have not said that S has to be
microscopic or macroscopic. Like Einstein, we do not believe in micro and macro laws,
but in laws of general validity. His principal objection to quantum mechanics was to the
subjective character of the theory. He held that basic physical theories should represent
the physical world itself, not merely connections between human observ"ations (Pauli,
1971). Our approach would not be subject to Einstein’s objection and, if it is right,
should be of some help in the study of many of the problems fulfilling the conditions
specified at the beginning of Section 2. So our next analysis will be of a more
cdﬁi;licaiéd case than those treated in Section 3.

12



Let S1 be a system in the initial state hyj> (i = 1, 2,...), where {lyj>} is a basis in the
Hilbert space of S1; and let S) be a system in the initial state Iy>. We shall assume that if
the initial state of S = S1 + Sp is |P;> = hyj> ® Iy> (1 = 1, 2,...), the interaction between
| S1, S and the environment leads the state of S to lu;>, i. e. we have
D> = lu;> 30)

for every i. Now, if the initial state of Sq is ly> = Z; ¢; ly;>, and so S is in the initial state

-

D> = [Z; ¢ lyi>] @ x>, (31)
according to our approach it can happen (i) that the state I®> evolves guided by the
Schroedinger equation, and then

D> = % ¢ lup>; 32)
or (ii) that |d> is projected. If we do not know at least some details of the problem we
want to analyze, it is completely impossible to tell which of these two alternatives will be
realized. Nevertheless, as quantum jumps can lead I®> only to the preferential states of
S, taking into account (30) we can say that, if S has a preferential basis or a maximal
preft_:fér_lcial set, it is {lu;>}. As a consequence, in that case collapses like

D> = luy>, (33a)

or
D> = lup>, (33b)

etc., must occur.

In the traditional treatment of the measurement problem it is supposed that the apparatus

* -~ 89 measures the dynamical variable A corresponding to the system Sg, which has the

eigenvalue equation

A lyp> = aj >, (34)
Transitions (30) do not present any difficulty. (Since the probability that they happen is
P =1, they may be atributed to the Schroedinger evolution.) The same is valid for (32).
Now, if it is assumed that the behaviour of \O> must always be determined by the

Schroedinger equation, transitions (33), i.e. the transitions “observed,” cannot be

explained. This is the great puzzle of the measurement problem. In our approach there is
nésuch puzzle: if the fu;> are the preferential states of S in I®>, the evolution (32) should

not occurr, and transitions (33) must take place.

13



We do not claim, however, that the above remarks solve every measurement problem.
This is true, first, because quantum mechanics (like good old classical physics!) does not
have just one measurement problem but as many as there are dynamical variables
corresponding to different systems worth measuring, with as many different methods as
it is possible to imagine, and, second, because finding the preferential basis or sets of an
object is not always easy. In particular, a macroscopic system seldom fulfills the
Jestrictions specified at the beginning of Section 2, which in our treatment are necessary
conditions for the concept of preferential states to make sense. For these reasons it seems
dubious that our approach will prove to be a useful tool to deal with particular
measurement problems. It could, perhaps, be of some help in the study of processes
taking place at the microscopic level.

Being aware of these difficulties, let us try to analyze a very simple measurement process:

the determination of a particle’s position with a detector.

We shall assume that a particle Sq arrives at a detector Sy that counts particles entering it,
an‘d whose wi_ndow covers the interval (x1, x2). (To make things easier we are going to

treat this problem as if it were unidimensional.) Although we consider S to be a quantum

system, if it is macroscopic enough, its window’s boundary is well-defined, as in the
classical case (Burgos, 1988), and so x{ and x) have sharp values (Burgos, 1984b).

As we do not know the Hamiltonian and the other dynamical variables referred to

S =81 + S», we cannot tell whether it has a preferential basis (set) or not; and if it has,
. which one is it. Hence, we are forced to state an ad-hoc hypothesis:

(a) if the normalized state of Sy is hy,>, where yy(x) = <xly,> and y,(x) has non

* null values only in the interval (x1, x7), then the probability that the particle will
be detected is Py = 1;
(b) if the normalized state of S1 is lyp>, where yp(x) = <xlyp> and Yp(x) 1s null in
the interval (x1, x2), then the probability that the particle will be detected is Py, =
0; and

(c) if the normalized state of Sy is

o . =y >+ cp hyp>, (35)

14



the particle can be either detected or not detected, and there is not a third
possibility.
Let us assume that the detector has M + P orthogonal states, that in an idealized model its
states Iy;> (i = 1, 2,..., M) corresponding to cases in which the particle is captured can be
written in a brief notation as Iy4>, and that the states Ixi> =M+ 1, .., M+ P)

corresponding to cases in which the particle is not in the detector can be written as Iyp>.

Now, if the initial state of S is D> = Iy, > ® Ixp>, according to part (a) of our ad-hoc
hypothesis, the probability of the transition

D> = 1Dy> = hyy> @ x> (36)
is P = 1 (here hy,> represents the state void for Sy); if the initial state of S is |®> = lyp>
® lxp>, according to part (b) of our ad-hoc hypothesis, the probability of the transition

D> = [Dp> = Iyp> ® x> (37)
ié P = 1; and if the initial state of S is
D> = (cy hya> + cp lwp>) ® Ixp>, (38)
ac'c.-orvdihg to part (c) of our ad-hoc hypothesis, it could be that
D> = 1D,> (39a)
or that
D> = |Pp>. (39Db)

There is no other possibility. As the evolution of Id> is not guided by a deterministic

law, we must conclude that the process we are studying involves quantum jumps; and

“- since these can lead S only to its preferential states, we can say that (in our idealized

model) these are |P,> and |[Pp>.

Moreover, we can say that if (39a) takes place, the particle just disappears, and if (39b)
happens, the state of S is projected to IPp>. According to (37) the particle’s state jumps

to hyp>. In other words, it has probability |cbl2 of losing its components-in the interval
(x1, x7) as if they were cut off. As a consequence, if we repeat the experiment with N
particles in the initial state hy> given by (35), a number N |cal2 of them will be detected
and N |cpl2 will be led to the state lyp>.

¥i
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3 Concluding Remarks

In our view, the tremendous success of quantum mechanics suggests that this theory
reflects certain aspects of Nature, that it is more than merely a man-made tool for
calculating expectations. In its orthodox version, which is at present the version exposed
in classical books and practically the only one taught, it includes the Projection Postulate
and the concept of measurement (see Section 1), even though nobody has been able to tell
iria precise way what a measurement is. This is perhaps one of the reasons why so many
people are afraid of projections. “Mention collapse of the wave function, and you are
likely to encounter vague uneasiness or, in extreme cases, real discomfort. This
uneasiness can usually be traced to a feeling that wave-function collapse lies ‘outside’
quantum mechanics: the real quantum mechanics is said to be the unitary Schroedinger
evolution; wave-function collapse is regarded as an ugly duckling of questionable status,
dragged in to interrupt the beatiful flow of Schroedinger evolution” (Caves, 1986).

On the coritrary, we are not afraid of projections. Moreover, as Heisenberg once said, we
are of the opinion that discontinuities are the most interesting things in quantum theory,
and that one can never stress them enough (Hendry, 1985). As a matter of fact, our
approach is of the objective Heisenberg reduction type (Stapp, 1992). We think that even
if it is difficult to accept that quantum jumps spontaneously occurr in Nature, the adoption
of this point of view has some advantages. Two of these are that it unifies the treatment of
micro and macro objects, and so the traditional measurement problem just disappears; and

further, that it allows quantum mechanics to be made compatible with philosophical

" “realism (Burgos, 1983, 1987b), a doctrine in which there is no room for observers and

superobservers.

Bell (1990) says that “however legitimate and necessary in application, {the following
words] have no place in a formulation with any pretention to physical precision: system,
apparatus, environment, microscopic, macroscopic, reversible, irreversible, information,
measurement... on this list of bad words... the worst of all is ‘measurement’.” The idea
that projections are a kind of natural processes and that conservation laws should have a
statistical sense in every case (including those in which collapses take place), led us to
w&k%out ah approach where, except for “system,” it is not necessary to use these bad
words or the corresponding concepts. None of them appear in Postulate I or Rule I (see
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Section 2), just in their applications. (Concerning the word system, it could be replaced
with object or thing, but they represent the same idea, which is central in our treatment.)
On the contrary, authors who do not accept the concept of projections seem to be doomed

to use this complete list of bad words, over and over again.

Bell (1990) also observes that “it would seem that [quantum mechanics] is exclusively
concerned about ‘results of measurements,” and has nothing to say about anything else.
What exactly qualifies some physical system to play the role of ‘measurer’? Was the
wavefunction of the world waiting to jump for [billions] of years until a single-celled
living creature appeared? Or did it have to wait a little longer, for some better qualified

~ system... with a Ph D? If the theory is to apply to anything but highly idealized laboratory
operations, are we not obliged to admit that more or less ‘measurement-like’ processes
are going on all the time, more or less everywhere? Do we have jumping all the ime?”
Ou_r‘ answer to the two last questions is yes. Concerning the first question, Rule I
provides an answer, at least in principle, for cases fulfilling the restrictions imposed at the

beginning of Section 2.

Other approaches aiming to solve the measurement problem are close to, but different
from quantum mechanics. In contrast, ours does not modify the theory. So, if it were
right, we would claim that it complements the orthodox version of quantum mechanics
(as summarized in Section 1) and renders it a quite acceptable theory that, for the
“moment, does not seem to need any fundamental change (at least at the non-relativistic
" limit). Nevertheless, we have to recognize that it is too early to pass a favorable
judgement on the present approach, whatever its success may have been in the analysis of

the few examples we dealt with in this article.

To conclude, let us say that we are aware that, as Maxwell once said, there is always
more than one way of looking at things. In our view the state vector refers to an
individual system and quantum jumps are real. On the contrary, according to Bohr it is
wrong to think that the task of physics is to find out how Nature is, since physics
concerns only what we can say about Nature; and nowadays it is frequently considered
that “quantum theory, in a strict sense, is nothing more than a set of rules whereby
piﬁé’ﬁcists.tompute probabilities for the outcome of macroscopic tests” (Peres, 1990).
Since, independently of the point of view adopted, everybody faces the question “what is
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a measurement?” (Peres, 1990), we hope that this work will contribute in something new

to the answer.

ACKNOWLEDGMENTS

Many of the ideas reported here originated during visits at the TECHNION-Israel Institute
of Technology, University of Utrecht, and the Center for the Study of Language and
Information of Stanford University. Discussions with J. Berger, F. G. Criscuolo, D.
Dieks, T. Etter, J. Hilgevoord, C. W. Kilmister, H. P. Noyes, P. Suppes and J. Uffink
were very fruitful. This work was partially supported by the CDCHT-ULA.

REFERENCES

Bell, J. S. (1984). Beables for quantum field theory, CERN-TH., 4035, 1-9.

Bell, J. S. (1990). Against ‘measurement,’ Physics World, 3, 33-40.

Bu-rgos, M. E. (1983). Can the EPR criterion of reality be considered acceptable?,
Kinam, §, 277-284.

Eﬁrgos; M. E (1984a). An objective interpretation of orthodox quantum mechanics,
Foundations of Physics, 14, 739-752.

Burgos, M. E. (1984b). An objective formulation of orthodox quantum mechanics,
Foundations of Physics, 14, 753-766.

Burgos, M. E. (1987a). Linearity and symmetry, Physics Letters A, 123, 313-315.

. Burgos, M. E (1987b). Quantum mechanics is compatible with realism, Foundations of

" Physics, 17, 809-812.

Burgos, M. E. (1988). Shapes and sizes, in Discrete and Combinatorial Physics
(Proceedings of ANPA-WEST 5), Stanford, California, 193-198.

Burgos, M. E. (1990a). Projections are a law of Nature, in Studies on Mario Bunge’s
Treatise, Rodopi, Amsterdam, 365-376.

Burgos, M. E. (19905). Quantum mechanics and time irreversibility, in The problem of

time in cosmology, Leningrad.

18



Burgos, M. E. (1993). Do conservation laws hold in measurement processes?, in Logic,
Computation and Measurement (Proceedings of ANPA-WEST 9), Stanford,
California.

Caves, M. C. (1986). Quantum mechanics of measurements distributed in time. A path-
integral formulation, Physical Review D, 33, 1643-1665.

Cohen-Tannoudji, C., Diu B. and Lalog, F. (1977). Quantum Mechanics, John Wiley &

~"Sons, New York.

Ghiradi, G. C., Rimini, A. and Weber, T. (1988). The puzzling entanglement of
Schroedinger’s wave function, Foundations of Physics, 18, 1-28.

Gisin, N. and Percival, L. C. (1992). The quantum-state diffusion model applied to open
systems, Journal of Physics A, 25, 5677-5691.

Hendry, J. (1985). The history of complementarity: Niels Bohr and the problem of
visualization, Rivista di Storia della Scienza, 2, 391-407.

Jammer, M. (1974). The Philosophy of Quantum Mechanics, John Wiley & Sons, New

York.

Landau, L. D. and Lifshitz, M. E. (1958). Statistical Physics, Pergamon Press LTD,
London.

Noyes, H. P. (1975). Fixed past and uncertain future: a single-time covariant quantum
particle mechanics, Foundations of Physics, S, 37-43.

Pauli, W. (1971). Letter 115 in The Born-Einstein Correspondence Letters, Walker,
New York.-

Pearle, P. (1986) Suppose the state vector is real: the description and consequences of
dyﬁamical reduction, in New Techniques and Ideas in Quantum Measurement
Theory, The New York Academy of Sciences, New York, 539-552.

Peres, A. (1990). The grammar and syntax of quantum theory, in A jubilee volume in
honour of Nathan Rosen (Annals of the Israel Physical Society 9), 256-267.

Phipps, T. E. (1973). “Time asymmetry and quantum equations of motion,”
Foundations of Physics, 3, 435-455.

St&pf), H.P. (1992). Noise-induced reduction of wave packets and faster-than-light
ipfluences,»Physical Review A, 46, 6860-6868.

19



