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-1. -INTRODUCTION 

The Schroedinger evolution of a system leads, in some circumstances, 

to coherent superpositions of macroscopically distinct states. This is 

dramatically illustrated in Schroedinger’s cat paradox, and constitutes 

. . 

the great puzzle of quantum measurements. 

To explain this fact, several hypotheses have been proposed. The best 

L-known is the projection postulate, an ingredient of the so-called 

orthodox interpretation of quantum mechanics (due to von Neumann), 

which is at present almost the only version taught. The projection 

postulate establishes that 

0 when a measurement is performed, the system’s state jumps to 

an eigenstate of the operator representing the dynamical _ 

variable measured, and 
- 

‘. - 0 the pointer of th e measuring device is led to a definite position; 

i.e., it breaks down the coherent superposition of macroscopic- 

ally distinct states [l]. 

This postulate has been criticized on several grounds: 

0 it introduces a subjective element into the theory [2,3], 
.- 

0 it conflicts with the Schroedinger equation [4,5], and 

.O it implies a kind of action-at-a-distance [4,6]. 

The traditionally opposed approach faces the conceptual difficulties of 

the measurement problem by assuming that the state function 1 $s) is 

no more than a tool to calculate probabilities. Differing from the 

orthodox version, in this view 1 Qs) is not an attribute of an individual 
. .- 

~@+tern; S but of an ensemble; hence a process state reduction is not 

required [7]. Nevertheless, many physicists think that 14~) refers to an 

-individual system, so the ensemble interpretation of 1 $s) that allows 
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rejection of the projection postulate is, paradoxically, the main reason 

that this approach is frequently discarded. 

Other theories close to, but different from , quantum  mechanics have 

recently been proposed. Most of them  seem to be motivated by the desire 

to find a solution to the measurement problem  that is compatible with 

the individual interpretation of 1 @s). In general, they modify the 

Schroedinger equation in a way that leads to spontaneous collapses. ; c- 
Ballentine has demonstrated [7] that the theories developed by Ghiradi, 

Rimini and Weber [8], Diosi [9], and Joos and Zeh [lo] violate energy 

conservation and are incompatible with the existence of stationary 

states. 

The role of conservation laws in quantum  measurements has been 

-studied-by several authors [ll-151. It has been shown that the presence of 

.an -additive conserved quantity imposes restrictions on the measure- - _ 

ment of dynamical variables incompatible with this quantity. The main 

object of the present article is to point out an even deeper conflict 

between conservation laws and the orthodox version of quantum  

mechanics; if the individual interpretation of I @s) and the projection 

.- :- postulate are taken as valid, then conservation laws cannot be satisfied 

in measurement processes, except in cases where the initial state of S  is 

an eigenstate of the operator representing the quantity to be measured. 

II. CONSERVATION LAWS IN SPONTANEOUS AND ~ 

MEASUREMENT PROCESSES 

. -- 
Let As be a dynamical variable referred to the individual system S. It 

& represented by the operator As whose eigenvalue equations are 

4s 1 ai) = ai 1%) - (1) 
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(For simplicity we treat the discrete and non-degenerate case.) 

If the individual interpretation of 1 Qs) is adopted, it can be said that 

As has the value ai in cases 1 &) = 1 ai). But if 

14%) = Ejcj 1 aj> 9 (2) 

it is not possible to attribute a definite value to As. In contrast, the mean 

value 

I -- (As) = hpsI~S) (3) 

is sharp.. It is important to stress that in the framework of the 

interpretation we are analyzing both I @s) and As refer to the indivi- 

dual system S. As a consequence, the mean value (As) refers also to this 

individual system. 

According to the orthodox version of quantum  mechanics there are 

IWO kixihs of processes: the spontaneous processes that are governed by 

the- Schroedinger equation, and the measurement processes that are - _ 

ruled by the projection postulate. For cases in which the evolution of the 

state follows the Schroedinger equation, the conditions 

and 
aAs /at = 0 (44 

I [AS, Hs] = 0 , (9 

where HS is the Hamiltonian of S, ensure that 

(As) 0) = elm  1 As 14% (9) (5) 

remains a constant in time [16]. Thus it can be said that conservation 

laws are valid for this kind of process. 

The ideal measurement scheme [l] assumes that for a measuring 

, .,~ de-vice M  of AS initially in the state I mo) the interaction between S  and 
*: -; 
M  produces the transition 

Iai>lmo> * Iai>lm i> , 
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with-a probability of one. (Here I m i) are orthonornal states of M  when 

the measurement process is over.) This scheme is supposed to be valid 

in cases where the measured quantity is compatible with every 

conserved quantity referred to S  + M  [ll-151. 

Let A  represent a conserved quantity referred to S  + M , and H be its 

Hamiltonian. We can write 

; -- 

The conditions 

H=HS+HM+Hi,  (7) 

. . 

and 

aA/at = 0 (84 

[A, H] = 0 V W  

are fulfilled. 

..~ -To ensure that measurements of As can be performed according to 

the.ideal scheme, we assume that As commutes with every operator 

representing another conserved quantity referred to S  + M ; and, since 

transition (6) has a probability of one that it will happen, there is no 

inconvenience in assuming that it is a result of the Schroedinger 

evolution. 

.- L .Jf at to (when the interaction between S  and M  starts) and at tf (when 

this interaction is over) it is possible to write 

A  = As+AM 

(where A M  refers to M ), we have 

(9) 

and 

(A)i(tO) = ai+ <molAMlmo) (10) 

_ ..~ 
-.--.A _ (A)i(tf) = ai+ (mi 1 A M I m i> - (11) 

?he vahdity of (8) thus implies that (A)i (to) = (A)i (tf), and hence 

(mOIAhdIm0) = (milAMlmi) . 
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?This relation must necessarily be fulfilled in the ideal measurement 

scheme, so it can be said that in cases for which the initial state of S  is an 

eigenstate of the operator representing the quantity to be measured, the 

corresponding conservation law is valid. This result can also be seen as a 

natural consequence of the hypothesis that the process described by (6) is 

ruled by the Schroedinger equation. 

; -- Now, if the initial state of S  is given by (2) and the Schroedinger 

equation rules the measurement process, then the Hamiltonian H 

. . (referred to S  + M ) induces the evolution 

Ejcj 1 aj> 1 mO> e EjCj Iaj)Im jo) - (13) 

It is easy to show that in this case the validity of (8) implies that (A)(to) = 

(A)&); i.e., that the corresponding conservation law is satisfied. Never- _ 

theless, the linear superposition in the r.h. of (13) is of the type 

mentioned in Section I, that constitutes the great puzzle of quantum  

mesurements. 

On the contrary, the projection postulate states that in measurement 

processes, coherent superpositions break down. According to this 

postulate, the evolution of S  + M  is not given by (13), and the transition 
.- L 

EjCj 1 aj> 1 mO> q 1 ai> I m i) (14) 

has a probability 1 ci 12 to happen. In this last case we have 

and 

tA)(tO) = 2j ICj 1 2 aj +(mOIAMI~O) ., (15) 

(A)i(tf) = ai +(m ilAM lmi) . (16) 

* .,~ :Qence, _ taking into account (ll), we can write . 

(A)i(tf) = ai + (mol AM~ mo> , (17) 
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and we obtain 

for every i, even though conditions (8) are fulfilled. 

It is worth noticing that inequalities (18) result from  assuming that 

evolution (13) does not occur, but transitions (14) are realized. In other 

words: if the individual interpretation of the state vector and the 

;projection postulate are taken as valid, then we are forced to conclude 

that for S  in the initial state (2), the corresponding conservation law is 

. . violated. In particular, if A  is the Hamiltonian H (for which (9) is valid 

at to and at tf), then equation (18) implies that the energy of S  + M  is not 

conserved in the process of measuring the energy of S. 

!I!. AN EXPERIt iENT W ITH POLARIZED LIGHT 

--In order to illustrate the problem  referred to in the previous section, we 
- _ 

are going to analyze the following experiment. 

Let S  be a photon and M  be a filter that transm its right circularly 

polarized light and absorbs left circularly polarized light. We shall assume 

that M  can freely rotate only about the optical axis z. Following Dirac [17], 

.- we- shall say that this filter is a measuring device of Js, the photon’s 

angular momentum about z. 

We shall call JM the operator representing the filter’s angular momem- 

turn about z, and J the operator corresponding to the z-component of total 

angular momentum (referred to S  + M ). At to (when the interaction 

between s and m  starts) and at tf (when this interaction is over), we can 

e -- write 
.-- _ -iE; J = Js+JM. 

Since there- is not an external torque about z, the conditions 

7 

(19) 



- 

-  .-’ 

a n d  

aJ/at  =  0  ( 2 0 4  

L L H I =  0  (2W  

are  ful f i l led (here  H  is th e  Hami l ton ian  o f S  +  M  th a t inc ludes  th e  

in teract ion b e tween  S  a n d  M ). N o tice th a t th is  is n o t t rue fo r  th e  o the r  

c o m p o n e n ts o f th e  to ta l  angu la r  m o m e n tu m . 

; -- In  th e  o r thodox  vers ion  o f q u a n tu m  mechan ics ,  th e  ind iv idua l  

in terpretat ion o f th e  state vector  is a d o p te d . H e n c e , w e  a re  g o i n g  to  

. . a ttr ibute a  state o f po lar iza t ion to  ind iv idua l  p h o to n s . 

W e  s a w  in  S e c tio n  II th a t if cond i t ions  (8)  a re  ful f i l led, th e  co r respond-  

i ng  conserva t ion  laws  a re  va l id  in  p rocesses  ru led  by  th e  S c h r o e d i n g e r  

e q u a tio n . W e  a lso  s a w  th a t th is  is th e  case  o f m e a s u r e m e n t processes,  

if th e  ini t ial  state o f S  is a n  e igens ta te  o f th e  o p e r a tor  represen t ing  th e  

- q u a n tity to  b e  m e a s u r e d . - _  
In  ou r  e x a m p l e , 1  R  ) ( c i rcular ly  po la r i zed  to  th e  r ight)  a n d  I L )  

(c i rcular ly po la r i zed  to  th e  left) a re  e igensta tes  o f Js, a n d  J fulf i ls cond i -  

tio n s  (20).  S o  th e  conserva t ion  o f (J) m u s t necessar i l y  fo l low if th e  ini t ial  

state o f S  is e i ther  I R)  or  I L).  L e t us  d e a l  wi th th is  p o i n t in  m o r e  d e tail .  

.- --If th e  ini t ial  state o f S  is I R)  a n d  th a t o f M  is I m o ) , th e  in teract ion 

b e tween  S  a n d  M  p rodwces  th e  t ransi t ion 

W e  h a v e  

(J)R 0 0 )  =  (J)R O f) =  fi +  ( m o  I J M ~  m o >  9  (22)  

w h e r e  (J)R(tO ) a n d  (J)R(tf) a re  respect ive ly  th e  ini t ial  a n d  fina l  m e a n  
* .,- va lue  -of th e  to ta l  angu la r  m o m e n tu m  a b o u t z  fo r  S  in  th e  ini t ial  state 

t: 

I )  R . 
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:If the initial state of S is 1 L), the interaction between S and M produces 

the transition - 

p4Imo) *Is> pL> (23) 

(here 18) represents the state void for S, and 1 mL) the filter’s state after 

absorption of a photon in the state 1 L). We obtain 

(J)L (to) - (J)L (tf> - - fi + (q-$MI mo) , (24) 

’ cidere (Jhb) and (Jhh) are respectively the initial and final mean 

value of the total angular momentum about z for S in the initial state I L). 

Now, if S is initially plane polarized, its state is not an eigenstate of JS 

but can be written 

I ) P=$ IR) + $ IL) * 03 
_ 

Supposing that the interaction between S and M can be described by the 

Schroedinger equation, we must conclude that the evolution 

IV 1 mo> => $ IR)Imo) + -& IL)Imh) (26) 

occurs. This hypothesis allows us to ensure that (J) remains a constant, 

but now we cannot say that the photon is either transmitted or absorbed. 
.- 

1 This is the-way the great puzzle of quantum mechanics becomes apparent 

in our example. 

If, on the contrary, we assume that measurement processes are not ruled 

by the Schroedinger equation, but by the projection postulate, we are led to 

conclude that the evolution (26) does not happen, and the transition 

py”o) =a IR)I”o) - (274 
. -- ~p$ - _ 

pymo) * Is> IML) ww 

results, with a probability of l/2. 
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-Transition (27a) corresponds to the case in which the photon is 

transmitted in the state I R). Since the r.h. of (27a) and that of (21) are 

identical, the final (J) is given by (22). Transition (27b) corresponds to the 

case in which the photon is absorbed. Since the r.h. of (27b) and (23) are 

identical, the final (J) is given by (22). Transition (27b) corresponds to the 

case in which the photon is absorbed. Since the r.h. of (27b) and (23) are 

:fdentical, the final (J) is given by (24). 

. . 

On the other hand, the 1.h. of (27a) and (27b) represent the same state. 

Hence, the initial (J) is also the same. It is easy to show that 

(Jh (to) = <molJ~I MO) 9 cw 

where (J)p (to) is the initial (J) for S in the state I P). As a consequence, 

we obtain for transition (27a) 
_ 

(Jh (to) + (Jh h> 9 (294 

‘and for transition (27b) 

(Jh 60) 4 (J)R h> - WV 

In other words: the z-component of the mean value (J) referred to 

S + M is not conserved either in the process of transmission nor in that 

of absorption of a photon initially plane polarized, even if there is not an .- 
external torque about z acting on S + M. 

IV. CONCLUDING REMARKS 

, -- 

We have seen that during Schroedinger evolutions the validity of (8) 

ensures that (A) remains a constant in time. Now, if the rule governing 

the process is replaced wifh a law different from the Schroedinger 

qga t ion, a priori th e validity of conservation laws cannot be 
-i;. - .- 
guaranteed. Ballentine points out [7] that some theories which modify 

this equation in order to include spontaneous state reductions lead to 
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the result that the energy is not conserved. Our study shows that 

projections induced by measurements, as they are considered in the 

framework of orthodox quantum mechanics, lead to a conflict with 

conservation laws. 

These two analyses make apparent, however, a difference worth 

noticing. In the theories Ballentine refers to, energy is continuously 

gained, although its magnitude is too small to be detected [7]. In collapses ; -- 

. . 

occurring in the framework of orthodox quantum mechanics, the 

Change (A)i(tf) - (A>(to> is not necessarily small and has a probability 

I ci 12 to happen. This implies that the average of these changes obtained 

when the processes of measurement of As is repeated many times 

should be close to 
_ 

Eilci12(ai + (mo 1 AMI mo>) - (A)(to) = 0 . (30) 
- 

In -our view there is nothing sacred about conservation laws. Like 

every other scientific law, they could be false. The same is true of the 

orthodox interpretation of quantum mechancics. The intent of our 

contribution is to show that there is a contradiction between these two 

ideas, both of which are adopted, perhaps, by the majority of physicists. 
.- 

, -- 
._- _ 

-i; .- 

11 



I 
- 

. . 

. 

AbiNOWLEDGMENTS 

I would like to acknowledge the hospitality of the Center for the Study 

of Language and Information of Stanford University. Discussions with 

T. Etter, H. P. Noyes and P. Suppes were very fruitful. 

12 



- 
- *-- 

REFERENCES 

1 J. von Neumann, Mathematical Foundations of Quantum 

Mechanics (Princeton University Press, Princeton, New Jersey, 1955). 
. . . 

2L. E. Ballentine, Rev. Mod. Phys. 42, 358 (1970). 

SM. Bunge, Foundations of Physics (Springer-Verlag, New York, 

‘*- 1967). 

/. 4M. Bunge, Treatise on Basic Philosophy, Vol. 7 (Reidel, Dordrecht, 

1985). 

5A. Shimony, Phys. Rev. D9,2321 (1974). 

_.- 6M. Jammer, The Philosophy of Quantum Mechancis (John Wiley & 

-- Sons, New York, 1974). 
. _ 

7L. E. Ballentine, Phys. Rev. A43, 9 (1991). 

86. C. Ghirardi, A. Rimini, and T. Weber, Found. Phys. 18, 1 (1987). 

9L. Diosi, Phys. Rev. A40, 1165 (1989). 
-- _- 

‘~ 10,. Joos and H. D. Zeh, Z. Physik B59,223 (1985). 

1lE. P. Wigner, Z. Physik 131,101 (1952). 

12H. Araki and M. M. Yanase, Phys. Rev. 120,622 (1960). 

13H. Stein and A. Shimony, in Foundations of Quantum Mechanics, 

_ -- B. d’Espagnat, ed. (Academic, New York, 1971). 
--.- ..L ‘fr. -; 

14G. C. Ghirardi, F. Miglietta, A. Rimini, and T. Weber, Phys. Rev. D24, 

347 (1981). 

13 



. 

- 

- N-’ 

-?5M. Ozawa, Phys. Rev. Lett. 67,1956 (1991). 

16C. Cohen-Tannoudji, B. Diu, and F. LaloG, Quantum Mechanics 

(John Wiley & Sons, New York, 1977). 
r 

17P. Dirac, The Principles of Quantum Mechanics (Oxford University 
. . 

Press, Oxford, 1958). 

14 


