pif

SLAC-PUB-6073
March 1993
(A)

The Beam-Beam Interaction
in ete” Storage Rings

Robert H. Siemann*
Stanford Linear Accelerator Center
Stanford University, Stanford, CA 94309

1 Introduction

Colliders are designed for studying relatively rare, small impact parameter
collisions that produce elementary particles. This is not the dominant interaction
between the beams, however. That dominant interaction, the beam-beam interaction,
is due to the electromagnetic fields of the beams.

" - The simplest and most pragmatic treatment of the beam-beam interaction is to
parametrize the luminosity, L, in terms of the beam-beam tune shift, §. The tune
shift is the shift in the vertical betatron tune of a small amplitude particle due to the

electromagnetic fields of the other beam. Expressed in terms of beam parameters
*
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where 1, = 2.82x 10:.‘15 m is the classical electron radius, N is the number of particles
in a beam bunch, B, is the vertical g-function at the interaction point, y is the beam

" energy in units of rest energy, and g, and g, are the rms vertical and horizontal beam

sizes at the collision point. The luminosity
szc'
L =

in o o (1.2)

Yy X
(f; is the collision frequency) can be rewritten in a frequently used parametrization
Nf yé(1+0 /o)
L= Yz (1.3)
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_horizontal plane leading to £, >> €

It is known from experience that there is a soft limit on &, £ £ 0.05. The
pragmatist chooses a value of £ and then uses eq. (1*:3) to trade-off luminosity, beam
current (the total current is I = eNf), ay/dx, and B,. A "conservative" design might
be based on £ = 0.03 while more aggresSive ones might use ¢ = 0.05. This approach
has shortcomings primarily because it isn’t based on an understanding of the
underlying physics of the beam-beam interaction. Other beam parameters are
assumed independent of and unaffected by €, and £ is assumed independent of and
unaffected by them. In fact, beam-beam performance depends on many other
parameters including some of those in eq. (1.3), betatron and synchrotron tunes,
bunch length, lattice errors, and radiation damping. Therefore, eq. (1.3) has limited
applicability, and extrapolations*imo new regimes such as those being considered for
heavy quark factories - small py, crossing angles, closely spaced bunches, unequal
beam energies, etc - have uncertainties associated with them. Furthermore, a
"conservative" choice of £ may not lead to a conservative overall design. Other beam
parameters or accelerator systems such as the RF and vacuum systems may be pushed
unnecessarily. '

This article is a personal perspective about the physics of the beam-beam
interaction. This is an active area of research combining operational experience,
experiments, computer models, and theory with the goal being to overcome the

~ shortcomings above. This research hasn’t progressed sufficiently to quantitatively
" explain beam-beam limits, but there are qualitative explanations of many of the

features of the beam-beam interaction and clear directions for future developments.

2 Observations

Experimental aspects of the beam-beam interaction are the subject of several
articles that give detailed observations.1® Some of these papers synthesize data from
several storage rings. This is a difficult task because there are numerous important
parameters, and when colliders are compared many of these parameters are different.
It is hard to know which of these differences are essential, which are secondary, and
even if all the differences have been identified. Rather than repeating this type of

. quantitative analysis, this section stresses a common feature of the observations -

there are two beam-beam limits.

Normally beams are injected into a collider with electrostatic separation at the
interaction point. While the beams are still separated they are Gaussian with rms
beam sizes at the interaction point of

_ ’ * - B ! * . (2.1)
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The emittances, €, and €., are determined by the magnet lattice and the properties of
synchrotron radiation.’ K/Iost electron storage rings have had o, >> g,. Thatis
the natural relation between the sizes because: i) the main dipoles bend in the
, and ii) a quadrupole doublet is the simplest
interaction region configuration. I?’ the quadrupole polaritics are chosen to give
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p: >> p*, the tune shifts in the two planes, § (given by eq. (1.1) with x and y
interchanged) and fy (=§), can be made roughly equal

* *
gx px/ax pxey
-f_ = = = - . (2.2)
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_Synchrotron light measurements show that the horizontal size doesn’t change
significantly when the beams are brought into collision, oy = g,5. However, above
some current the vertical beam size becomes dependent on N rather than being
determined by synchrotron radiation, @, # a. Figures 1 and 2 are a compilation of
Iuminosity and tune shift data for colliders when performance has been optimized.
There are two distinct regimes. At low currents L e« N2 (ITZ) indicating 0xOy is
constant. The data do not show this regime for all colliders because for them it
doesn't exist or is below the current range presented. At high currents L < N, and,
since the horizontal size is unchanged, o, < N. TRISTAN has a single beam current
limit and is the only collider not to reach this regime. The tune shift is derived from
the luminosity measurements using eq. (1.3), so the tune shift plots are another way of
presenting the same data. They show the tune shift reaching a limit. This is one of
the beam-beam limits. It is associated with the beam core, and, as the figures show,

’ _the tune shift limit varies from collider to collider.

The second beam-beam limit comes from changes of the beam distribution.
The dominant effect is the appearance of "non-Gaussian" tails in the vertical - the
number of particles with large vertical betatron amplitude is greater than that of a
Gaussian distribution with the measured rms width of the core. The beam-beam
interaction increases the population of the tail of the distribution even more than it
increases the core size.

Figure 3 shows a beam distribution measurement. The non-Gaussian tails are
clear. Systematic studies of the tails have never been made because of the difficulty
of the measurements. The luminosity is insensitive to the tails, and synchrotron
radiation monitors are plagued by unwanted reflections from the vacuum chamber
that dominate the image beyond 2 - 3 o,,. The best measurement technique is

~ destructive - measuring the lifetime as a collimator is moved toward the center of the

beam. Systematic studies are tedious because new beams must be injected after each
measurement.

Particles with sufficiently large amplitudes hit the vacuum pipe causing
experimental backgrounds and reducing the beam lifetime. The dynamic aperture due
to magnet nonlinearities may play a role in that particles may fall outside the dynamic
aperture before hitting the physical aperture. The second beam-beam limit has been
reached when the lifetime or backgrounds become unacceptable. This beam-beam
limit is associated with the beam tails. It isn’t parametrized by a value of £; ¢ is
determined by the size of the core and has reached its limiting value below the second
beam-beam limit.
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Figure 1: The beam-beam performance of e*e” colliders from an article by John Seeman (Ref. 1).
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Figure 2: An update of beam-beam performance. The LEP data were provided by J. Jowett, the TRISTAN data by H. Fukuma and Y.
Funakoshi, the PEP data by M. Donald, the CESR data by D. Rice, and the BEPC data by C. Zhang. The solid lines are eyeball fits to
L e I, and the dashed lines to L < ITZ. The different symbols for TRISTAN indicate measurements by different detectors.
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‘Figure 3: Rate of bremsstrahlung photons produced by a thin Be wire in the vertical

tail of the CESR beam. Ry is the rate at the center of the beam, and the solid lines are
extrapolations of the Gaussian core (ref. 8).

3 Underlying Physics

The angles of a relativistic particle passing through an oncoming beam (Figure
4) change by®

Ax’ —Nre 2n Im
A : 7 rRe|TBB
yo 1-R
x
2 2 2 (3-1)
f = W(utiRv)-exp(-(1-R ) (u +v ))W(Rutiv)

BB

In this equation g, > oy is assumed, W is the complex error function,lo R= ay/cx,
and

4=—2* ¢ —Y (3.2)

’

o |2(1—R2) a '2(1—R2)
X Y

ht N An example of Ay’ is plotted in Figure 5. At small y/ay, Ay’ « y while at large values

it falls like 1/y.
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Figure 4: A relativistic particle of energy y passing through an oncoming thin
pancake of N oppositely charged particles. The transverse distributions of the
pancake are Gaussian with rms widths oy and oy The particle is displaced from the
center of the oncoming beam by (x,y).
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Figure 5: The vertical kick experienced by a typical electron in CESR (ref. 11).

Thelcomplex error function can be approximated for small arguments as W(¢)
= 1+2i¢/n f2 giving

Ax’ _2Nre Im X y
Ay’} = Re] [io—_- + -;-] . (3.3)
Y (0’x+0'y) X A%

This is a focusing quadrupole in both dimensions. Displacement, betatron amplitude
and betatron phase are related by z = A,cos(y,) where z = x or y. Small amplitude

_pafticles experience this linear focusing for all values of phase, and it changes their
tunes by
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and
o = r, NB B L s
Q--_ﬁya(gﬂr)_cx (3.5)
X'y x

Particles with larger betatron amplitudes are outside the linear region of eq. (3.1) for a
range of phases, and the focusing averaged over phase is weaker than for a small
amplitude particle. Very large amplitude particles have almost no change in tune due
to the beam-beam interaction. The beam has a range of tunes from {AQ,, AQ.} =
{¢x §y} at small amplitudes to {0, 0} at very large amplitudes. For this reason £
and § are often, appropriately, called the beam-beam tune spreads. The tune spreads
are one consequence of the nonlinearity of the beam-beam interaction.

Sufficiently strong resonances within the tune spreads can lead to beam-beam
phenomena like that discussed above. Those resonances can be associated with the
magnet lattice, or they can come from the beam-beam interaction itself which
produces nonlinear resonances because Ax” and Ay’ are nonlinear functions of x and

. y. These nonlinear resonances are the second consequence of the nonlinearity of the
-beam-beam interaction.

So far single particle physics has been discussed, the effects of the fields of
one beam on a particle in the second beam. This is incoherent, weak-strong physics.
The particles in the second beam are independent of each other, and the fields and
distribution of the first beam are unaffected by the second beam. In fact, the fields at
the collision point are strong, and the beams modify each other’s distributions and
fields. This leads to multiple particle, coherent, strong-strong physics.

The connection between the physics regime and core blowup and the tune shift
limit is an open issue. It could be incoherent or coherent physics, and it could be that
one or the other is more important in a particular collider. Most theoretical analyses
of the tune shift limit concentrate on incoherent physics, and most computer
simulations make approximations that inhibit coherent physics. Experiments that
would distinguish between them have not been performed, but there are some
observations that can be explained only by coherent physics.

The large amplitude particles leading to lifetime and background limitations
are rare. These rare particles are independent of each other and cannot affect the
distribution of the other beam. Clearly these particles are described by single particle,
incoherent physics.
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4 The Incoherent Beam-Beam Interaction

4.1 Hamiltonian Formalism

Hamiltonian methods are extremely powerful. They can be used to calculate
many aspects of the incoherent beam-beam interaction, and they provide a framework
for addressing such topical questions as the effects of synchrotron motion, finite
bunch length, unequal beam energies, optical errors, crossing angles, etc.

In the absence of the beam-beam interaction the Hamiltonian for the transverse
motion of a single particle is!

1/2
HO (x, er Y. Py: s)= —eAS (s) - [1+P—x(s—)] [pz_pi_pil . (4.1)

In this equation: s is the usual coordinate along the reference orbit, p is the bending
radius, Ay is the s-component of the vector potential describing the magnet lattice, p =
[E2/c2 - m2c2]1/ 2 is the total momentum, and p, and p,, are the momenta conjugate to
x and y. The ideal solution is to find constants of the motion. This is possible when
the lattice is made up of dipoles and quadrupoles. In that case canonical
_ transformations can be used to simplify Hy to 2
27Q 210
x0 yO0

H = I+

0 C x C Iy (4.2)

where C is the accelerator circumference, Q, () and Q, ) are the betatron tunes and it
has been assumed for simplicity of illustration that there are no skew quadrupoles.
The canonical transformation has been used to transform to "action-angle
coordinates"; the actions, I, and I, are constants of the motion because their
conjugate coordinates, the angles y, and ¥y do not appear in the Hamiltonian and
dl,/ds = -0Hgp/oy,=0(z=xory).

The "smooth approximation” is a convenient description of transverse motion
where the betatron phases advance at constant rates, dy,/ds = 21Q,/C, rather than at
the actual instantaneous rates dy,/ds = 1/8,(s). The transverse coordinates in terms
of the action-angle coordinates of the Hamiltonian in eq. (4.2) are

z = l2ﬂz(s)Iz COS(W2+XZ(S)) (4.3)

where
S
_ ag 27s
Xz(s) = Ioﬂz‘“ on—c . (4.4)

The angle y, is the betatron phase in the smooth approximation, dy,/ds = 9dHg/dL, =
21Q,/C, and x,(s) accounts for the difference between the approximate and actual
phases. (There are alternate action-angle coordinates where the angle is the betatron

_phase rather than the phase in the smooth approximation, but using the choice in egs.
(4.2) - (4.4) allows one to account easily for the rapid phase advance near the
interaction point where B is small.) Note that x, is periodic with period C
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XZ(S'HIC) = XZ(S) . (4.5)

The Hamiltonian including the beam-beam interaction is
H(XIPX:YrPy'S) = H0+VBB(XIYIS) (4.6)
where Vgp is the beam-beam potential. This potential is nonlinear, and it isn’t
possible to find constants of the motion. A perturbation method must be used. The
steps in this method are:
1. Write the Hamiltonian, H, in terms of the action-angle coordinates of the
unperturbed Hamiltonian, H,.
2.  Fourier analyze H with respect 10 s, ¥y, and ¥y
3. Calculate the dependences of tunes on action from the average value of the
perturbation.
4. Determine resonance conditions and resonance properties from the slowly
varying terms of H.
A sample calculation is performed in the next section to illustrate the techniques and
arrive at conclusions relevant to heavy quark factories. It is a generalization of
previously published work!3:14 o finite length, flat beams.

' 42 Bunch Length Effects

4.2.1 Write the Hamiltonian, H, in Terms of the Action-Angle Coordinates of
the Unperturbed Hamiltonian, Hy

The picture is that given by Figure 4 with the thin pancake replaced by an
oncoming bunch with rms length gy . The beam-beam potential, assuming only one
interaction point, is

(=]

: —Nre 2
VBB= _— E VF(x,y,s) exp
Y 2

-2(s—(nC+cT))2/di].

ZHUL n=-—co (4.7)
The potential V comes from a solution of Poisson’s equation15
o dq X2 y2
V_= exp{ - + ; (4.8)
F [ J 2 2 { 202+q 202+q]}
0 (20x+q) (20‘y+q) X y

VE has explicit s dependence because a% = 0'%0 + ezsz/ﬂ; near the collision point.
This is important in the vertical dimension, and the calculation is valid for o‘L/ﬁy < 1.
The modulation of the collision point due to synchrotron motion of tune Qg and
-amplitude Tis

N

-

T = I cos{(2mnQ ) (4.9)
2 s

-10-



where eqs. (4.7) and (4.9) have a factor of one-half associated with them that arises
from the relative motion of the particle and the opposing beam.
The transverse coordinates can be rewritten using eq. (4.3) to give

VF (Ixr Vx, Iy' Vyl s) =

2
+
20x q

2
]co aq { [ZBxIxcos (Vx+xx)
exp{-

0I;20i+Q)(202+q)
y (4.10)

+

2
28 I cos (¥ +Xx )
ﬂy y Yyt ay ]}
2
207+
y q

* 2
w© aq ZﬂXIxcos (wx+xx)
exp{- 5
: 20
X

2 2
o\r(zox0+q) (20’y0+q)

e

+q
0 (4.11)

T 28 2 )
I cos +
B N Pyly vy ]}
26y0+q
The approximation o‘L/ﬁ* < 1 was used in going from eq. (4.10) to (4.11), and the
only remaining s-dependence in eq. (4.11) is in x, and Xy-

4.2.2 Fourier Analyze H with Respect to s, y,, and V’y
This Fourier analysis will show the resonant structure of the beam-beam

interaction. The Hamiltonian is periodic in y, and ¥y with period 27, so
H=H (I ,I)
, 0 x 'y

Nr =
__Sg
Y

p,r=—o -

(4.12)

dk Apr (Ix, Iy, k)exp(1i (pwx+ryry—ks) ).

As discussed below coefficient Ay corresponds to resonances with horizontal order
Ipl and vertical order Irt. Itis

1 2x 2| e
Apr= 3 ]dwx[dwy]ds exp(-l(pwx+r¥fy—k8))
@m=dy o e
- (4.13)
L 2 :E: 2, 2
& - x VF exp[—Z(s—(nC+c‘t)) /UL

B J 2 Tta'i n=-—co

-11-~
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A first result of making the approximation going from eq. (4.10) to eq. (4.11) is that
the y integrals and the s integral can be factored by making a change of variables 6, =
¥V, + Xy

1
= —_ 3 +
Apr(Ix,Iy,k) Tpr(Ix,Iy) ZN‘dS exp(l(pxx+rxy ks))

<«

2
X

exp[—2(s—(nc+c‘t))2/o’i] ; (4.14)

J 27r0'i n=-—co

2n 2n o

Tpr= ! [de e_lpex]deye_lreyl da
(2m) 2 2
+ +
0 0 OJ(ZUXO q)(ZUyo q)
] : * 2 * 2
. ZﬁXIxcos Gx 2B I cos 8

T x exp{‘[ 5 v 2 y]} ) (4.15)
- 20x0+q 20y0+q

" The integral T is zero when either p or r is odd.
The s integral can be performed by 1) usin,‘g the periodicity of x, (09. (4.5)), ii)
making a second use of the approximation oy /By, < 1 to write X,(s) = s/B,-2mQ,s/C,
and iii) using an integral from Gradshteyn and Ryzhik1

2 2
-k O
pr 2n pr x'7y P 8
: = ik . 1C
x E exp[ pz cos(2ans) + iknC] . (4.16)
n=-co
The wavenumber kpr is
* *
kpr= k + p(1/px-2ano/C) + r(l/ﬁy—ZnQyO/C) . (4.17)
Finally, using a Bessel function sum!7 and the Poisson sum rule18
2 2
1 kproL
Apr =z Tpr(I ,Iy) exp 3 ]
< . x E 1™ (k. 1c/2) 8 (kC-2T(n-mQ_)) (4.18)
- m pr s
m, n=-c

-12-
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where J, is a Bessel function of order m. Sidebands spaced by Qg have developed
around the betatron resonances. The decomposition in eq. (4.18) makes sense only
when a few of the sidebands are important.

Substituting back into eq. (4.12)

'™ 2 2
Nre _kprUL
H = HO(IX,Iy) - 67— E Tpr(Ix’Iy) exp[-——g——]
m, nl p'
r=-o

A (4.19)
. .
x i Jm(kprl'c/Z)exp(J.(pwx+r¥rY 27r(n-sz)s/C))

The four-fold sum is the beam-beam perturbation. This all seems terribly messy, but
the next steps show how this formality pays off.

4.2.3 Calculate the Dependences of the Tunes on Action from the Average
Value of the Perturbation

The average value of the perturbation is given by the term withp=r=m=n=
0. All the other terms are oscillatory. When its phase varies rapidly, the effect of a

. term on the motion averages (o zero quickly. A phase varies slowly if the tunes have

special values leading to resonances, or if one or more of the tunes is low. Usually
the fractional parts of the betatron tunes are not close to zero, but the synchrotron tune
can be low. Itis in hadron colliders where the effects of synchrotron motion are
averaged over hundreds or thousands of turns. This leads to the possibility of
adiabatic behavior where: 1) resonance conditions change slowly enough that particles
trapped in a resonance stay trapped as resonance conditions change,* and ii) the
decomposition in eq. (4.18) isn’t the most illuminating approach.

The synchrotron tune in electron colliders is large enough that the synchrotron
motion-is averaged in tens of turns. The important terms in the perturbation are its
average value and a few resonances. The phase advance is dy,/ds = dH/3I,. The
derivative of Hy gives 21/C times the nominal tune, and the derivative of the average
value of the perturbation gives the average phase advance from the perturbation. It is
dwz { ) dH Nr 4T

S 2n 2r e 00
ds

< E-——QZI=<——>=—Q- (4.20)
z

c

For example, in the vertical

* The synchrotron amplitude and tune enter the criteria for adiabatic motion, but the
. A,k . .

focus is on Qg because T/ ~ 1 in modern electron and hadron colliders. The

differences between the "quasilinear" and "adiabatic" regimes are discussed in ref. 19.

-13-
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2Nreﬂ 2 a
Qy= Qy0+ ———g a8 deycos Gy d
y(2m 2 2 .3
0 0 0 (20X0+q) (Zayo q)
* 2 * 2
ZBXIxcos GX 2B I cos @
) x exp[—[ > + =X 32’ y” (4.21)
¥ 20'x0+q 20’y0+q
In the limit I, Iy->0,
Nr B
0 =0 + ey] a9 : (4.22)
y y0O 2my
0 (2(72 + )(20’2 + )3
x0T 120,074
Evaluating the integral :
N Q=09 .-+ & . (4.23)
oy y0 y

- Equation (4.21) and the analogous one for Qy (eq. (4.21) with x and y interchanged)

I give the dependences of tunes on actions. Usually the integrals have to be done
numerically. Figure 6 shows the results of such a calculation.

§l T 1t 1 1 Il

3 + 1./€,=0.0
O 1,/e,=0.5 B
X 1,/e,=1.0 .
O 1,/e,=2.0 ]

=3
St |
c

0.000 2.600 6.000

1/ ey

A :
- Figure 6: The vertical tune, Q + AQ,, for different values of the horizontal

and vertical actions calculated ?’rom €q. (4.21).

“14-
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4.2.4 Determine Resonance Conditions and Resonance Properties from the
Slowly Varying Terms of H

A term in the Hamiltonian has a cumulative effect, resonant build-up, when its
phase varies slowly. The resonance condition is

da s) ~
= pwx + rwy - 27r(n—sz)E =0, (4.24)
or

pQ + rQ + mQ =n . (4.25)

X y s

The tunes are the actual tunes, not the nominal tunes, and egs. (4.21), the analogous
one for Qy, and (4.25) can be solved for the locus of resonant actions, {I,R, IyR}-
This is illustrated in Figure 7. The resonance order equals Ipl + Irl + iml.

A Y4
i >
0 SIBLAEEENS
[\ 7 Resonance
Ix _ Separatrix
P Ki | Ixm IyR
- Slope = 4’
5;:?;\1 tan'1 f/p A 1 7351A1

Figure 7: A nonlinear resonance illustrated in a three-dimensional phase space. The
axes are the unperturbed actions I, and I,, and the resonant angle y| =py, + 1V, -
27r(n-sz)s/C. The resonance condition, eq. (4.24), is satisfied for {IXR, IyR}- e
resonance action is Kl, and, from eq. (4.29), the resonance oscillation direction is
ta'n'l(r/p). This figure is adapted from ref. 20.

-15-



The Hamiltonian of a single resonance, assuming it is isolated from all the

others, is
a
. o Nre . 2Nre . L1 { 1[pai . T L]Z}
nrrﬂ_ 0 Cv 00 " Cv nr( x’ V)eXp _5 _* _*
s v ~T A ~1 P o4 s P4 [§ '—\2p zﬁ 7 J
x '
o x J £ + = c; cos ( +ry -2n(n-mQ )s/C)
mllp” 28" Yy ° ,
X Y (4.26)
Nr 2Nr
)

+.n
m(Ix, Iy,'r) cos (pwX )

(4.27)

Equation (4.25) has been used, the term with (-p, -r, -m, -n) has been combined with

the term for (p, r, m, n), and the initial phase of the last term has been neglected.
* * X

Usually By >> By ~ 0y, and

CF
0 Cy 00 cy pr

A

(14

IO'L 2 rc;
N Fprm(Ix' Iy, T) Tpr (IX, Iy) exp{—z — } Jm{——;}
R Zﬂy ZBY

(4.28)

A standard, well-known canonical transformation can be vsed to go from the
action-angle coordinates of the unperturbed Hamiltonian to the action-angle
coordinates of a resonance Hamiltonian.1® Two new pairs of action-angle
coordinates result; one pair is Ky and y) = py, + ¥y - 2m(n-mQy)s/C which are the
action-angle coordinates of the resonance. The second action is a constant of the
motion; this leads to a constraint

-pIy— J:Ix = constant . (4.29)

The resonance is illustrated in Figure 7.
There are linear oscillations about the center of the resonance with

dy_ (1) Nr
1 e R n
= J|2Fprm(r)Apr| (4.30)

ds

for small values of K, and the full width of the resonance separatrix is

(4.31)

- The quantity Apr is proportional to the rate of change of tune with action

. .
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dQ, cd¥ N
dK, T 2n dsdK ~ 2ny “pr
2 2 2
Nro 1 22 Too . 22 Too % Too
= Ty o) + r 5 +2pr . (4.32)
oI I I 91
I
xR" yR
and
FR () = F (I _,I 1) (4.33)
prm prm xR’ “yR’ :

4.2.,5 Discussion

The last section contains the results. The factors determining resonance
propertics are:
1.. The strength of the perturbation, Nrg/y. The small amplitude frequency depends

" on it, but the separatrix size is independent of it. Qualitatively, the resonance
potential well stays the same size but gets deeper as the beam-beam strength

increases.
2. The rate of change of the resonance tune, pQy + rQ,, + mQy, along the direction of
oscillation in the {I,, Iy] plane is proportional to the ' (Katunmg ,
3 The remainder of ihe dependence on the resonant actions is gwen by Tpr(IxR’
I r)- It must be calculated numerically; sample calculations are shown in Figure 8.
\%hen porrisodd, Ty = 0. Odd order resonances can be introduced by an offset at
the interaction point. When IL,r/€x and 1 R/ey are small, Ty, is small and the
potential well is small and shallow. Asp and r increase, Tpr decreases, reducing the
importance of high order resonances,
4. The form factor exp(- 1/z(ro'L/2[3 ) ) accounts for the nonlinear force acting over a
range of vertical betatron phase. 'I%e resultant phase averaging increases with r, the
vertical order of the resonance. The horizontal phase does not change over gy , and,
therefore, p and ﬂx do not enter. It is likely that B‘hase averaging is the mechanism
contributing to good CESR performance with o7 /8, ~ 1.1.
5. There are resonances with m = 0 involving betatron motion only and
synchrobetatron resonances with m # 0 ansgkng from the modulation of the collision
point from synchrotron motion. Jm(rcr/2ﬁ ) gives the dependence on synchrotron
amplitude. The Bessel function J,({) has 1,53 f1rst*max1mum at { ~m. The m¢th
synchrobetatron resonance is important for T z 28, m/rc, and particles with large

“synchrotron amplitudes have more synchrobetatron resonances.

"Difference” resonances have sign(p) = -sign(r), and, from eq. (4.29), IplIy +

N Ifl‘ix is a constant. The energy associated with the transverse motion can'be

transferred between horizontal and vertical motions as long as the above sum remains
constant. "Sum" resonances have sign(p) = sign(r) and the constant of motion is
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IplL,, - lrll,. There is no restriction on the energy associated with transverse motion.
Thé horizontal and vertical actions can grow without bound, and reduced lifetimes are
probably associated with sum resonances. Radiation damping is outside the scope of
this Hamiltonian analysis, but the naive expectation is that it limits the actions. In
fact, it may enhance the ability of particles to reach large amplitudes through
resonance streaming.

The discussion so far has concentrated on single, isolated resonances. They
explain the beam-beam performance in hadron colliders23 and much of the beam core
behavior in e*e” simulations,* but the interaction between resonances could be
important, particularly for lifetime effects. Synchrobetatron sidebands are separated
in tune by Qg and in action by

2myQ_

5K1= N—r—lx—l- . (4.34)
e pr

Stochastic motion occurs when resonances overlap.26 The Chirikov criterion is that
there is resonance overlap and resulting chaotic motion when

AK1 5 Nr Q
— > % or AN S ) (4.35)
éKl s Y

2152 (Ha |
prm pr

“The threshold Nr,/y for chaotic motion decreases with Qg until the adiabatic regime

with stable motion is entered. At this point the picture of separated synchrobetatron
sidebands is not agppropriate, and there is a transition from the quasilinear to the
adiabatic re:gime.1

Particles with large synchrotron amplitudes have a number of sidebands, and
the resonance overlap criterion suggests a connection between particles that are
determining the lifetime and particles with large synchrotron amplitudes. Such
connections have been seen in simulations,27 but, as far as I know, there is no
convincing connection between particles with large synchrotron amplitudes and
particle tosses. An alternative mechanism for reaching large amplitudes involves the
interaction between nonlinear resonances and synchrotron radiation. It is the subject
of the next section.

22 20

4.3 Resonance Streaming““ and Phase Convection
Nonlinear resonances can combine with the noise and damping from
synchrotron radiation to produce non-Gaussian tails and, possibility, explain the
reduced lifetime that is the second beam-beam limit. This possibility has motivated
general studies of the interaction of nonlinear resonances, noise, and damping,zo’

“* References 24 and 25 are reviews of beam-beam simulations with complete

references.
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and the results have been applied to collider lifetimes.28 Only betatron motion has
been considered, and this section has that restriction.

A particle subject to noise and deterministic forces from isolated nonlinear
resonances and damping could reach large vertical amplitudes by a variety of routes.
The "most probable” route is the one with the weakest net damping. One could
imagine starting with a number of particles at the same value of I,, and different
values of (I, yy, wy) and tracking them backwards in time in a system without noise.
They all damp to the origin of phase space, but at different rates. The particie to
damda slowest has backtracked along the most probable route to the starting value of
1,2V Resonances, through the mechanism of resonance streaming,22 often determine
LKe most probable route to large vertical amplitudes.

There are two extremes of the relative importance of a resonance versus
synchrotron radiation. In one the time for damping and fluctuations to transport a
particle across the resonance is short compared to the oscillation period. Resonant
build-up cannot occur, and the resonance is not important. The dominant motion in
the other extreme is oscillation about the resonance center {I,p, IyR]- Using eq.
(4.25) the slope of the resonance center is '

aQ aQ

lp ==+ r X

ar o b T _ 3T _
== - 55 = - (4.36)

xR _x +r _y

P37 o1

y y

The derivatives are evaluated at {I;g, I,g}. Tunes decrease with increasing
amplitude, so the partial derivatives are all negative. The slope is negative for sum
resonances and can be positive or negative for difference resonances. The slopes can
be large when the beams are flat and I, >> 0'20.

The different effects of damping from sum and difference resonances can be
understood using Figure 9. Assume for the sake of illustration that the damping is
only in the I, direction. A decrease in I, changes the centers of the resonance
oscillations from A to B. In the case of the sum resonance damping has shifted the
oscillation center to a larger vertical action; the damping process has a component

- along {I,R, IyR] that inicreases the vertical amplitude. This is resonance streaming,

It occurs for sum resonances only, as contrasting the left- and right-hand sides of
Figure 9 shows, and for flat beams, o, /a,, > 15.

The Fokker-Planck Equation describes the evolution of the phase space density
in systems with damping and noise. When the potential is independent of time, there
is a stationary solution similar to the Boltzmann distribution. When the potential is
time (or s) dependent, as it is for the beam-beam interaction, there is no stationary
solution. It is possible to calculate the distribution far from the core and independent
of the initial distribution at large times when damping and noise are weaker than the
resonances, however.29 That density is affected strongly by resonances. Itis
enhanced by resonance streaming with resonances providing the most likely routes to

~large amplitude. Particles that fall into a sum resonance stream to large amplitudes
and then leave the resonance when noise and damping become dominant. Once they
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Figure 9: The intersections of resonance "tubes” such as shown in figure 7 with the
I, Iy plane for sum and difference resonances. The resonance centers, the edges of
the separatrices, and the directions of oscillation are shown.

" leave the resonance they damp back to the origin of phase space. The resultis a
circulation of particles in phase space called "phase convection”.

The beam-beam interaction does not satisfy the approximations needed for
calculating the density distribution far from the core (the beam tails), but a
phenomenological model has been used to make estimates.28 Phase convection and
resonance streaming remain as central features of the results. In addition, these
estimates show that nonlinearities of the magnet lattice are critical in determining the
tails. Parametrizing that nonlinearity as if it were due to single octupole, Gerasimov
and Dikansky find that positive lattice nonlinearity, dQ, o/dl, > 0 enhances the tails
strongly. This agrees with an experiment at VEPP-4,

4.4 Concluding Remarks

This chapter started with a detailed calculation and ended with qualitative
discussions about lifetipe limiting mechanisms. The calculation s/{xowed the
relationship between g, and two longitudinal parameters, o and t. Similar
calculations following the same procedure can be used to show the effects of crossing
angles, unequal beam enérgies, phase advance errors between interaction points, etc.

It is difficult to go from the results of these calculations to quantitative
statements about beam-beam limits. The value of the calculations is that they give
insight into underlying physics, provide a framework for guiding and interpreting

“experiments and simulations, and identify possible methods for improving

performance. Establishing direct, quantitative connections between calculations and
performance is one of the themes of ongoing research into the beam-beam interaction.
The situation is different for the two beam-beam limits. It isn’t clear that the single
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particle physics of the incoherent beam-beam interaction is sufficient to explain the
behavior of the beam core and the associated tune shift limit. In fact, there is some
evidence that it isn’t. The role of coherent beam-beam physics needs to be
understood.

Beam tails and lifetime limits are clearly single particle physics; they are
caused by rare particles far from the core. Three possible mechanisms for particles
reaching large amplitudes have been discussed: i) the absence of a restriction on the
energy associated with transverse motion for sum resonances, ii) stochastic motion
caused by resonance overlap, most likely at large synchrotron amplitudes, and iii)
resonance streaming and phase convection. The lifetime limit is a topic ripe for
experiments and simulations to evaluate these possibilities.

5 Beam-Beam Simulations

Simulations are an important part of beam-beam research. They are used for
making performance estimates of existing or proposed colliders, and they are ideal for
performing "experiments" that can be done with a degree of control and a variety of
diagnostics that are impossible in real colliders.

Test particles representative of those in the beams are followed for a large

" _number of turns with each turn consisting of transport between interaction points and

collisions at the interaction points. Simulation of the arcs almost always includes
betatron and synchrotron oscillations, radiation damping and quantum excitations.
The techniques are standard.3Q Simulations have included chromaticity, lattice
nonlinearities, lattice errors, collective effects, etc depending on the physics under
study. References 24 and 25 review much of this work.

The difference between simulations is the treatment of the collisions. This is
also the area of recent progress. Simulations are weak-strong when test particles from
only one beam, the weak beam, are tracked and the distribution of the opposing strong
beam is unaffected by the test particles. This is single particle, incoherent physics.
The strong beam is usually Gaussian with the beam-beam impulse give*n l?' eq. (3.1).
It is necessary to segment the strong beam longitudinally when oy ~ B 14 This was
discovered in a simulation experiment and later understood with a calculation similar
to that in section 4.2.

Two beams are tracked in strong-strong simulations, and they modify each
other’s distributions. The test particles are representative of the beam, and their
coordinates are used to determine the distribution and, from that, the electromagnetic
fields at the interaction point and the beam-beam impulse. The most common and
most straightforward procedure is to calculate the means and rms widths from test
particle coordinates, zy (k = 1,..., K for each beam),

K

- 1 E
z =z z, v (5.1a)

k=1
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UZ =% (zk- z) v (5.1b)

k=1

and use these in eq. (3.1) which gives the beam-beam impulse for a Gaussian
distribution. This was considered a reasonable approximation because beam
distributions remained roughly Gaussian in strong-strong simulations.

- A number of effects that are important in operating colliders are seen in strong-
strong simulations and are outside the scope of weak-strong simulations. First and
foremost is blow-up of the vertical beam size leading to a tune shift limit and
luminosity proportional to the total beam current. Actual colliders have been modeled
and the tune shift limits from operation and simulation compared. The results are
mixed. In general, agreement is found for well-established operating points, but the
prediction of new, better operating points is poor. The well-established points have
many hours of operator tuning invested in them. This tuning has gradually improved
luminosity, presumably through the elimination.of small errors that combine with the
beam-beam interaction to determine performance. On the other hand, there is rarely
enough accelerator studies time to tune extensively at exploratory operating points. It
is impossible to know in any detail what errors are removed with tuning and include

. ‘them in a model. At best one could select errors randomly and simulate an ensemble
-of colliders to determine the range of possible performance. My conclusion is that i)

errors have been tuned out at well-established operating points, the tune shift limit
there is due to the beam-beam interaction alone, and, therefore, it can be explained by
simulations; and ii) either there has been insufficient tuning at exploratory points or
additional physics must be included in simulations. The assumption of the fields from
a Gaussian distribution is one possibility that has been investigated recently.

A second effect seen in operation and in strong-strong simulations is the "flip-
flop" effect where the two beams have substantially different vertical sizes. Thisis a
hysteretic effect with small differences determining which beam is larger. It is
difficult to reproduce actual performance in simulations because of the importance of
small differences.

The third common effect is coherent centroid motion which is routinely
observed in operations. “There are two modes: the "0-mode” where the beam centroids
are in phase at the collision point and the "n-mode" where they are 180° out of phase.
These oscillations have limited amplitudes and are helpful as diagnostics for
measuring ¢, and Cy since the differences between the n- and 0-mode tunes are

AQx 2

—ﬁ_- = A(r) = 1.330 - 0.370r + 0.279%«r

* (5.2)
AQ

f_l = (1 - r)A(r)

y
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where r =g, /(0,+0. ) The coefficients result from coherent oscillations modifying
the charge glsmbulmn and they cannot be reproduced exactly in simulations that
restrict the fields to be those of a Gaussian beam.

The increase in vertical beam size and the flip-flop are strong-strong, multiple
particle effects, but nonlinear motion of individual particles could account for changes
in distributions without adding additional physics. However, coherent centroid
oscillations cannot be explained within the framework of the incoherent beam-beam
interaction.

The space charge compensation experiments at DCI %rowde a second, strong
piece of evidence that coherent beam-beam effects exist.”< Those experiments
indicate that coherent shape oscillations lead to a tune shift limit. This is in sharp
contrast to the harmless nature of coherent centroid oscillations. These experiments
had four beams, an electron beam and a positron beam going in one direction
colliding with an electron and a positron beam going in the opposite direction. The
estimate was that the beam-beam potential was reduced by a factor of ten, and yet
there was no striking improvement in performance. The tune shift limit was set by §
rather than its residual compensated value. '

_ Is there any evidence of coherent shape oscillations in the more normal
situation of two beams colliding? There is no experimental evidence. Seeing such
oscillations requires imaging a beam on a single turn. Appropriate instruments have

“ bécome available only recen[ly,33 and they have not been used in storage ring
‘colliders. There is evidence for coherent oscillations in strong-strong simulations

where the beam-beam impulse is calculated for a general distribution rather than using
the expression for a Gaussian beam.

Using the means and rms widths, eq. (5.1), together with eq. (3.1) for the
impulse may not be a reasonable approximation. Strong-strong simulations are a
relaxation calculation; the beam distributions and fields must be consistent with each
other. Restricting the fields to those of a Gaussian beam indirectly restricts the beams
to remain Gaussian. Relaxing that restriction has a good and a bad effect: it
introduces new physics, but it makes the simulation sensitive to noise. Combining
egs. (5.1) and (3.1) is relatively noise free because only a few properties of the beam
are extracted from the test particle coordinates. Statistical techniques are needed to
distinguish noise from real effects when a general expression for the beam-beam
impulse is wanted. An adaptive, least-squares fitting procedure has been developed
for nearly round beams, o, = g,.°° Coherent shape oscillations are found using this
procedure. Figure 10 is an example showing a coherent beam-beam resonance at Qy(
= QyO 5/6. The beam shapes vary turn-by-turn with the extreme being one beam
with a dense core and the other with a hollow core (Flgure 11). Itis impossible to
represent such beam shapes with a Gaussian, and it isn’t surprising that such turn-by-
turn variations in sizes and shapes are not seen when fields from a Gaussian beam are
used.

Whether coherent effects are important for flat beams awaits experiments and

‘development of a beam-beam algorithm for flat beams.
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Figure 10: The rms beam sizes from a strong-strong simulation using a general
_expression for the beam-beam impulse. The parameters of the simulation are : Q=
<= Qup=0.79,0,0=0,9=55pm, ¢ =0.10, and fractional energy loss per turn =
e _ 11073, a) shows the onset of the instability for one of the beams, and b) shows that
the size variations of the two beams. They are anticorrelated and repeat every three
turns. (From ref. 34)
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Figure 11: Scatter plots showing the beams on three successive turns for Qy = QyO =

- 0.80.
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Figure 12: Schematic of an iterated map calculation of coherent beam-beam
interactions.

6 The Coherent Beam-Beam Interaction

6.1 Iterated Maps of Moments

There are two different classes of coherent beam-beam interaction theories.
One is based on iteration of a one-turn map for the beam moments and the other on
solutions of the Vlasov equation.

The iterated map is shown schematically in Figure 12. The rms widths and
angular spreads of the beams, the second moments of the distributions, are mapped
for a single turn. The first elements of the map are the arcs transporting the beams
between collision points. Tune dependent linear combinations of the moments at the
beginning of the arc give values at the end. The second step accounts for radiation.

_The moments are reduced by a fractional amount for damping, and random terms are
added to model quantum excitations.
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The beams collide in the third step. Two different procedures have been used.
One of them is to calculate the increase in the ang3ular spread of each beam due to 2
Gaussian beam with the width of the other beam. 6 The angular distributions after
the collision of two Gaussian beams are not Gaussian because of the nonlinearities of
the beam-beam impulse, and this procedure does not account for that. This is similar
to the approximation made in strong-strong simulations that use the fields of a
Gaussian beam. Consideration has been given to including higher moments in the
map.:"‘7 The second procedure is to use a linear beam-beam interaction, essentially
eq. (3.3).38 The beams remain Gaussian because the interaction is linear, but the
beam-beam impulse is an approximation.

The one-turn map is iterated by taking the moments after the beam-beam
interaction as the inputs for the next turn, Stable solutions are found after many
iterations. They include: i) equal beam sizes at low beam-beam strengths, ii) flip-flop
solutions with one beam larger than the other, and iii) period-n solutions where the
beam sizes follow a pattern that repeats every n turns. These results are qualitatively
similar to effects seen in operations and simulations, but details such as tune shift
limits, phase space distributions, and tune dependence do not agree. Whether this can
be resolved with further developments remains to be determined.

* 6.2 Solutions of the Vlasov Equation

The Vlasov equation is usually used in accelerator physics to analyze single
beam stability. It gives the evolution of phase space density, ®®, B, s),
- -
d‘”—a°+i§-9§+-"§-d—p=o . (6.1)
ds as Ix ds dp ds

The products are vector dot products. The forces acting on a particlec come from
external sources and from other particles. As a consequence the derivatives dX/ds and
dp/ds can depend on ® and the Vlasov equation is quadratic in ®. It can be linearized
by adding a small perturbation ¢ to the equilibrium distribution, ®,

O(%,B,s) = @, (%,B,5) + $(X,B,s) (6.2)

When ¢ << @), terms of order ¢2 can be ignored leaving an equation linear in ¢.
Instabilities are unstable perturbations that are sought by analyzing the resultant
equation for growing solutions. The characteristics of unstable perturbations are
determined, but it isn’t possible to tell whether these instabilities grow forever or are
limited by some nonlinearity. That is outside the approximation used to linearize the
Vlasov equation.
The Vlasov equation has been linearized and solved by two pairs of authors,
Dikansky and Pestrikov3? and Chao and Ruth,40 for the one dimensional beam-beam
“interaction. There are two examples of the one dimensional beam-beam interaction: i)
very flat beams, g, >> g, where the vertical beam-beam force depends on y only,
"and ii) round beams, 0, =@, where only the radial coordinate matters. Dikansky
and Pestrikov have analyzed both cases and found similar results. Chao and Ruth did
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their calculation for flat beams. 1 am more familiar with their work, and, for that
reason only, the next section follows it.

6.3 Coherent Instabilities in the One-Dimensional Beam-Beam Interaction40

The Vlasov equation when only the vertical coordinate is considered is

o 0 a0 30
—_— = — [ re__~ —
P 33 +y 3y + vy 3y’ 0o . (6.3)

The index k = 1,2 indicates that there is an equation for each beam. The distributions
@y, are normalized to unity

I l ¢k(y,y’)dy dy’ =1, (6.4)

and their projections onto the y-axis are

L4

Pk<y) = Jw¢k(y,y’)dy’ . (6.5)

The second derivative, y*’, depends on the storage ring lattice and the beam-
‘beam interaction which, in turn, depends on the distribution of the other beam. The
beam-beam impulse for a particle in beam 1 comes from Gauss’ Law. Itis

—471'N]’.‘e Y a0
Ay’ = T l PZ(C)dC - I PZ(C)dC
X =00 v
—47rNre o (6.6)
= L J PZ(C)@(Y"C)dC
hd ~oo
where
~ 1¢>0
e = { <o | (6.7)

and L, is the horizontal width of the beam. A Gaussian beam has L, = (87r)1/ 0y
near x = 0.

The equilibrium distribution is the same for the two beams, 9 = 0y =, and
it satisfies _ .

a0, D a0

Fs—-+y’W-_ F(s,y)—a;7= 0 . (6.8)

with
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F(s,y) = K(s)y

- (6.9)
47tNre ® o
+ —-}q— E 6(S—HC)1°° J-m‘DO(C,y’)G(y-C)dy'dC

n=-cw

The first term in F gives the focusing of the magnet lattice, and the second term

v comes from the beam-beam interaction. This equation is quadratic in @), and solving

it is difficult. However, a solution is not required, and that simplifies the situation.
There is more on this below.

Following eq. (6.2), eq. (6.3) is linearized by substituting ®; = ®; + ¢y. The
approximate equation for ¢ is

a¢ o9 a9
_].; + o — F(s )___1;
3s Y 3y Y5y
(6.10)
B‘DO 47rNre i © o 5
_ B Fr ‘—YI_TX— Za(s nC)Lo Lod’z(Cry )@ (y-¢)dy’'d{ = 0.
=

= .. Terms involving only the equilibrium distribution make no contribution because of
£q..(6.8), and one term proportional to
d ¢ 1 oo
3y Jm Im¢2(cly )@ (y-{)dy’d{ (6.11)
has been neglected. There is a similar equation for ¢, that is coupled to eq. (6.10).
They can be uncoupled by introducing

¢i =9, +9, (6.12)
which satisfy two independent equations
Wy
ds Y dy SiYIy
’ - : (6.13)
_ 6<D0 47TNre © .
t VL E 5(S-DC)L L¢i(4,y )8 (y-f)dy’df = 0.
n=-c

The equilibrium distribution enters in three ways. An approximation is used to
simplify the calculation making it possible to characterize instabilities but making it
inconsistent and of limited quantitative value - three different ®’s are used, one for
each way it enters. First, &y must satisfy eq. (6.8) to eliminate the terms involving

~only &, from the linearized Vlasov equation. Finding that @ is analogous to
.~ determining the longitudinal distribution of a single beam taking account of potential
_well distortion. Itisn’t necessary to know this d>0 for characterizing instabilities, but

it does affect thresholds.*1
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Second, @, gives the contribution of the beam-beam interaction to the focusing
through F(s,y), q. (6.9). Assuming a stable equilibrium distribution exists and is
such that it produces a linear focusing force, F(s,y) becomes

F(s,y) = F(s)y . (6.14)

Since F is linear in the displacement just like a quadrupole lattice, a B-function can be
found and action-angle coordinates, I and y, exist. The B-function accounts for the
focusing of @ as well as the magnet lattice. The action is a constant of the motion,
dl/ds = 0, and @ is a function of I only, Oo(Ly) = ©p(I). Equation (6.13) can be
rewritten in terms of the action-angle coordinates using these facts plus i) g is a
minimum at the interaction point so that 8’ = dB/ds = 0 there, ii) dy/ds = 1/8, iii) y”’
= - F(s)y, and iv) the chain rule. It becomes
3 db+ 0 do

1 %%+ P e
3s +EW aI—-ZIﬂSanX

(6.15)

47rNre = © o
Ty E 6(s—nC)L° Ld’i(c,y’)@(y—C)dy'dC = 0.

n=-oo

There is a rough analogy in transverse single beam stability calculations to the

- simplification of eq. (6.14); it is the assumption that the deflecting fields leading to

‘the transverse impedance are linear in displacement.

The third appearance of @y is as a weighting factor d®/dI for the beam-beam
contributions of ¢_,. The "water-bag" model with constant phase space density out to
a boundary is used

1
<I>O(I) = 7 H(e/2 - I) (6.16)

where ¢ is the vertical emittance,

' 1 ¢<1
H({) = { 0 £>1 " / (6.17)
and the normalization is
271'[ ¢ (I)ydr =1 . (6.18)
0 0

With this distribution the last term in eq. (6.15) is a delta-function, and the
perturbation is localized to I = £/2. ’
Fourier analyzing ¢

¢+= §(1-€/2) E gﬁ(s)elmw . (6.19)

m=-co

_Substituting into eq. (6.15)
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dg— 2Nr = = (6.20)
im + + e |B +
as ] m myL_ J—; z é (s-nC) ; Mk%x T o -

n=-oo k=-

The matrix element Mk of matrix M is

zn —-im n iky’
Mmk= dy sinye v I dy‘e v B (cosy-cosy')
‘ 0 0 (6.21)
-32im
nmt+k even
= [(m+k)2—1}T?m~k)2—lI
0 mt+k odd

Equation (6.20) gives the evolution of the perturbation. Follow it for one turn
assuming only one interaction point. The Fourier components are independent
between collisions, and g, the perturbation with phase space periodicity m, advances
at -m times the betatron phase advance;

in| S
o P

The totél betatron phase advance for a complete turn is 2nQ. The betatron tune, Q,
includes the focusing from @. Let g, (0) denote the value just after the interaction
point and g.,(C) the value one tum later taking into account all but the last term in eq.
(6.20)

(6.22)

gm(S) = gm(O)exp

gm(C) = gm(O)exp(—12an) = Rmmgm(O) . (6.23)

This defines the elements of a diagonal matrix R. The perturbations are coupled to
each other at the interaction point. The change during a collision is

+ 2Nre B = +

A

51+

T ke |
The one-turn transformation of the vectorg = (... g9, 81, &0» &-1- £-2» ...)T is
-+ + 2Nre B <>+ >+
= [T - ”ny : M|Rg— = Tg— . (6.25)

There is a coherent beam-beam instability when one of the eigenvalues of T has an
absolute value greater than unity; this occurs when ITr(T)! > 2. Different Fourier
components are unstable at different tunes. Consider only g, and g_p, to learn the

instability condition. For these two components

=32~



o

11ia  ia exp (-im27Q) 0
T = m m
-ia_ 1 + ia 0 exp (im2mQ)
m m
p + (6.26)
(1 - iam)exp(-im2nQ) iamgxp(im2nQ)
-i@ exp(~im2mQ) (1 ¥ ia )exp (im2mQ)
where
32m 2NJ:e B
m 2 _|mpL_ V€ . (6.27)
4dm -1 Y X
The motion is stable if
I%Tr(T) = {cos (2nQm) t amsin(Zan) < 1. (6.28)

Instabilities occur near Q = n/2m. In terms of 8Q = Q - n/2m eq. (6.28) is

cos (2mméQ) ' amsin(ZﬂméQ)‘ < 1. (6.29)

. Chao and Ruth perform more detailed calculations including several values of
Iml, multiple interaction regions, and multiple bunches, but the important results have
been obtained above. These are:

1. There are coherent beam-beam resonances for Q = n/2m corresponding to
perturbations with phase space periodicity m. The resonances are even order only.

2. At resonance the betatron tune of the lattice is less than n/2m because of the
focusing from the equilibrium distribution, ®j. Treating the beam-beam interaction
as a thin quadrupole producing a tune shift £, the lattice and betatron tunes are related
by

)cos(2nQ) = cos(2nQ0) - 2n§sin(2nQ0) (6.30)
which for the water-bag model implies
4Nr
= ——°= ' (6.31)
nLXyJe/p

3. From eq. (6.29) ¢ _ is unstable for 6Q < 0. Since ¢_= ¢ - ¢, the beams are

anticorrelated when ¢_ is unstable. The beams are correlated when ¢, is unstable

which occurs when 6Q >0.

4. The full width of the resonance is
32¢

T (4m -1)

AQ = (6.32)

The resonances become narrower as m increases.
A number of approximations have been made, and Landau and radiation
damping have not been included. They should determine the important resonances.
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Simulations are the appropriate way (o judge the validity of this calculation and to
make quantitative predictions.

A

L
-

303 Q. Lattice Tune 35184

"Figure 13: The results of the coherent beam-beam calculation of Chao and Ruth (ref.
40).

6.4 Coherent Beam-Beam Simulations, Revisited

The coherent resonance shown in Figures 10 and 11 agrees with all but one of
the results of the Vlasov equation solution. This particular resonance is Q = 5/6, and
the beams are anticorrelated as expected if ¢_ was unstable. The resonance has a
stopband with a width about a factor of two smaller than eq. (6.32) (see Figure 14).
The only substantive disagreement is that an instability with the beams correlated has

_ never been seen. It could be that ¢ is unstable initially, but the limiting behavior has

different characteristics.

Other resonances have been searched for. Resonances withQ =n/2and Q =
n/4 are seen even when the fields of a Gaussian beam are used, and there is a coherent
resonance at Q = 7/8. There are no odd order resonances. The behavior at Q =4/6 is
close to that at Q = 5/6 suggesting that both are sixth order resonances. "

The simulation shows several features that are outside the Vlasov equation
calculation. Nonlinearities limit the instability, and there are damping effects. The
stopband does not extend to £ = 0, but the width shrinks to zero at ¢ ~ 0.06,
presumably as a result of Landau damping. The instabilities are sensitive to radiation
damping. The sixth order resonance is present when the fractional energy loss per
turn is as large as 10'3, but it must be reduced to 107 to see the eighth order

" resonance. The former is large compared to the energy loss in heavy quark factories
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while the latter is comparable to the energy loss in DCI where coherent phenomena
are thought to have limited the improvement from space charge compensation.
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Figure 14: Onset and offset values of ¢ as a function of Q) for sixth-order (squares)
and eight-order (asterisks) coherent resonances. In each case the region of coherent
motion is between the lines. 6 is the fractional energy loss per turn. (From ref. 34).

6.5 Concluding Remarks

The coherent beam-beam interaction has many of the qualitative features of the
tune shift limit. Although the simulation suggests that the tune shift limit associated
with it is higher than that achieved in operating colliders, the simulation was done for
the special case of a nearly round beam with essentially a one-dimensional beam-
beam interaction. A field calculating algorithm for flat beams has proven more
difficult to develop, but work is continuing there. Perhaps the tune shift limit will be
lower for flat beams and a two dimensional beam-beam interaction. "

The most direct evidence about the role of the coherent beam-beam interaction
should come from colliders operating at the beam-beam limit, however. The
signature is clear: beam distributions changing turn-by-turn with the changes of the
two beams correlated. Such measurements are possible and should be performed.
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