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1  In t roduc t i on  

Co l l i de rs  a r e  d e s i g n e d  fo r  stu dy i n g  re lat ive ly r a r e , sma l l  impac t p a r a m e te r  
-  co l l is ions th a t p r o d u c e  e l e m e n ta ry  p a r ticles. Th is  is n o t th e  d o m i n a n t in te rac t ion  
-  b e tween  th e  b e a m s , h o w e v e r . T h a t d o m i n a n t in teract ion,  th e  b e a m - b e a m  interact ion,  -  

.- _  is d u e  to  th e  e l e c t r omagne tic fie l ds  o f th e  b e a m s . 
-  T h e  sim p lest a n d  m o s t p r a g m a tic t rea tment  o f th e  b e a m - b e a m  in te rac t ion  is to  

-  p a r a m e tr ize th e  luminos i ty,  L , i n  te rms  o f th e  b e a m - b e a m  tu n e  shift, {. T h e  tu n e  
shift is th e  shift i n  th e  vert ica l  b e ta t ron  tu n e  o f a  sma l l  a m p litu d e  p a r t icle d u e  to  th e  
e l e c t r omagne tic fie l ds  o f th e  o th e r  b e a m . Exp r e ssed  i n  te rms  o f b e a m  p a r a m e te rs  

* 

( 1 .1 )  

w h e r e  r e  =  2 .8 2 x  l o - l 5  m  is th e  c lassica l  e l ec t ron  rad ius ,  N  is th e  n u m b e r  o f p a r t icles 
i n  a  b e a m  b u n c h , /J; is th e  vert ica l  p - fu n c tio n  a t th e  in te rac t ion  p o i n t, y is th e  b e a m  
e n e r g y  i n  un i ts  o f rest e n e r g y , a n d  cry a n d  cx a r e  th e  rms  vert ica l  a n d  ho r i zon ta l  b e a m  
sizes a t th e  co l l is ion p o i n t. T h e  l u m m o s tty 

1  NLf  
C  L= - - -  

4 lT  u  u  
Y X  

(1 .2 )  

(f, is th e  co l l is ion f r equency )  c a n  b e  rewr i t ten  i n  a  f r e q uen tly u s e d  p a r a m e tr izat ion 

L =  
N f$  (  l+ q ybx )  

2 r  /3* 
(1 .3 )  
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It is known from experience that there is a soft limit on {, 6 5 0.05. The 
pragmatist chooses a value of { and then uses eq. ($3) to trade-off luminosity, beam 
current (the total current is IT = eNf,), uylux, and By. A “conservative” design might 
be based on I$ = 0.03 while more aggressive ones might use t = 0.05. This approach 
has shortcomings primarily because it isn’t based on an understanding of the 
underlying physics of the beam-beam interaction. Other beam parameters are 
assumed independent of and unaffected by {, and 4 is assumed independent of and 

-* .+- unaffected by them. In fact, beam-beam performance depends on many other 
parameters including some of those in eq. (1.3). betatron and synchrotron tunes, : 

. . 
bunch length, lattice errors, and radiation damping. Therefore, eq. (1.3) has limited 
applicability, and extrapolations*into new regimes such as those being considered for 
heavy quark factories - small /3,. crossing angles, closely spaced bunches, unequal 
beam energies, etc - have uncertainties associated with them. Furthermore, a 
“conservative” choice of g may not lead to a conservative overall design. Other beam 
parameters or accelerator systems such as the RF and vacuum systems may be pushed 
unnecessarily. 

-- This article is a personal perspective about the physics of the beam-beam 
interaction. This’is an active area of research combining operational experience, . _.~ - experiments, computer models, and theory with the goal being to overcome the - 

.i - shortcomings above. This research hasn’t progressed sufficiently to quantitatively 
explain beam-beam limits, but there are qualitative explanations of many of the 
‘features of the beam-beam interaction and clear directions for future developments. 

2 Observations 

Experimental aspects of the beam-beam interaction are the subject of several 
articles that give detailed observations. l-6 Some of these papers synthesize data from 
several. storage rings. This is a difficult task because there are numerous important 
parameters, and when colliders are compared many of these parameters are different. 
It is hard to know which of these differences are essential, which are secondary, and 
even if all the differences have been identified. Rather than repeating this type of 
quantitative analysis, this section stresses a common feature of the observations - 
there are two beam-beam limits. 

Normally beams are injected into a collider with electrostatic separation at the 
interaction point. While the beams are still separated they are Gaussian with rms 
beam sizes at the interaction point of 

tY = 
J- &x 

; 
x0 

u 
yo= 1 I$, . 

(2.1) 

_ ..- 
The emittances, .sX and & , are determined by the magnet lattice and the properties of 
synchrotron radiation. 7 kost electron storage rings have had uxO >> uyO. That is 

.-- 
-i; the natural relation between the sizes because: i) the main dipoles bend in the 

_ horizontal plane leading to cX >> & , and ii) a quadrupole doublet is the simplest 
interaction region configuration. Ilythe quadrupole polarities are chosen to give 
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st ” $3 the tune shifts in the two planes, 5, (given by eq. (1.1) with x and y 
interchanged) and 5, (I{), can be made roughly equal -3 -= 

4, /3*/u (2.2) 

Y Y 
-” -- Synchrotron light measurements show that the horizontal size doesn’t change 

significantly when the beams are brought into collision, ux = ux~ However, above : 
some current the vertical beam size becomes dependent on N rather than being 
determined by synchrotron radiation. uy # Us. Fi g ures 1 and 2 are a compilation of 
luminosity and tune shift data for colliders when performance has been optimized. 
There are two distinct regimes. At low currents L 0~ N2 (IT2) indicating UxUy is 
constant. The data do not show this regime for all colliders because for them it 
doesn’t exist or is below the current range presented. At high currents L = N, and, 
since the horizontal size is unchanged, by OE N. TRISTAN has a single beam current 
limit and is the only collider not to reach this regime. The tune shift is derived from 
the. luminosity measurements using eq. (1.3), so the tune shift plots are another way of . ..~ - presenting the same data. They show the tune shift reaching a limit. This is one of 

.i _ the beam-beam limits. It is associated with the beam core, and, as the figures show, - the tune shift limit varies from collider to collider. - _ 
The second beam-beam limit comes from changes of the beam distribution. 

The dominant effect is the appearance of “non-Gaussian” tails in the vertical - the 
number of particles with large vertical betatron amplitude is greater than that of a 
Gaussian distribution with the measured rms width of the core. The beam-beam 
interaction increases the population of the tail of the distribution even more than it 
increases the core size. 

Figure 3 shows a beam distribution measurement. The non-Gaussian tails are 
clear. Systematic studies of the tails have never been made because of the difficulty 
of the measurements. The luminosity is insensitive to the tails, and synchrotron 
radiation monitors are plagued by unwanted reflections from the vacuum chamber 
that dominate the image beyond 2 - 3 u . 

Y. 
The best measurement technique is 

destructive - measuringthe lifetime as a co hmator is moved toward the center of the 
beam. Systematic studies are tedious because new beams must be injected after each 
measurement. 

Particles with sufficiently large amplitudes hit the vacuum pipe causing 
experimental backgrounds and reducing the beam lifetime. The dynamic aperture due 
to magnet nonlinearities may play a role in that particles may fall outside the dynamic 
aperture before hitting the physical aperture. The second beam-beam limit has been 
reached when the lifetime or backgrounds become unacceptable. This beam-beam 
limit is associated with the beam tails. It isn’t parametrized by a value of C& { is 
determined by the size of the core and has reached its limiting value below the second 
beam-beam limit. 

-c- ; 
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‘Figure 3: Rate of bremsstrahlung photons produced by a thin Be wire in the vertical 
tail of the CESR beam. Rg is the rate at the center of the beam, and the solid lines are 
extrapolations of the Gaussian core (ref. 8). 

.- ._ 

3 Underlying Physics 

The angles of a relativistic particle passing through an oncoming beam (Figure 
4) change by9 

Ax’ 
AY' 

(3.1) 
f BB = W(u+iRv)-exp(-(1-R') (u2+v2))W(Ru+iv) . 

In this equation crx > by is assumed, W is the complex error function,1° R = ay/ux, 
and 

u= ; v= (3.2) 

. .,- 
.-- 

-i; _ k example of Ay’ is plotted in Figure 5. At small y/ay, Ay’ 0~ y while at large values 
it falls like l/y. 

-6- 
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Figure 4: A relativistic particle of energy y passing through an oncoming thin 
pancake of N oppositely charged particles. The transverse distributions of the 
pancake are Gaussian with rms widths bx and by. The particle is displaced from the 
center of the oncoming beam by (x,y). 
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Figure 5: The vertical kick experienced by a typical electron in CESR (ref. 11). 

The complex error function can be approximated for small arguments as W(C) 
= 1 +2i[/n112 giving 

-2Nre 
Y cq+a,, 

(3.3) 

_ 1,~ This is a focusing quadrupole in both dimensions. Displacement, betatron amplitude 
__- ~.A 
y. 

and betatron phase are related by z = A,cos(yl,) where z = x or y. Small amplitude 
-pai-ticles experience this linear focusing for all values of phase, and it changes their 

tunes by 
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L  

1 7  
A Q y=  2  

W * Y  
2 a  ycy(Q y+ux )  =  6  y =  t I 

a n d  

r 

A Q x=  2  
w* X  

; - -  2 n  yQ x (by+ux )  =  tx -  

( 3 .4 )  

( 3 .5 )  

_. P a r t icles wi th l a r ge r  b e ta t ron  a m p litu d e s  a r e  o u tsid e  th e  l i nea r  r e g i o n  o f e q . ( 3 .1 )  fo r  a  
r a n g e  o f p h a ses , a n d  th e  focus i ng  a v e r a g e d  ove r  p h a s e  is weake r  th a n  fo r  a  sma l l  
a m p litu d e  p a r ticle. Ve r y  l a r g e  a m p litu d e  p a r t icles h a v e  a lmos t n o  c h a n g e  i n  tu n e  d u e  
to  th e  b e a m - b e a m  interact ion.  T h e  b e a m  h as  a  r a n g e  o f tu n e s  f r om (  A Q x, A Q ,) =  
(  Cx, t,] a t sma l l  a m p litu d e s  to  ( 0 ,O )  a t ve ry  l a r g e  a m p litu d e s . Fo r  th is  r e a s o n  tx 
a n d  ty a r e  o fte n , a p p r o p r i a tely, ca l l ed  th e  b e a m - b e a m  tu n e  s p r e ads . T h e  tu n e  s p r e ads  
a r e  o n e  c o n s e q u e n c e  o f th e  non l i nea r i t y  o f th e  b e a m - b e a m  interact ion.  

S u fficie n tly s t r ong  r e s onances  wi th in  th e  tu n e  s p r e ads  c a n  l e a d  to  b e a m - b e a m  
p h e n o m e n a  l ike th a t d i scussed  a b o v e . T h o s e  r e s onances  c a n  b e  assoc ia ted  wi th th e  

-  m a g n e t latt ice, o r  th e y  c a n  c o m e  f r om th e  b e a m - b e a m  in te rac t ion  itself wh i ch  
-  p r o d u ces  n on l i n e a r  r e s onances  b e c a u s e  Ax’ a n d  Ay’ a r e  n o n l i n e a r  fu n c tio n s  o f x a n d  .c -  -. y. T h e s e  n on l i n e a r  r e s onances  a r e  th e  s e c ond  c o n s e q u e n c e  o f th e  non l i nea r i t y  o f th e  
. b e a m - b e a m  interact ion.  

S o  fa r  s i ng l e  p a r t icle phys ics h a s  b e e n  d iscussed,  th e  e ffects o f th e  fie l ds  o f 
o n e  b e a m  o n  a  p a r t icle i n  th e  s e c ond  b e a m . Th is  is i n c ohe r e n r , weak -s t r ong  physics. 
T h e  p a r t icles i n  th e  s e c ond  b e a m  a r e  i n d e p e n d e n t o f e a c h  o th e r , a n d  th e  fie l ds  a n d  
d is t r ibu t ion o f th e  first b e a m  a r e  u n a ffec ted  by  th e  s e c ond  b e a m . In  fact, th e  fie l ds  a t 
th e  co l l is ion p o i n t a r e  s t rong,  a n d  th e  b e a m s  m o d ify e a c h  o th e r ’s d is t r ibut ions a n d  
fie lds.  Th is  l e ads  to  m u ltip l e  p a r ticle, coheren t ,  s t rong -s t rong  physics. 

T h e  c o n nec tio n  b e tween  th e  phys ics r e g i m e  a n d  co r e  b l o w u p  a n d  th e  tu n e  shift 
lim it i s -an  o p e n  issue. It c ou l d  b e  i n c o h e r e n t o r  c o h e r e n t physics, a n d  it c ou l d  b e  th a t 
o n e  o r  th e  o th e r  is m o r e  impo r ta n t i n  a  p a r ticu l a r  co l l ider .  M o s t th e o r e tica l  ana l yses  
o f th e  tu n e  shift lim it c o n c en trate o n  i n c o h e r e n t physics, a n d  m o s t c o m p u te r  
sim u la t ions m a k e  a p p r o x i m a tio n s  th a t inh ib i t  c o h e r e n t physics. E x p e r i m e n ts th a t 
w o u l d  d is t i ngu ish  b e tween  th e m  h a v e  n o t b e e n  p e r fo r m e d , b u t th e r e  a r e  s o m e  
obse r v a tio n s  th a t c a n  b e  e xp l a i n e d  on l y  by  c o h e r e n t physics. 

T h e  l a r g e  a m p litu d e  p a r t icles l e a d i n g  to  life tim e  a n d  b a c k g r o u n d  lim ita tio n s  
a r e  r a r e . T h e s e  r a r e  p a r t icles a r e  i n d e p e n d e n t o f e a c h  o th e r  a n d  c a n n o t a ffect th e  
d is t r ibu t ion o f th e  o th e r  b e a m . C lea r l y  th e s e  p a r t icles a r e  desc r i b ed  by  s i ng l e  p a r ticle, 
i n c o h e r e n t physics. 

- 8 -  



-- 

4 The Incoherent Beam-Beam Interaction 

4.1 Hamiltonian Formalism 

I -- 
Hamiltonian methods are extremely powerful. They can be used to calculate 

many aspects of the incoherent beam-beam interaction, and they provide a framework 
for addressing such topical questions as the effects of synchrotron motion, finite 

_. bunch length, unequal beam energies, optical errors, crossing angles, etc. 
In the absence of the beam-beam interaction the Hamiltonian for the transverse 

motion of a single particle is12 

HO(~,pxr~,p 
Y 

,s)= -eAs(s) -[li-&][p'-P:-p;]l'" (4.1) 

In this equation: s is the usual coordinate along the reference orbit, p is the bending 
radius, A, is the s-component of the vector potential describing the magnet lattice, p = 
[E2/c2 _ m2c2]1/2 . is the total momentum, and px and py are the momenta conjugate to 
x and y. The ideal solution is to find constants of the motion. This is possible when 

- the lattice is made up of dipoles and quadrupoles. In that case canonical 
.c _ - transformations can be used to simplify HO to12 

. _ 2=Qx0 2XQ 

HO= - 
y" I 

C 
Ix+ - 

c Y 
(4.2) 

where C is the accelerator circumference, QxO and Q 0 are the betatron tunes and it 
has been assumed for simplicity of illustration that t h ere are no skew quadrupoles. 
The canonical transformation has been used to transform to “action-angle 
coordinates”; the actions, I, and Iy. are constants of the motion because their 
conjugate coordinates, the angles vx and yly, do not appear in the Hamiltonian and 
dI,/ds G -aHday, = 0 (z = x or y). 

The “smooth approximation” is a convenient description of transverse motion 
where the betatron phases advance at constant rates, dvl,/ds = 2nQ,dC, rather than at 
the actual instantaneous rates dvz/ds = l/&(s). The transverse coordinates in terms 
of the action-angle coordinates of the Hamiltonian in eq. (4.2) are 

z = pqq-cOs(I,+xz(s)~ (4.3) 

where 

Xz(S) = 
I 

’ dC -- 
,/?,(~) Qzo? - (4.4) 

The angle qz is the betatron phase in the smooth approximation, dyl,/ds = aHO/aIz = 
2rrQz& and x,(s) accounts for the difference between the approximate and actual 

Y.-L 
Nit. 

phases. (There are alternate action-angle coordinates where the angle is the betatron 
-phase rather than the phase in the smooth approximation, but using the choice in eqs. 

(4.2) - (4.4) allows one to account easily for the rapid phase advance near the 
interaction point where p is small.) Note that x, is periodic with period C 

-9- 
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X,(s+nC) = xz(s) . (4.5) 

The Hamiltonian including the beam-beam interaction is 
H(~,P~,Y,P ,s) 

Y 
= Ho+VBB (x, yr s) (4.6) 

where VBB is the beam-beam potential. This potential is nonlinear, and it isn’t 
possible to find constants of the motion. A perturbation method must be used. The 
steps in this me&d are: 
1. Write the Hamiltonian, H, in terms of the action-angle coordinates of the 

unperturbed Hamiltonian, Ho. 
2. 
3. 

Fourier analyze H with respect to s, qx, and yy 
Calculate the dependences of tunes on actlon from the average value of the 
perturbation. 

4. Determine resonance conditions and resonance properties from the slowly 
varying terms of H. 

A sample calculation is performed in the next section to illustrate the techniques and 
arrive at conclusions relevant Lo heavy quark factories. It is a generalization of 
pre.viously publishkd work13*14 to finite length, flat beams. 

.c 
- -. 

4.2 Bunch Length Effects . _ 

4.2.1 Write the Hamiltonian, H, in Terms of the Action-Angle Coordinates of 
the Unperturbed Hamiltonian, Ho 

The picture is that given by Figure 4 with the thin pancake replaced by an 
oncoming bunch with rms length aL. The beam-beam potential, assuming only one 
interaction point, is 

v = -- . ._~ BB VF(x,y,s) -2(s-(nC+cT))'/Uz 1 
(4.7) 

The potential VF comes from a solution of Poisson’s equation15 

vF= (4.8) 

r 

VF has explicit s dependence because 4 = u&, + r,s2/$ near the collision I3;oint. 
This is important in the vertical dimension, and the calculation is valid for UL/@, c 1. 
The modulation of the collision point due to synchrotron motion of tune Q, and 

_ .,~ amplitude f is 
__- -.A &: -; ; 

T=2 cos(21mQs) (4.9) 

-lO- 
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. . 

where eqs. (4.7) and (4.9) have a factor of one-half associated with them that arises 
from the relative motion of the particle and the opposing beam. 

The transverse coordinates can be rewritten using eq. (4.3) to give 

I, 
ds * (I 

2~xIxcos2(Yx+xx) 
exp - 

0 (2ai+q) (22+q) 
2u-;+q 

2j?yIycos2(~y+xy) 
(4.10) 

+ 
2fY;+q 

- I, 
dq = 

0 (2a;0+q) (2rr2 +q) 
YO 

2p~Ixcos2(Yx+xx) 

20;o+q 
(4.11) 

.- 

. c  _ 
a 

.  _ 

+ 
2~;Iycos2(yry+xy) 

2a2 +q II - 
YO 

The approximation CL//I; < 1 was used in going from eq. (4.10) to (4.1 l), and the 
only remaining s-dependence in eq. (4.11) is in xx and xy. 

4.2.2 Fourier Analyze H with Respect to s, Al,, and Yy 

This Fourier analysis will show the resonant structure of the beam-beam 
interaction. The Hamiltonian is periodic in vx and vy with period 2rt, so 

H = H 0 x' Iyf (I 
._~ 

p, r=--0D 

(4.12) 

I 
dk A 

pr 
(Ix,1 I 

Y 
k) exp(i(pWx+rWy-ks)). 

-0 

As discussed below coefficient Apr corresponds to resonances with horizontal order 
Ipl and vertical order Irl. It is 

1 
2n 2n Q3 

A =- 
pr (2x1 

3 
I I I 

dy/ dry ds exp(-i(pYx+rVfy-ks)) 

0 x 0 --a0 
(4.13) 

00 
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A first result of making the approximation going from eq. (4.10) to eq. (4.11) is that 
the yr integrals and the s integral can be factored by making a change of variables 8, = 
~z++z 

r- 
Apr(Ix,Iy,k) = Tpr(Ix,Iy) & ds exp(i(pXx+rXy+ks)) 

-” -- OD 
x- F- z [ exp -2(s- (nC+cT))2/tYi ; 1 (4.14) 

. . 2lW2 n=-0 

1 
T =- 

pr (2X) 
2 ,l~~xe-ipexl~:ye-ireyl, (2a2 +z (2u2 

x0 YO 

+q) . 

2~~Ixcos2ex 
x exp - 

t 1 
+ 

2p)ycos2e 
Y II - (4.15) 

2a;0+q 2a2 +q 
YO 

. . I 

.- _ - 
. _ 

The integral Tpr is zero when either p or r is odd. 
The s integral can be performed by i) using the perio-dicity of xz (9. (4.5)) ii) 

making a second use of the approximation b~//3~ c 1 to write X,(S) = s//3,-2rrQ,slC, 
and iii) using an integral from Gradshteyn and Ryzhik16 

-k2 a2 
A = LT pr L pr 27~ pr('x"y) exp 8 I 1 OD 

ik ;c 
pr 

X z 1 exp - 2 
cos(2?rnQs) + iknC 1 . (4.16) 

n=--aD 

The wavenumber kpr is 

k pr= k + p(l/jz-2nQxo/C) + r( l/BG-2nQ 
YO 

/C) . (4.17) 

Finally, using a Bessel function sum17 and the Poisson sum rule 18 

-k2 a2 
1 C-T pr L A pr C pr (Ix, Iy) exp 8 I 1 

. .,- 
.-- 

-it;; 
X  imJ (k 

m pr 
;c/2)6(kC-2rr(n-mQs)) 

- 
m,n=-* 

-12- 
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-  . -  I - . -  

- -  

I - -  

-  

w h e r e  Jm  is a  Besse l  fu n c tio n  o f o r d e r  m . S i d e b a n d s  s p a ced  by  Q , h a v e  d e v e l o p e d  
a r o u n d  th e  b e ta t ron  r e s onances . T h e  d e c ompos i tio n  i n  e q . ( 4 .1 8 )  makes  sense  on l y  
w h e n  a  fe w  o f th e  s i d e bands  a r e  impo r ta n t. 

S u b s titu tin g  back  in to  e q . ( 4 .1 2 )  

-k2  (T2  
H=H( I  

0  x'Iy) 
T  p r  L  - -  pr(IxrIy) e xp  8  

I I 
m ,n,p, 
r = - co  

(4 .19 )  

x imJ (k 
m  p r  

;c/2 )  exp ( i ( pqx+ rV  
Y  

-2n (n -mQs)s /C) )  . 

T h e  fo u r - fo l d  s u m  is th e  b e a m - b e a m  p e r tu r b a tio n . Th is  a l l  s e ems  te r r ib ly  messy,  b u t 
th e  n e x t ste p s  s h ow  h o w  th is  fo rma l i ty  pays  o ff. 

4.2.3 Ca lcu la te  the  D e p e n d e n c e s  of the  Tunes  o n  Act ion  f rom the  Ave r a g e  
V a l u e  of the  Pe r tu rba t i on  

T h e  a v e r a g e  va l u e  o f th e  p e r tu r b a tio n  is g i v en  by  th e  te r m  wi th p  =  r  =  m  =  n  =  
0 . A ll th e  o th e r  te rms  a r e  osci l latory. W h e n  its p h a s e  va r ies  rap id ly ,  th e  e ffect o f a  

.c -  -  te r m  o n  th e  m o tio n  a v e r a g es  to  ze r o  quickly. A  p h a s e  va r ies  s lowly if th e  tu n e s  h a v e  
. spec ia l .va lues  l e a d i n g  to  r e s onances , o r  if o n e  o r  m o r e  o f th e  tu n e s  is low. Usua l l y  

th e  f ract iona l  p a r ts o f th e  b e ta t ron  tu n e s  a r e  n o t c lose  to  ze ro ,  b u t th e  synch ro t r on  tu n e  
c a n  b e  low. It is i n  h a d r o n  co l l i de rs  w h e r e  th e  e ffects o f synch ro t r on  m o tio n  a r e  
a v e r a g e d  ove r  h u n d r e d s  o r  th o u s a n d s  o f tu rns .  Th is  l e ads  to  th e  possib i l i ty o f 
a d i a b a tic b e hav i o r  w h e r e : i )  r e s o n a n c e  cond i t i ons  c h a n g e  s lowly e n o u g h  $ h a t p a r t icles 
t r a p ped  i n  a  r e s o n a n c e  stay  t r a p ped  as  r e s o n a n c e  cond i t i ons  c h a n g e , a n d  i i) th e  
d e c ompos i tio n  i n  e q . ( 4 .1 8 )  isn’t th e  m o s t i l l um ina t i ng  a p p r o a c h . 

T h e  synch ro t r on  tu n e  i n  e l ec t ron  co l l i de rs  is l a r g e  e n o u g h  th a t th e  synch ro t r on  
m o tio n .is a v e r a g e d  i n  te n s  o f tu rns .  T h e  impo r ta n t te rms  i n  th e  p e r tu r b a tio n  a r e  its 
a v e r a g e  va l u e  a n d  a  fe w  r e sonances . T h e  p h a s e  a d v a n c e  is dyz/ds =  a H /a I,. T h e  
der iva t ive  o f H O  g ives  2 n /C tim e s  th e  n o m ina l  tu n e , a n d  th e  de r iva t ive  o f th e  a v e r a g e  
va l u e  o f th e  p e r tu r b a tio n  g ives  th e  a v e r a g e  p h a s e  a d v a n c e  f r om th e  p e r tu r b a tio n . It is 

. . 

Fo r  e x a m p l e , i n  th e  vert ica l  

. .,~  

* T h e  synch ro t r on  a m p l i yde *and  tu n e  e n te r  th e  cr i ter ia fo r  a d i a b a tic m o tio n , b u t th e  
focus  is o n  Q , b e c a u s e  TIP -  1  i n  m o d e r n  e l ec t ron  a n d  h a d r o n  co l l iders.  T h e  
d i f fe rences b e tween  th e  “quas i l i n ea r ” a n d  “a d i a b a tic” r e g imes  a r e  d i scussed  i n  r e f. 1 9 . 

--.- .A  _  
t: ; 

-  
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- -  

x +  Y  II -  (4 .21 )  

_. In  th e  lim it Ix, Iy +  0, 

N r  /3 *  O J 
Q y=  Q yO +  ey  2JTY  I, 

ds  

0  ( 2u ; o+q )  w 2  + q )  
3  

Y O  

(4 .22 )  

Eva l u a tin g  th e  i n teg ra l  
Q y ? =  Q  +  t (4 .23 )  

. Y Q -  Y ’ 

-  E q u a tio n  ( 4 .2 1 )  a n d  th e  a n a l o g o u s  o n e  fo r  Q , ( e q . ( 4 .2 1 )  wi th x a n d  y i n t e r c hanged )  
.c -  -  g i ve  th e  d e p e n d e n c e s  o f tu n e s  o n  act ions.  Usua l l y  th e  i n teg ra ls  h a v e  to  b e  d o n e  

. numer ica l l y .  F i g u r e  6  shows  th e  resu l ts o f such  a  ca lcu la t ion.  

Q  v- i  

ii 
d  

0 .0 0 0  6 . 000  

- F i g u r e  6 : T h e  vert ica l  tune,  Q  =  Q ,o +  A Q  , fo r  d i f fe rent  va l ues  o f th e  ho r i zon ta l  
a n d  vert ica l  ac t ions ca lcu la ted  8 - o m  cq. ( 4 .2 1 ) y  
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4.2.4 Determine Resonance Conditions and Resonance Properties from the 
r 

Slowly Varying Terms of H .  .  .  

A term in the Hamiltonian has a cumulative effect, resonant build-up, when its 
phase varies slowly. The resonance condition is 

pv, + ryl, - 2n (n-rnas): (4 -24) 

; -- 
or 

_. pQx+ rQy+ mQs= n . (4.25) 

The tunes are the actual tunes, not the nominal tunes, and eqs. (4.21), the analogous 
one for Qx, and (4.25) can be solved for the locus of resonant actions, ( I,R, Iy~). 
This is illustrated in Figure 7. The resonance order equals Ipl+ Irl + Iml. 

XC Slope = 
tan-l r/p 

Figure 7: A nonlinear resonance illustrated in a three-dimensional phase space. The 
axes are the unperturbed actions I, and Iy and the resonant angle vl = pyx + rv - 
2n(n-mQs)s/C. The resonance condition, eq. (4.24), is satisfied for [fxK, ,,R . I ) The 

;.- -.A 
t: 

resonance action is Kl, and, from eq. (4.29), the resonance oscillatton dtrection is 
_ tait-‘(r/p). This figure is adapted from ref. 20. 
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The Hamiltonian of a single resonance, assuming it is isolated from all the 
others, is 

I --- 

Nr 
LT 

2Nre 
H = Ho- cy prm 00 

- - Tpr(Ix,Iy)eXP 
cy 

1 I c; cos (pvx+rvy-2n (n-mQs) s/C) , 

(4.26) 
. . Nr 

-2T 
2Nre 

= HO cy 00 
--F 

cy wm (Ix,1 , 
Y 

;, cos (pVx+.“. .) - 

(4.27) 
Equation (4.25) has been used, the term with (-p, -r, -m, -n) has been combined with 
the term f*or (p, :, m, n), and the initial phase of the last term has been neglected. 
Usually /3X Z-B /I, .- a~, and 

. 
F .- prm 

(Ix' 1 ,;) ZT 
Y 

pr (Ix, Iy) exp 
.< _ 

[-;[$]‘, Jm$} - 
a Y Y . _ (4.28) 

A standard, well-known canonical transformation can be used to go from the 
action-angle coordinates of the unperturbed Hamiltonian to the action-angle 
coordinates of a resonance Hamiltonian. l9 Two new pairs of action-angle 
coordinates result; one pair is K1 and vl = pvx + rvy - 2x(n-mQs)s/C which are the 
action-angle coordinates of the resonance. The second action is a constant of the 
motion; this leads to a constraint 

-prY- rr 
= constant . (4 -29) 

X 

The resonance is illustrated in Figure 7. 
There are linear oscillations about the center of the resonance with 

dVl(;) Nr 

ds =$]W (4.30) 

for small values of K1, and the full width of the resonance separatrix is 

AK~ = 4 . (4.31) 

. . . 

_ ..~ 
__- ._- 

The quantity Apr is proportional to the rate of change of tune with action 
‘f: -; 

- 
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-  

-  . -  s e -  

- -  

d Q 1  
c  d2V l  N r e  

- =  
d K ,=T i i dsdK l  2 ny  'pr  

I 

I - -  
N r  

e  = -  
2 = Y  

I 

2 a 2 T o o  2 a 2 T 0 0  
2  

P -  
a I 

+  r -  + 2 p r  a  T O O  

a I X  Y  
a IxaI 

Y  

a n d  

F R  (i, =  F  
P m  P r m  (IxRJ Y R  

,i, . 

\ 

I ( 4 .3 2 )  

* I xR "yR 

( 4 .3 3 )  

4.2.5 D iscuss ion  

T h e  last sect ion  c o n ta i ns  th e  results. 
p r o p e r tie s  a r e : 

T h e  facto rs  d e te rm i n i n g  r e s o n a n c e  

.c -  -. 1 .. T h e  s t reng th  o f th e  p e r tu r b a tio n , Nr$y.  T h e  sma l l  a m p litu d e  f r equency  d e p e n d s  
o n  it, b u t th e  s e p a r a trix s ize is i n d e p e n d e n t o f it. Q u a lita tively, th e  r e s o n a n c e  
‘p o te n tia l  we l l  stays  th e  s a m e  s ize b u t g e ts d e e p e r  as  th e  b e a m - b e a m  s t reng th  
i nc reases.  
2 . T h e  r a te  o f c h a n g e  o f th e  r e s o n a n c e  tu n e , p Q x +  r Q  +  m Q s, a l o n g  th e  d i rec t i on  o f 
osc i l la t ion i n  th e  (I,, Iy )  p l a n e  is p r o p o r tio n a l  to  th e  
3 . 

? & tu n i n g ”, A p r . 

I 
T h e  r e m a i n d e r  o f th e  d e p e n d e n c e  o n  th e  r e s o n a n t ac t ions is g i v en  by  Tpr( IxR, 

R). 
x 

It m u s t b e  ca lcu la ted  numer ica l l y ;  s amp l e  ca lcu la t ions a r e  s h o w n  i n  F i g u r e  8 . 
h e n  p  o r  r  is o d d , Tp r  =  0 . O d d  o r d e r  r e s onances  c a n  b e  i n t r oduced  by  a n  o ffse t a t 

th e  in te rac t ion  p o i n t. W h e n  I,R /E ~  a n d  I 
p o te n tia l  we l l  is sma l l  a n d  sha l l ow.  As  p  a n  J . 

R /sy a r e  smal l ,  Tp r  is sma l l  a n d  th e  
r  i nc rease ,  Tp r  dec reases ,  r e d uc i n g  th e  

._ ~  impo r ta n c e  o f h i g h  o r d e r  r e s onances . 
4 . T h e  fo r m  fac to r  exp ( -1 /z ( raL /2 /3* )2 )  a c c o un ts fo r  th e  n o n l i n e a r  fo r c e  ac t ing  ove r  a  
r a n g e  o f vert ica l  b e ta t ron  p h a s e . T X  e  resu l tan t  p h a s e  a v e r a g i n g  i nc reases  wi th r, th e  
vert ica l  o r d e r  o f thz  r e s o n a n c e . T h e  ho r i zon ta l  p h a s e  d o e s  n o t c h a n g e  ove r  a ~ , a n d , 
th e r e fo r e , p  a n d  /Ix d o  n o t e n te r . It is l ikely th a t c hase  a T ? g i n g  is th e  m e c h a n i s m  
c o n t r ibut ing to  g o o d  C E S R  p e r fo r m a n c e  wi th rrI/py -  1 .1 . 
5 . T h e r e  a r e  r e s onances  wi th m  =  0  invo lv tng  b e ta t ron  m o tio n on l y  a n d  
s ynch r o be t a uon  r e s onances  wi th m  #  0  a r i s i ng  f r om th e  m o d u la t ion  o f th e  co l l is ion 
p o i n t f r om synch ro t r on  m o tio n . J , ( rc?/2$)  g ives  th e  d e p e n d e n c e  o n  synch ro t r on  
a m p litu d e . T h e  Besse l  fu n c tio n  J,(c) h a s  F  firsim a x i m u m  a t 5  -  m . T h e  m l/r 
synch robe ta t r on  r e s o n a n c e  is impo r ta n t fo r  T z 2 p y m /rc, a n d  p a r t icles wi th l a r g e  
synch ro t r on  a m p litu d e s  h a v e  m o r e  synch robe ta t r on  r e s onances . _  .,- 

-c-  lk, 
“D i f fe rence” r e s onances  h a v e  s i gn (p )  =  -s ign( r ) ,  a n d , f r om e q . ( 4 .2 9 ) , lplIy +  

is a  constant .  T h e  e n e r g y  assoc ia ted  wi th th e  t ransve rse  m o tio n  c a n  b e  
-  t r ans fe r red  b e tween  ho r i zon ta l  a n d  vert ica l  m o tio n s  as  l o n g  as  th e  a b o v e  s u m  r ema i n s  

constant .  “S u m ” r e sonances  h a v e  s i gn (p )  =  s ign ( r )  a n d  th e  constan t  o f m o tio n  is 
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_ Figure 8: Plots of Tpr (eq. (4.15)) for different resonances and different values of the 
actions. 
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IplIy - MI,. There is no restriction on the energy associated with transverse motion. 
The horizontal and vertical actions can grow without bound, and reduced lifetimes arc 
probably associated with sum resonances. Radiation damping is outside the scope of 
this Hamiltonian analysis, but the naive expectation is that it limits the actions. In 
fact, it may enhanc;2the ability of particles to reach large amplitudes through 
resonance streaming. 

The discussion so far has concentrated on single isolated resonances. They 
explain the beam-beam performance in hadron colliders 21 and much of the beam core 
behavior in e+e- simulations,* but the interaction between resonances could be 
important, particularly for lifetime effects. Synchrobetatron sidebands are separated 
in tune by Q, and in action by 

(4.34) 

Stochastic motion occurs when resonances overlap.26 The Chirikov criterion is that 
there is resonance overlap and resulting chaotic motion when 

AK1 2. 
Nr 
A> Qs . 

zq’ii Or Y 
.- - 21FR 

- prm(')Apr' 

(4.35) 

‘The threshold Nre/y for chaotic motion decreases with Qs until the adiabatic regime 
with stable motion is entered. At this point the picture of separated synchrobetatron 
sidebands is not a propriate, and there is a transition from the quasilinear to the 
adiabatic regime. 18 

Particles with large synchrotron amplitudes have a number of sidebands, and 
the resonance overlap criterion suggests a connection between particles that are 
determining the lifetime and particles with large synchrotron amplitudes. Such 
connections have been seen in simulations, 27 but, as far as I know, there is no 
convincing connection between particles with large synchrotron amplitudes and 
particle Iosses. An alternative mechanism for reaching large amplitudes involves the 
interaction between nonlinear resonances and synchrotron radiation. It is the subject 
of the next section. 

4.3 Resonance Streaming22 and Phase Convection2’ 

Nonlinear resonances can combine with the noise and damping from 
synchrotron radiation to produce non-Gaussian tails and, possibility, explain the 
reduced lifetime that is the second beam-beam limit. This possibility has motivated 
general studies of the interaction of nonlinear resonances, noise, and damping,20,22 

_ ..- 

G- 
* References 24 and 25 are reviews of beam-beam simulations with complete 
references. 
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and the results have been applied to collider lifetimes. 28 Only betatron motion has 
been considered, and this section has that restriction. 

A particle subject to noise and deterministic forces from isolated nonlinear 
resonances and damping could reach large vertical amplitudes by a variety of routes. 
The “most probable” route is the one with the weakest net damping. One could 
imagine starting with a number of particles at the same value of Iy and different 
values of (I,, vx, yl ) 
They all damp to K 

and tracking them backwards in time in a system without noise. 
t e origin of phase space, but at different rates. The particle to 

dam 
2B 

slowest has backtracked along the most probable route to the starting value of 

2 
Resonances, through the mechanism of resonance streaming.22 often determine 

e most probable route to large vertical amplitudes. 
There are two extremes of the relative importance of a resonance versus 

synchrotron radiation. In one the time for damping and fluctuations to transport a 
particle across the resonance is short compared to the oscillation period. Resonant 
build-up cannot occur, and the resonance is not important. The dominant motion in 
the other extreme iS oscillation about the resonance Center (IxR. IyR) . using eq. 
(4.25) the slope of the resonance center is 

(4.36) 

The derivatives are evaluated at {I xR, IyR). Tunes decrease with increasing 
amplitude, so the partial derivatives are all negative. The slope is negative for sum 
resonances and can be positive or negative for difference resonances. The slopes can 
be large when the beams are flat and Iy >> $0. 

The different effects of damping from sum and difference resonances can be 
understood using Figure 9. Assume for the sake of illustration that the damping is 
only in the I, direction. A decrease in I, changes the centers of the resonance 
oscillations from A to B. In the case of the sum resonance damping has shifted the 
oscillation center to a larger vertical action; the damping process has a component 
along ( IxR, IyR) that itiCreaSeS the Vertical amplitude. This iS resonance Streaming. 

It occurs for sum resonances only, as contrasting the left- and right-hand sides of 
Figure 9 shows, and for flat beams, ax/uy > 15.29 

The Fokker-Planck Equation describes the evolution of the phase space density 
in systems with damping and noise. When the potential is independent of time, there 
is a stationary solution similar to the Boltzmann distribution. When the potential is 
time (or s) dependent, as it is for the beam-beam interaction, there is no stationary 
solution. It is possible to calculate the distribution far from the core and independent 
of the initial distribution at large times when damping and noise are weaker than the 
resonances, however.20 That density is affected strongly by resonances. It is 

-c- enhanced by resonance streaming with resonances providing the most Iikely routes to 
-large amplitude. Particles that fall into a sum resonance stream to large amplitudes 

and then leave the resonance when noise and damping become dominant. Once they 
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2-93 

7351A3 Sum 

IY 

Difference Ix 

Figure 9: The intersections of resonance “tubes” such as shown in figure 7 with the 
I,, Iy plane for sum and difference resonances. The resonance centers, the edges of 
the separatrices, and the directions of oscillation are shown. 

. - - -. leave the resonance they damp back to the origin of phase zy;e. The result is a 
‘circulation of particles in phase space called “phase convection . 

The beam-beam interaction does not satisfy the approximations needed for 
calculating the density distribution far from the core the beam tails), but a 

i3 phenomenological model has been used to make estimates.2 Phase convection and 
resonance streaming remain as central features of the results. In addition, these 
estimates show that nonlinearities of the magnet lattice are critical in determining the 
tails. Parametrizing that nonlinearity as if it were due to single octupole, Gerasimov 
and Dikansky find that positive lattice nonlinearity, dQ,ddI, > 0 enhances the tails 
strong&. This agrees with an experiment at VEPP-4.3 

4.4 Concluding Remarks 

. .,- 

This chapter started with a detailed calculation and ended with qualitative 
discussions about lifetipe limiting mechanisms. The calculation sjowed the 
relationship between By and two longitudinal parameters, CL and T. Similar 
calculations following the same procedure can be used to show the effects of crossing 
angles, unequal beam energies, phase advance errors between interaction points, etc. 

It is difficult to go from the results of these calculations to quantitative 
statements about beam-beam limits. The value of the calculations is that they give 
insight into underlying physics, provide a framework for guiding and interpreting 

__- .:- experiments and simulations, and identify possible methods for improving 
‘f: performance. Establishing direct, quantitative connections between calculations and 

- performance is one of the themes of ongoing research into the beam-beam interaction. 
The situation is different for the two beam-beam limits. It isn’t clear that the single 

-21- 
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particle physics of the incoherent beam-beam interaction is sufficient to explain the 
behavior of the beam core and the associated tune shift limit. In fact, there is some 
evidence that it isn’t. The role of coherent beam-beam physics needs to be 
understood. 

Beam tails and lifetime limits are clearly single particle physics; they are 
caused by rare particles far from the core. Three possible mechanisms for particles 
reaching large amplitudes have been discussed: i) the absence of a restriction on the 
energy associated with transverse motion for sum resonances, ii) stochastic motion 
caused by resonance overlap, most likely at large synchrotron amplitudes, and iii) 
resonance streaming and phase convection. The lifetime limit is a topic ripe for 
experiments and simulations to evaluate these possibilities. 

5 Beam-Beam Simulations 

Simulations are an important part of beam-beam research. They are used for 
making performance estimates of existing or proposed colliders, and they are ideal for 
performing “experiments” that can be done with a degree of control and a variety of 
diagnostics that are impossible in real colliders. 

.c _ - Test particles representative of those in the beams are followed for a large 
_ -number of turns with each turn consisting of transport between interaction points and 

collisions at the interaction points. Simulation of the arcs almost always includes 
betatron and synchrotron oscillations, radiation damping and quantum excitations. 
The techniques are standard.30 Simulations have included chromaticity, lattice 
nonlinearities, lattice errors, collective effects, etc depending on the physics under 
study. References 24 and 25 review much of this work. 

The difference between simulations is the treatment of the collisions. This is 
also the area of recent progress. Simulations are weak-strong when test particles from 
only one beam, the weak beam, are tracked and the distribution of the opposing strong 
beam is unaffected by the test particles. This is single particle, incoherent physics. 
The strong beam is usually Gaussian with the beam-beam impulse given b eq. (3.1). 

* ” This was It is necessary to segment the strong beam longitudinally when CL - j3,. 
discovered in a simulation experiment and later understood with a calculation similar 
to that in section 4.2. 

Two beams are tracked in strong-strong simulations, and they modify each 
other’s distributions. The test particles are representative of the beam, and their 
coordinates are used to determine the distribution and, from that, the electromagnetic 
fields at the interaction point and the beam-beam impulse. The most common and 
most straightforward procedure is to calculate the means and rms widths from test 
particle coordinates, zk (k = l,..., K for each beam), 

K 

(5.la) 
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a2 l -2 =- 
Z K ix 

(z k -z) , 

k=l 

(5.lb) 

I *- 

and use these in eq. (3.1) which gives the beam-beam impulse for a Gaussian 
distribution. This was considered a reasonable approximation because beam 
distributions remained roughly Gaussian in strong-strong simulations. 

A number of effects that are important in operating colliders are seen in strong- 
strong simulations and are outside the scope of weak-strong simulations. First and 
foremost is blow-up of the vertical beam size leading to a tune shift limit and 
luminosity proportional to the total beam current Actual colliders have been modeled 
and the tune shift limits from operation and simulation compared. The results are 
mixed. In general, agreement is found for well-established operating points, but the 
prediction of new, better operating points is poor. The well-established points have 
many hours of operator tuning invested in them. This tuning has gradually improved 
luminosity, presumably through the elimination of small errors that combine with the 
beam-beam interaction to determine performance. On the other hand, there is rarely 

_ enough accelerator studies time to tune extensively at exploratory operating points. It 
-. is impossible to know in any detail what errors are removed with tuning and include 

.c - - them in a model. At best one could select errors randomly and simulate an ensemble 
- .of colliders to determine the range of possible performance. My conclusion is that i) 

errors have been tuned out at well-established operating points, the tune shift limit 
there is due to the beam-beam interaction alone, and, therefore, it can be explained by 
simulations; and ii) either there has been insufficient tuning at exploratory points or 
additional physics must be included in simulations, The assumption of the fields from 
a Gaussian distribution is one possibility that has been investigated recently. 

A second effect seen in operation and in strong-strong simulations is the “flip- 
flop” effect where the two beams have substantially different vertical sizes. This is a 
hysteretic effect with small differences determining which beam is larger. It is 
difficult to reproduce actual performance in simulations because of the importance of 
small differences. 

The third common effect is coherent centroid motion which is routinely 
observed in operations. -There are two modes: the “O-mode” where the beam centroids 
are in phase at the collision point and the “n-mode” where they are 180° out of phase. 
These oscillations have limited amplitudes and are helpful as diagnostk; for 
measuring tx and ty since the differences between the K- and O-mode tunes are 

L?LQ 

zf 
= A(r) = 1.330 - 0.370r + 0.279r2 

(5.2) 
AQ 
A!= (1 
l 

- r)A(r) 
;.- .A Y 
*: -; 
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where r = Q /(a,+a,). The coefficients result from coherent oscillations modifying 
the charge i istributton, and they cannot be reproduced exactly in simulations that 
restrict the fields to be those of a Gaussian beam. 

. . 

The increase in vertical beam size and the flip-flop are strong-strong, multiple 
particle effects, but nonlinear motion of individual particles could account for changes 
in distributions without adding additional physics. However, coherent centroid 
oscillations cannot be explained within the framework of the incoherent beam-beam 

I -- interaction. 
The space charge compensation experiments at DC1 

32 
rovide a second, strong : piece of evidence that coherent beam-beam effects exist. Those experiments 

indicate that coherent shape oscillations lead to a tune shift limit. This is in sharp 
contrast to the harmless nature of coherent cenuoid oscillations. These experiments 
had four beams, an electron beam and a positron beam going in one direction 
colliding with an electron and a positron beam going in the opposite direction. The 
estimate was that the beam-beam potential was reduced by a factor of ten, and yet 
there was no striking improvement in performance. The tune shift limit was set by 6 
rather than its residual compensated value. 

‘: 

Is there any evidence of coherent shape oscillations in the more normal 
situation of two beams colliding ? There is no experimental evidence. Seeing such .- 

.c _ oscillations requires imaging a beam on a single turn. Appropriate instruments have - become available only recently,33 and they have not been used in storage ring 
‘colliders. There is evidence for coherent oscillations in strong-strong simulations 
where the beam-beam impulse is cal$ilated for a general distribution rather than using 
the expression for a Gaussian beam. 

Using the means and rms widths, eq. (5.1), together with eq. (3.1) for the 
impulse may not be a reasonable approximation. Strong-strong simulations are a 
relaxation calculation; the beam distributions and fields must be consistent with each 
other. Restricting the fields to those of a Gaussian beam indirectly restricts the beams 
to remain Gaussian. Relaxing that restriction has a good and a bad effect: it 
introduces new physics, but it makes the simulation sensitive to noise. Combining 
eqs. (5.1) and (3.1) is relatively noise free because only a few properties of the beam 
are extracted from the test particle coordinates. Statistical techniques are needed to 
distinguish noise from real effects when a general expression for the beam-beam 
impulse is wanted. An adaptive, least-squares fitting procedure has been developed 
for nearly round beams, ox = cry.35 Coherent shape oscillations are found using this 
procedure. Figure 10 is an example showing a coherent beam-beam resonance at Q,O 
= Q,O = 5/6. The beam shapes vary turn-by-turn with the extreme being one beam 
with a dense core and the other with a hollow core (Figure 11). It is impossible to 
represent such beam shapes with a Gaussian, and it isn’t surprising that such tum-by- 
turn variations in sizes and shapes are not seen when fields from a Gaussian beam are 
used. 

. .,- 
Whether coherent effects are important for flat beams awaits experiments and 

L..-e-1 development of a beam-beam algorithm for flat beams. 
‘f: ‘; 
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Figure 10: The rms beam sizes from a strong-strong simulation using a general 
expression for the beam-beam impulse. The parameters of the simulation are : QxO = 
Qyo= 0.79,ax0 = ayO = 55 pm, { = 0.10, and fractional energy loss per turn = 

_ 1~10~~. a) shows the onset of the instability for one of the beams, and b) shows that 
the size variations of the two beams. They are anticorrelated and repeat every three 
turns. (From ref. 34) 
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L---.-L NE-- Figure 11: Scatter plots showing the beams on three successive turns for QxO = Q,O = 
- 0.80. 
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BEAM-BEAM INTERACTION 

I I 
Figure 12: Schematic of an iterated map calculation of coherent beam-beam 
interactions. 

6 The Coherent Beam-Beam Interaction 

6.1 Iterated Maps of Moments 

There are two different classes of coherent beam-beam interaction theories. 
One is based on iteration of a one-turn map for the beam moments and the other on 
solutions of the Vlasov equation. 

. .,- 

The iterated map is shown schematically in Figure 12. The rms widths and 
angular spreads of the beams, the second moments of the distributions, are mapped 
for a single turn. The first elements of the map are the arcs transporting the beams 
between collision points. Tune dependent linear combinations of the moments at the 

__- ._- 
‘f: 

beginning of the arc give values at the end. The second step accounts for radiation. 
-The moments are reduced by a fractional amount for damping, and random terms are 
added to model quantum excitations. 
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The beams collide in the third step. Two different procedures have been used. 
One of them is to calculate the increase in the an 

56 
ular spread of each beam due to a 

Gaussian beam with the width of the other beam. The angular distributions after 
the collision of two Gaussian beams are not Gaussian because of the nonlinearities of 
the beam-beam impulse, and this procedure does not account for that. This is sim ilar 
to the approximation made in strong-strong simulations that use the fields of a 
Gaussian beam. Consideration has been given to including higher moments in the 
map.37 The second procedure is to use a linear beam-beam interaction, essentially 
eq. (3.3).38 The beams remain Gaussian because the interaction is linear, but the 
beam-beam impulse is an approximation. 

The one-turn map is iterated by taking the moments after the beam-beam 
interaction as the inputs for the next turn. Stable solutions are found after many 
iterations. They include: i) equal beam sizes at low beam-beam strengths, ii) flip-flop 
solutions with one beam larger than the other, and iii) period-n solutions where the 
beam sizes follow a pattern that repeats every n turns. These results are qualitatively 
sim ilar to effects seen in operations and simulations, but details such as tune shift 
lim its, phase space distributions, and tune dependence do not agree. Whether this can 
be resolved with further developments remains to be determ ined. . 

. - f -. 6.i Solutions of the Vlasov Equation - _ 

The Vlasov equation is usually used in accelerator physics to analyze single 
beam stability. It gives the evolution of phase space density, U@,ft, s), 

dcp a@ a0 &  + a0 dz -=-+-. -.-co - (6.1) 
ds as a”x ds a;3 ds 

The products are vector dot products. The forces acting on a particle come from  
external sources and from  other particles. As a consequence the derivatives dF!/ds and 

._ d$/ds can depend on 0 and the Vlasov equation is quadratic in @ . It can be linearized 
by adding a small perturbation 4 to the equilibrium  distribution, @o, 

u4&) = O,(“,;,s, + Q,G,&s) (6.2) 

When I#I << U$, terms of order $* can be ignored leaving an equation linear in 4. 
Instabilities are unstable perturbations that are sought by analyzing the resultant 
equation for growing solutions. The characteristics of unstable perturbations are 
determ ined, but it isn’t possible to tell whether these instabilities grow forever or are 
lim ited by some nonlinearity. That is outside the approximation used to linearize the 
Vlasov equation. 

The Vlasov equation has been linearized and solved by two pairs of authors, 
Dikansky and Pestrikov39 and Chao and Ruth:O for the one dimensional beam-beam 

__- ..-- interaction. There are two examples of the one dimensional beam-beam interaction: i) 
‘f: vutiy flat beams, ox >> cry, where the vertical beam-beam force depends on y only, 

-and ii) round beams, ox = Q , where only the radial coordinate matters. Dikansky 
and Pestrikov have analyzed 41 0th cases and found sim ilar results. Chao and Ruth did 
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their calculation for flat beams. I am more familiar with their work, and, for that 
reason only, the next section follows it. 

6.3 Coherent Instabilities in the One-Dimensional Beam-Beam Interaction4’ 

-- .e- 

: 

The Vlasov equation when only the vertical coordinate is considered is 
d‘$ aok a% aQlc 
-=-iyrBy+y 

II-= 0. (6.3) 
ds a.3 w 

. . The index k = 1.2 indicates that there is an equation for each beam. The distributions 
Qk are normalized to unity 

aD OD 

I I U’kW,y’)dy dy’ = 1 , 
--aD --a0 

(6.4) 

and their projections onto the y-axis are 
OJ 

-- P,(Y) = 
I 

~Y,Y')~Y - 
-0D 

(6.5) 

.- - - The second derivative, y”, depends on the storage ring lattice and the beam- 
beam interaction which, in turn, depends on the distribution of the other beam. The 
beam-beam impulse for a particle in beam 1 comes from Gauss’ Law. It is 

Ay’ = (S)dS - Ip,(z)dl 
Y I 

-4nNr 03 
e zz I p, (C)Q(y-C)dC 

YLx --oD 

(6.6) 

where 

Q(5) = 
l(>O 

-1.5 < 0 ’ (6.7) 

and Lx is the horizontal width of the beam. A Gaussian beam has Lx = (8n)‘/2ax 
near x = 0. 

The equilibrium distribution is the same for the two beams, @I = 92 = QO, and 
it satisfies 

a@O aoO aoO 
as + y '- - F(s,y)- = ay w 

0 . (6.8) 

I  

.  

with 
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. -  -  

F(s,y) =  K(s )y  
(6 .9 )  

T h e  first te r m  in  F  g ives  th e  focus i ng  o f th e  m a g n e t latt ice, a n d  th e ’second  te r m  
comes -  f r om th e  b e a m - b e a m  interact ion.  Th is  e q u a tio n  is q u a d r a tic i n  9 0 , a n d  so lv ing  
it is difficult. Howeve r , a  so lu t i on  is n o t r e q u i r e d , a n d  th a t sim p lifie s  th e  situ a tio n . 
T h e r e  is m o r e  o n  th is  b e l o w . 

Fo l l ow i ng  e q . ( 6 .2 ) , e q . ( 6 .3 )  is l i nea r i zed  by  subst i tu t ing @ k =  @ O  +  Q k. T h e  
a p p r o x i m a te  e q u a tio n  fo r  0  I is 

a 4 l  a %  a4 l  
as  +  y I-- ay  W s,y)ay, 

(6 .10 )  

-  T e rms  invo lv ing  on l y  th e  equ i l i b r i um d is t r ibu t ion m a k e  n o  c o n t r ibut ion b e c a u s e  o f 
- e q . ( 6 .8 ) , a n d  o n e  te r m  p r o p o r tio n a l  to  

ak  f- 7  I 
ay’ 1  I 

' $ 2 ( L~ ' )Q (y -Od~ ' dS  

- - 03  - 0 0  

(6 .11 )  

has  b e e n  n eg l e c te d . T h e r e  is a  sim i la r  e q u a tio n  fo r  $ 2  th a t is c o u p l e d  to  e q . ( 6 .1 0 ) . 
T hey  c a n  b e  u n c o u p l e d  by  i n t r oduc i ng  

4 +  =  $  +  # 2  (6 .12 )  
-  

wh i ch  S a tisfy two i n d e p e n d e n t e q u a tio n s  

a 4 +  a 4 +  a 4 +  
X T  +  y 

I- -  
ay  F(s, ~ $ 7  

T h e  equ i l i b r i um d is t r ibu t ion e n te rs  i n  th r e e  ways.  A n  a p p r o x i m a tio n  is u s e d  to  
sim p lify th e  ca lcu la t i on  mak i n g  it poss i b l e  to  cha rac te r i ze  instabi l i t ies b u t mak i n g  it 
incons is tent  a n d  o f lim ite d  q u a n tita tive  va l u e  -  th r e e  d i f fe rent  @ O ’s a r e  u s e d , o n e  fo r  
e a c h  way  it e n ters.  First, 9 0  m u s t satisfy e q . ( 6 .8 )  to  e l im ina te  th e  te rms  invo lv ing  
on l y  Q O  f r om th e  l i nea r i zed  V lasov  e q u a tio n . F i n d i n g  th a t 0 0  is a n a l o g o u s  to  
d e te rm i n i n g  th e  l ong i t ud i na l  d is t r ibu t ion o f a  s i ng l e  b e a m  tak i n g  a c c oun t o f p o te n tia l  

_  we l l  d istor t ion.  It isn’t necessa ry  to  k n ow  th is  @ O  fo r  cha rac te r i z i ng  instabi l i t ies, b u t 
it d o e s  a ffect th resho lds .4 I  
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Second, 90 gives the contribution of the beam-beam interaction to the focusing 
through F(s.y), eq. (6.9). Assuming a stable equilibrium distribution exists and is 
such that it produces a linear focusing force, F(s,y) becomes 

F(s,y) = F(s)y - (6.14) 

I -- 

Since F is linear in the displacement just like a quadrupole lattice, a p-function can be 
found and action-angle coordinates, I and r. exist. The p-function accounts for the 
focusing of @O as well as the magnet lattice. The action is a constant of the motion, 
dI/ds = 0, and @O is a function of I only, @O(I#) = @O(I). Equation (6.13) can be 
rewritten in terms of the action-angle coordinates using these facts plus i) /I is a 
minimum at the interaction point so that /Y = d/I/ds = 0 there, ii) dq/ds = l/p, iii) y” 
= - F(s)y, and iv) the chain rule. It becomes 

a4 a4+ + doo 2 + 1- as --@r B w d1 siny x 

.- - There is a rough analogy in transverse single beam stability calculations to the 
- simplification of eq. (6.14); it is the assumption that the deflecting fields leading to 

the transverse impedance are linear in displacement. 
The third appearance of 00 is as a weighting factor d@ddI for the beam-beam 

contributions of I$+. The “water-bag” model with constant phase space density out to 
a boundary is used 

Qo(I) = 2 H(E/2 - I) (6.16) 

where E: is the vertical emittance, 

H(c) = 
1 (Cl 

.-. 0 [>l' 
(6.17) 

and the normalization is 

271 I- @ (1)dI = 1 . O O (6.18) 

With this distribution the last term in eq. (6.15) is a delta-function, and the 
perturbation is localized to I = E/Z. 

Fourier analyzing $+ - 

_ ..- 
9+= 6(1-E/2) 

lx 
<(s)elmy . 

- 
m= -02 

(6.19) 

__- .-- _ 
t: _ Substituting into eq. (6.15) 
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n=-co 

The matrix element M,k of matrix M is 

I -- 

2n 
M = I dy sinqe - imy I 

2n 
dy’ e ikw’ 

mk 8 (cosy-cosy’ ) 
0 0 (6.21) 

I/ -32im 
2 (m-k) ‘-1 

m+k even 
= (m+k) -1 

0 m+k odd 

Equation (6.20) gives the evolution of the perturbation. Follow it for one turn 
assuming only one interaction point. The Fourier components are independent 
between collisions, and g,, the perturbation with phase space periodicity m, advances 
at -m times the betatron phase advance; . 

g,(s) 
.c _-. 

(6.22) 

The total betatron phase advance for a complete turn is 2rrQ. The betatron tune, Q. 
includes the focusing from 00. Let g,(O) denote the value just after the interaction 
point and g,(C) the value one turn later taking into account all but the last term in eq. 
(6.20) 

g,(C) = gm(0)exp(-i2nmQ) = kmgrn(0) . (6.23) 

This defines the elements of a diagonal matrix R. The perturbations are coupled to 
each other at the interaction point. The change during a collision is 

m 
:. 

-- (6.24) 

(6.25) 

. .,~ 

There is a coherent beam-beam instability when one of the eigenvalues of T has an 
absolute value greater than unity; this occurs when ITr(T)I > 2. Different Fourier 
components are unstable at different tunes. Consider only g, and g-, to learn the 
instability condition. For these two components 

__- ..- _ 
t: ; 
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1 + iam iam exp(-im2nQ) 0 
T= 

-ia m l?ia 0 m exp(im2nQ) 

I 
(1 2 

(6.26) 
iam)exp(-im2nQ) iamexp (im2nQ) 

= I 

I -iamexp (-im2nQ) (1 ? ia,) exp(im2xQ) 

. . 32m 2Nre B 
a=4m2_1T+I-y * m 

I rl 
(6.27) 

The motion is stable if 

I$Tr(T) ] = 1 cos (2rrQm) + amsin(2nQm) < 1 . 
I 

(6.28) 

Instabilities occur near Q = n/2m. In terms of 6Q = Q - n/2m eq. (6.28) is . 

.c _ 
- 

cos(2nmdQ) 2 amsin(2nmbQ) < 1 , 
I 

(6.29) 

- _ Chao and Ruth perform more detailed calculations including several values of 
lml, multiple interaction regions, and multiple bunches, but the important results have 
been obtained above. These are: 
1. There are coherent beam-beam resonances for Q = n/2m corresponding to 
perturbations with phase space periodicity m. The resonances are even order only. 
2. At resonance the betatron tune of the lattice is less than n/2m because of the 
focusing from the equilibrium distribution, @O. Treating the beam-beam interaction 
as a thin quadrupole producing a tune shift {, the lattice and betatron tunes are related 
by 

cos(2nQ) = cos(2AQo) - 27T{sin(2nQO) (6.30) 

which for the water-bag model implies 
4Nr 

5= 
e- 

nLxymp- * 
(6.31) 

3. From eq. (6.29) $- is unstable for aQ < 0. Since $- = $I - $2, the beams are 
anticorrelated when Cp- is unstable. The beams are correlated when #+ is unstable 
which occurs when aQ ~0. 
4. The full width of the resonance is 

AQ = 325 

7r(4m2-1) 
(6.32) 

-iif The resonances become narrower as m increases. 
A number of approximations have been made, and Landau and radiation 

damping have not been included. They should determine the important resonances. 
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Simulations are the appropriate way to judge the validity of this calculation and to 
make quantitative predictions. 

3-93 Q,, Lattice Tune 7351A4 

‘Figure 13: The results of the coherent beam-beam calculation of Chao and Ruth (ref. 
40). 

6.4 Coherent Beam-Beam Simulations, Revisited 

The coherent resonance shown in Figures 10 and 11 agrees with all but one of 
the results of the Vlasov equation solution. This particular resonance is Q = 5/6, and 
the beams are anticorrelated as expected if $- was unstable. The resonance has a 
stopband with a width about a factor of two smaller than eq. (6.32) (see Figure 14). 
The only substantive disagreement is that an instability with the beams correlated has 
never been seen. It could be that $+ is unstable initially, but the limiting behavior has 
different characteristics. 

. .,- 

Other resonances have been searched for. Resonances with Q = n/2 and Q = 
n/4 are seen even when the fields of a Gaussian beam are used, and there is a coherent 
resonance at Q = 7/8. There are no odd order resonances. The behavior at Q = 4/6 is 
close to that at Q = 5/6 suggesting that both are sixth order resonances. 

The simulation shows several features that are outside the Vlasov equation 
calculation. Nonlinearities limit the instability, and there are damping effects. The 
stopband does not extend to { = 0, but the width shrinks to zero at l - 0.06, 
presumably as a result of Landau damping. The instabilities are sensitive to radiation 

-c 
damping. The sixth order resonance is present when the fractional energy loss per 
t&n is as large as 10m3, but it must be reduced to 10s5 to see the eighth order 
resonance. The former is large compared to the energy loss in heavy quark factories 
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while the latter is comparable to the energy loss in DC1 where coherent phenomena 
are thought to have limited the improvement from space charge compensation. 

y 

)‘, 
I 

\ 2: 

\ ..: 

3- 

0.780 0.830 0.880 

QO 
Figure 14: Onset and offset values of { as a function of Qo for sixth-order (squares) 
and eight-order (asterisks) coherent resonances. In each case the region of coherent 
motion is between the lines. S is the fractional energy loss per turn. (From ref. 34). 

6.5 Concluding Remarks 

_ I,- 

The coherent beam-beam interaction has many of the qualitative features of the 
tune shift limit. Although the simulation suggests that the tune shift limit associated 
with it is higher than that achieved in operating colliders, the simulation was done for 
the special case of a nearly round beam with essentially a one-dimensional beam- 
beam interaction. A field calculating algorithm for flat beams has proven more 
difficult to develop, but work is continuing there. Perhaps the tune shift limit will be 
lower for flat beams and a two dimensional beam-beam interaction. 

The most direct evidence about the role of the coherent beam-beam interaction 
should come from colliders operating at the beam-beam limit, however. The 
signature is clear: beam distributions changing turn-by-turn with the changes of the 
two beams correlated. Such measurements are possible and should be performed. 

;.- -.A _ 
Ni. ; 

-35- 



- 

- .i I-.- 

‘- 
- 

7 Acknowledgements and Dedication 

-” -- 

I have thought about the beam-beam interaction for many years and have 
learned what I know about it from  many people. A  few have been especially 
important to me. Either I have worked with them for extended periods or gained 
particular insight from  their work. They are Jeff Tennyson, Gerry Jackson, Srinivas 
Krishnagopal, Andrei Gerasimov, Dave Rice, Joel Le Duff, Felix Izrailev, and Alex 
Chao. .It has been a pleasure to work with and learn from  them. 

Jeff Tennyson passed away last year while in the prime  of his career. I would 
like to dedicate this article to him. 

8 Citations 

1. John T. Seeman, Nonlinear Dynamics Aspects of Particle Accelerators, 
_. Springer-Verlag, Berlin, edited by J. M . Jowett, S. Turner and M . Month, 121 _.~ - 

(1986). 
.- - 2. John T. Seeman, Proceedings of the 12th International Conference on High- - 

_ Energy Accelerators, Fermilab, Batavia, IL, edited by F. T. Cole and R. 
Donaldson, 212 (1983). 

3. A. B. Temnykh, Third Advanced ICFA Beam Dynamics Workshop, INP, 
Novosibirsk, edited by I. Koop and G. Tumaikin, 5 (1989). 

4. A. Piwinski, Third Advanced ICFA Beam Dynamics Workshop, INP, 
Novosibirsk, edited by I. Koop and G. Tumaikin, 12 (1989). 

5. D. H. Rice, Third Advanced ICFA Beam Dynamics Workshop, INP, 
Novosibirsk, edited by I. Koop and G. Tumaikin, 17 (1989). 

6. P..M . Ivanov et al, Third Advanced ICFA Beam Dynamics Workshop, INP, 
Novosibirsk, edited by I. Koop and G. Tumaikin, 26 (1989). 

7. Matthew Sands, The Physics of Electron Storage Rings - An Introduction, 
SLAC-121 (Nov, 1970). 

8. G. Decker and R. Talman, IEEE Trans Nucl Sci NS-30,2188 (1983). 
9. M . Bassetti and G. Erskine, CERN-ISR-TH/80-06 (1980). 
10. W . Gautschi, Handbook of Mathematical Functions, Nat. Bureau of Standards, 

Washington, Ninth printing, edited by M . Abramowitz and I. A. Stegun, 
295( 1970). 

11. G. P. Jackson, PhD Thesis, Cornell Univ (1988). 
12. Ronald D. Ruth, AIP Conf Proc 153,150 (1987). 
13. F. M . Izrailev and I. B. Vasserman, Proc of the 7th All Union Conference on 

Charged Particle Accelerators, Dubna, USSR1288 (1980). 
14. S. Krishnagopal and R. Siemann, Phys Rev D41,2312 (1990). _ ..- 

-c- 
15, S. Kheifets, PETRA Note 119, DESY (Jan, 1976). 

-16: I. S. Gradshteyn and I. M . Ryzhik, Table of Integrals, Series and Products 
(Academic Press, New York, Fourth Edition, 1965) eq. 3.323.2. 

-36- 

. 



17. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products 
(Academic Press, New York, Fourth Edition, 1965) eq. 8.511.4. 

18. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill 
Book Co, New York, 1953) p. 483. 

19. A. L. Gerasimov, F. M. Izrailev and J. L. Tennyson, AIP Conf Proc 153,474 
(1987). 

20. A. L. Gerasimov, Physics Letters A 135,92 (1989) 
; -- A. L. Gerasimov, Physica 41D, 89 (1990). 

21. David H. Rice, Part Accel31,107 (1990). 
22. Jeffrey Tennyson, Physica SD, 123 (1982). 
23. L. R. Evans, AIP Conf Proc 127,243 (1985). . . 
24. S. Myers, Nonlinear Dynamics Aspects of Particle Accelerators (Berlin: 

Springer-Verlag, 1986, edited by J. M. Jowett, S. Turner & M. Month), p. 176. 
25. R. H. Siemann, Third Advanced ICFA Beam Dynamics Workshop, INP, 

Novosibirsk, edited by I. Koop and G. Tumaikin, 110 (1989). 
26. B. V. Chirikov, Physics Reports 52,263 (1979). 
27. A. B. Temnykh, private communication. 

- 28. A. L. Gerasimov and N. S. Dikansky, Nucl. Ins&. Meth. A292,209 (1990). 
. ..~ - -- A. L. Gerasimov and N. S. Dikansky, Nucl. Instr. Meth. A292,221 (1990). 

A. L. Gerasimov and N. S. Dikansky, Nucl. Instr. Meth. A292,233 (1990). .- _ - ‘29. J. L. Tennyson, private communication. 
30. R. H. Siemann, AIP Conf Proc 127,368 (1985). 
31. K. Yokoya et al, KEK Preprint 89-14 (1989). 
32. J. Le Duff et al, Proc of 1 lth Inter Conf on High-Energy Accel, 707 (1980). 

J. Le Duff and M. P. Level, “Experiences Faisceau-Faisceau sur DCI”, 
LAL/RT/80-03 (Orsay, 1980). 

33. M. Minty et al, SLAC-PUB-5993 (1992). 
34. S. Krishnagopal and R. Siemann, Phys Rev Lett 67,246l (1991). 
35. S. Krishnagopal and R. Siemann, LBL-31094, SLAC/AP-90 (1991). 
36. Kohji Hirata, Phys Rev Lett 58 25; 58,1798 (E) (1987). 

Kohji Hirata, Phys Rev D37,1307 (1988). 
37. Kohji Hirata, Third Advanced ICFA Beam Dynamics Workshop, INP, 

Novosibirsk, edited- by I. Koop and G. Tumaikin, 46 (1989). 
38. M. A. Furman, K. Y. Ng, A. W. Chao, SSC-174 (1988). 

M. Furman, Third Advanced ICFA Beam Dynamics Workshop, INP, 
Novosibirsk, edited by I. Koop and G. Tumaikin, 52 (1989). 

39. N. S. Dikansky and D. V. Pesuikov, Part Accel 12,27 (1982). 
40. A. Chao and R. Ruth, Part Accel16,201(1985). 
4 1. Katsunobu Oide and Kaoru Yokoya, KEK Preprint 90-10 (1990). 

-37- 


