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ABSTRACT

We apply the theory of parton-parton total cross sections at large s, due to

Lipatov and collaborators, to compute the inclusive cross section for jets which

accompany a large s parton scattering process.
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The enormous dynamic range for QCD processes opened by the Tevatron col-

lider has given a new impetus to detailed investigations of the dynamics of quark

and gluon scattering. Though the most prominent experimental investigations

have involved the cross section for 2-jet production, there are also new results on

3- and multi-jet processes. In these higher-order processes, there are two or more

different Lorentz invariants which set the scale of the momentum transfer, and,

typically, these invariants may differ by large factors. The study of QCD processes

with large ratios of invariants—semihard processes—is complicated theoretically

because it typically involves the resummation of infinite classes of Feynman di-

agrams. It is complicated experimentally because it requires jet detection in a

large rapidity interval. Nevertheless, this regime is a fascinating one, with new

and nontrivial applications of QCD perturbation theory. In addition, as Bjorken

has recently emphasized, the study of jet correlations over large rapidity intervals

may offer interesting signatures of new physics.
[1]

In this paper, we will discuss the following situation, which involves jet dynam-

ics with a large ratio of invariants. Consider a process in which gluons or quarks

scatter with large center-of-mass energy and only moderately large transverse mo-

mentum. Call the squared center-of-mass energy of the original parton-parton

scattering s, and let m be a typical value of the final parton transverse momenta.

In the semihard regime, s >> m2 >> Λ2
QCD, Lipatov and collaborators

[2−4]
have

shown that, in this regime, the rapidity interval between the scattered partons is

filled in by the radiation of additional gluons, roughly uniformly spaced in rapidity,

all with transverse momenta of order m. In principle, the properties of these radi-

ated gluons can be observed by choosing events with two jets at large positive and

negative rapidity and then measuring the production rate for jets at intermediate

rapidities which accompany these jets. In this paper, we will call the jets at large

rapidity tagging jets, and we will call the jets that accompany them minijets . A

few results on the spectrum of these accompanying gluon jets are known from the

work of Balitsky, Fadin, Kuraev, and Lipatov (BFKL), refs. 2–4, and from suc-

ceeding work of Levin and Ryskin.
[5]

In this paper, we return to this question and
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give a systematic procedure for computing the inclusive spectrum of accompanying

jets, along with numerical estimates for Tevatron and SSC energies.

Total Cross Section for Tagging Jets

In order to understand the spectrum of minijets which accompany a set of

tagging jets, we should first review the QCD prediction for the total cross section

for producing these tagging jets. This prediction has been presented by Mueller and

Navelet,
[6]

using the expression for the asymptotic parton-parton total cross section

which is the principal result of the BFKL analysis. We will use the ingredients in

this prediction to construct the related inclusive cross sections.

Following Ref. 6, we consider the scattering of two hadrons of momenta pA

and pB in the center-of-mass frame, with the z axis along the beam momenta, and

we imagine that we tag two jets at the extremes of the Lego plot, with the rapidity

interval between them filled with minijets. The tagging jets can be characterized by

their transverse momenta and by their longitudinal fractions xA, xB with respect

to their parent hadrons. It is simplest to consider the cross section for producing

two tagging jets with transverse momenta greater than a minimum value m. Then

dσ

dxAdxB
(AB→ j(xA)j(xB) +X)

=
∏
i=A,B

[
G(xi,m

2) + 4/9
∑
f

[Qf(xi,m
2) + Q̄f (xi,m

2)]

]
· σtot(s),

(1)

where s = 2pA · pBxAxB is the parton-parton squared center-of-mass energy, and

σtot is the BFKL total cross section for gluon-gluon scattering, which we will dis-

cuss in a moment. Eq. (1) includes the effects of quarks using the observation of

Combridge and Maxwell that, in a process with large rapidity intervals, the leading

contribution to any scattering process comes from gluon exchange in the crossed

channel.
[7]

In writing (1), we assume that the values of xA, xB are sufficiently large

that the parton distributions can be computed from ordinary Altarelli-Parisi evo-

lution; semi-hard QCD adds additional complications when these fractions become

small.
[8]
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The core of eq. (1) is the BFKL function σtot(s), which is given by

σtot(s) =
8

N2
c − 1

πN2
cα

2
s

2m2
F (Y ), (2)

where Nc = 3 is the number of colors in QCD, Y = log(s/m2), and F (Y ) is a

dimensionless function which we will discuss below. The strong coupling constant

is evaluated at a scale m2; the running of αs is subleading in the BFKL theory.

Setting F = 1 gives the cross section for gluon-gluon scattering at the lowest order

of QCD, integrated over transverse momenta with |ki⊥| ≥ m, in the limit s >> m2.

The BFKL theory systematically corrects the lowest-order QCD result for σtot

by summing the leading logarithms of (s/m2). This is done in three stages, as

shown in Fig. 1. First, one simplifies the lowest-order QCD diagrams for multigluon

production, shown in Fig. 1(a), for the case in which the emitted gluons are widely

separated in rapidity. The gluon emission vertex is replaced by a non-local gauge-

invariant effective vertex
[2]

. Next, one sums the leading corrections to the forward

amplitude with color octet in the t-channel, as shown in Fig. 1(b). The result has

the form of a Regge pole with an infrared-sensitive trajectory.
[3]

Finally, one uses

this resummed, effective gluon exchange to compute the forward amplitude with

color singlet in the t-channel.
[4]

The imaginary part of this object is the gluon-gluon

total cross section.

The last two step of this procedure involve the solution of integral equations

constructed by BFKL. In the final step, the integral equation can be solved ex-

plicitly for the imaginary part of the forward amplitude to find tagging jets with

transverse momenta kA⊥, kB⊥, both greater than m, separated by a rapidity in-

terval Y . The solution of the equation involves a Laplace transform with respect

to rapidity. Then the amplitude is given by

f(kA⊥, kB⊥, Y ) =

a+i∞∫
a−i∞

dω

2πi
eωY fω(kA⊥, kB⊥), (3)
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where the Laplace transform has the representation

fω(kA⊥, kB⊥) =
1

(2π)2

∑
n

ein(φA−φB)

∫
dν

(k2
A⊥)−1/2+iν(k2

B⊥)−1/2−iν

ω − ω(n, ν)
. (4)

In this equation, φA− φB is the azimuthal angle between the transverse momenta

of the tagged jets, and

ω(n, ν) =
2Ncαs
π

[
ψ(1)− Reψ(

|n|+ 1

2
+ iν)

]
, (5)

with ψ(z) the standard logarithmic derivative of the Gamma function. Throughout

this paper, we ignore azimuthal correlations and keep only the leading, n = 0, term

of (4). Near ν = 0, ω(ν) = ω(0, ν) has the expansion

ω(ν) = A−Bν2 + · · · , (6)

with

A =
4Ncαs
π

log 2, B =
14Ncαs

π
ζ(3) (7)

The integral over ω in (3) can be done easily by picking up the pole. Then we

may integrate over the jet transverse momenta to obtain the enhancement factor F

in eq. (2). The integrals over kA⊥ and kB⊥ are singular and depend on the cutoff

m; this gives the factor m−2 in (2). Comparing with that formula more closely, we

find

F (Y ) =

∞∫
−∞

dν

2π

1

ν2 + 1/4
eY ω(ν). (8)

The exponential growth of F (Y ) with the rapidity interval is associated with mini-

jet production. Using (6) to expand about the saddle point at ν = 0, we can see

that F (Y ) has the asymptotic behavior

F (Y ) ∼ e(4 log 2)z√
7ζ(3)πz/2

, with z =
Ncαs
π

Y. (9)

Mueller and Navelet showed that this asymptotic form is an accurate representation

for z > 0.2.

5



Mini-jet inclusive cross section

The BFKL total cross section is a sum over multi-jet emission processes. Thus,

it is not difficult to pull this amplitude apart and find the contributions from final

states with a jet in a specific region of phase space. The cross section for producing

a jet at rapidity y and transverse momentum q⊥ in association with the tagging

jets described in the previous section may be computed as the sum of diagrams

shown in Fig. 2. We use the BFKL propagator (3) to represent the ladder and

Lipatov’s vertex from ref. 2 to represent the gluon emission. For the moment, we

retain the dependence on the transverse momenta kA⊥, kB⊥ of the tagging jets.

Then the inclusive cross section for minijet emission is given by

1

σtot

dσ

dyd2q⊥d2kA⊥d2kB⊥
=

16αsNc
π

m2

F (Y )

∫
d2k1⊥
(2π)2

d2k2⊥
(2π)2

(2π)2δ(2)(k1⊥ − k2⊥ − q⊥)

· 1

k2
A⊥k

2
B⊥q

2
⊥
f(kA⊥, k1⊥, yA − y)f(k2⊥, kB⊥, y − yB),

(10)

where yA, yB are the rapidities of the tagging jets, with Y = yA−yB. This formula

has been derived previously by Levin and Ryskin.
[5]

As before, we ignore all correlations in azimuthal angle by integrating or av-

eraging each transverse momentum over its angle φ. Note that the correlations

in φ are, in any event, subleading. With this simplification, we can represent the

momentum delta function in (10) as

(2π)2δ(2)(k1⊥−k2⊥−q⊥) =

∫
d2beib·(k1⊥−k2⊥−q⊥) =

∫
d2b J0(bk1⊥)J0(bk2⊥)J0(bq⊥).

(11)

By introducing the representation (4), we can now perform the integrals over the

four ki⊥. Notice that the integrals over kA⊥, kB⊥ depend on the infrared cutoff,

as in the derivation of (8). However, the integrals over k1⊥, k2⊥ converge in the

infrared. The resulting expression is a function of two Laplace transform variables,

6



which we will call ν1, ν2. We are left with the integral over b, which reduces to

∞∫
0

db b−1+2i(ν1−ν2)J0(bq⊥) (12)

To make this integral well-defined, we deform the contours of integration over the

νi so that Im(ν2) > Im(ν1). We must keep |Im(νi)| < 1
2 in order that the integrals

over the ki⊥ converge. We will show below that there is a saddle point for the νi

with this property.

After performing the integral over b, we are left with the following expression

for the inclusive cross section for the production of one minijet with rapidity y and

transverse momentum q in association with tagging jets with transverse momentum

greater than m:

1

σtot

dσ

dyd2q⊥
=

1

F (Y )

∞∫
−∞

dν1

2π

dν2

2π
eω(ν1)(yA−y)eω(ν2)(y−yB)Ncαs

π2q2
⊥

(m2

q2
⊥

)i(ν1−ν2)
( −i
ν1 − ν2

)
[

1

(1
2 − iν1)

Γ(1
2 − iν1)

Γ(1
2 + iν1)

Γ(1 + i(ν1 − ν2))

Γ(1− i(ν1 − ν2))

Γ(1
2 + iν2)

Γ(1
2 − iν2)

1

(1
2 + iν2)

]
.

(13)

The variables νi are integrated along contours with 1
2 > Im(ν2) > Im(ν1) > −1

2 .

The same method yields an integral expression for the n-minijet inclusive cross

section. The integration variables are the n + 1 Laplace transform variables of

the intermediate BFKL propagators. By the argument given above, these are

ordered along the imaginary axis from the tagging jet B to the tagging jet A:

1
2 > Im(νn+1) > · · · > Im(ν1) > −1

2 . The full inclusive cross section is given by

1

σtot

dσ∏n
i=1 d

2qi⊥dyi

=
1

F (Y )

n+1∏
i=1

∫
dνi
2π

eω(νi)(yi−1−yi) ·
n∏
i=1

{
Ncαs

π2q2
i⊥

(q2
i⊥
m2

)−i(νi−νi+1)( −i
νi − νi+1

)}

·
[

1

(1
2 − iν1)

Γ(1
2 − iν1)

Γ(1
2 + iν1)

{ n∏
i=1

Γ[1 + i(νi − νi+1)]

Γ[1− i(νi − νi+1)]

}
Γ(1

2 + iνn+1)

Γ(1
2 − iνn+1)

1

(1
2 + iνn+1)

]
.

(14)
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Asymptotic Evaluation

In eq. (9), we simplified the integral formula for the total jet-jet cross section

by evaluating the integral asymptotically around an appropriate saddle point. It

is straightforward to evaluate the one-jet inclusive cross section asymptotically in

the same way. We will find a joint saddle point in the variables ν1, ν2 and expand

the double integral around this point. The expansion will be valid in the limit in

which (yA − y) and (y − yB) are both large. We neglect the terms in the square

brackets in eq. (14), since at asymptotic energies the saddle point will be very

close to the origin in the plane ν1, ν2.

The joint saddle point will occur with both of the νi on the imaginary axis:

νi = −ini. Using the expansion (6), we find the saddle point conditions:

2(yA − y)Bn1 − log(q2
⊥/m

2)− 1

n1 − n2
= 0

2(y − yB)Bn2 + log(q2
⊥/m

2) +
1

n1 − n2
= 0.

(15)

From these equations,

n1 = (y − yB)η; n2 = −(yA − y)η, (16)

with

η =
π log(q2

⊥/m
2)

56Ncζ(3)αs(yA − y)(y − yB)

[
1 + a], (17)

and

a =

√
1 +

112Ncζ(3)αs(yA − y)(y − yB)

πY ln2(q2
⊥/m

2)
. (18)

Expanding about this saddle point, we find

1

σtot

dσ

dyd ln q2
⊥

=
Ncαs

2π5/2

√
1− 1

a
exp

[
− 1

a− 1
+ 1/2

]
, (19)

with a as in (18).
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According to this equation, the jet inclusive cross section, falls off faster than

the scale invariant dependence (d2q⊥/q
2
⊥) expected for an approximately fixed value

of αs. At small transverse momentum, where we can ignore the log(q2
⊥/m

2) terms

in solving (15), there only is a small modification by a factor (q2
⊥)−Y η. At large

transverse momentum, the cross section falls off faster than any power of q⊥. This

latter, doubly asymptotic, limit has been found previously by Ryskin using another

method.
[5]

Numerical Evaluation

The formula (13) is also an appropriate starting point for a numerical eval-

uation of the one jet inclusive cross section. It is important to study the exact

behavior of this formula numerically, for two reasons. First, the total rapidity in-

terval for jet-jet scattering processes is not large at energies now available, and so

it might be troublesome to divide this interval into several pieces, each of which

must be large to justify an asymptotic analysis. Second, this problem is exacer-

bated by the presence of the poles in (13) which restrict the region of the imaginary

axis through which the νi contours can pass. At asymptotic energies, the saddle

points found in the previous section lie very close to νi = 0, and so these poles are

not relevant. However, the evaluation of the saddle point locations with realistic

parameters puts n1 and n2 close to ±1
2 . Thus, we might expect large discrepancies

for the saddle point result in realistic cases, and, indeed, we will find this below.

To compute the minijet cross section explicitly, we evaluated the double integral

in (13) numerically using the contours Imν1, Imν2 = ±1
4 . We evaluated αs =

αs(q⊥), scaled from αs(mZ) = 0.12 using 1-loop evolution with 5 flavors.

For (8), we saw that the saddle point approximation was an accurate one.

However, this turns out not to be true for the asymptotic evaluation of (13). In

Fig. 3, we compare the exact and asymptotic formulae for the one jet inclusive

cross section for gluon-gluon scattering processes at center of mass energies from

1 to 109 TeV, with m = 20 GeV. There are large discrepancies between the two

formulae which disappear only extremely slowly, as the inverse of the logarithm of
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the energy. In fact, the asymptotic formula is never accurate. Since the total cross

section (9) rises as a power of s, the contribution from the exchange of one gluon

ladder must at some point be unitarized by contributions from multiple ladder

exchanges.
[9]

This correction is already important at 100 TeV, and changes the one

jet inclusive cross section essentially at higher energies.

However, even if the asymptotic formula is not valid, we can estimate the

minijet inclusive cross section directly from (13). It is important to recall that

this equation, as well as (8), involve additional asymptotic approximations. The

BFKL integral equation is derived under the assumption that the emitted gluons

are widely separated in rapidity. The solution of the color octet exchange problem

shown in Fig. 1(b) involves the assumption that the leading Regge pole in the ω

plane dominates over the remaining singularities. However, there is no reason why

either of these effects should lead to large corrections under realistic conditions.

With this set of approximations, then, we present in Fig. 4 predictions from

(13) for the minijet inclusive cross section at Tevatron and SSC energies, taking

the longitudinal fractions xA, xB of the tagging jets momenta to be 0.1. The

cross section is computed for an observed jet in the center of the rapidity interval

between the tagging jets. However, the minijet cross section is almost independent

of the position of the jet in the rapidity interval. These curves, and also those of

Fig. 3, show a shift of the transverse momentum distribution toward higher values

as the energy of the original scattering process—and, therefore, the length of the

gluon cascade—increases. This effect can also be seen in eq. (19), although the

dependence of that formula on q⊥ and y does not match our quantitative results.

The final situation in which we are left is somewhat ambiguous. On one hand,

we have improved the understanding of the physics of the BFKL total cross section.

We have presented predictions from the BFKL theory for the one minijet inclusive

cross section, and we have presented a formula which can be used to evaluate

higher order jet correlations. However, we have found that the natural asymptotic

evaluations of these formulae are not accurate at the energies of present colliders.
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It will be interesting to see whether the estimates presented in Fig. 4 will be

confirmed experimentally. However, we did not succeed in presenting a quantitative

and characteristic prediction which can be used to confirm the BFKL resummation.

That remains an interesting problem for the future.
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FIGURE CAPTIONS

1) BFKL resummation: (a) emission of gluons; (b) construction of the octet

amplitude; (c) construction of the singlet amplitude.

2) Sum of graphs leading to the inclusive jet cross section.

3) Comparison of the exact and asymptotic evaluations of the one jet inclusive

cross section as a function of the jet transverse momentum, at the parton

center-of-mass energies
√
s = 1, 103, 106, 109 TeV, and m = 20 GeV. The

upper curves represent the exact evaluation of integral (13), and the lower

curves its asymptotic evaluation (19).

4) One jet inclusive cross section as a function of the transverse momentum

of the jet for typical Tevatron and SSC energies. We choose
√
s = 0.18

and 4 TeV respectively for the Tevatron and the SSC parton center-of-mass

energies, and we label the curves according to the minimum jet transverse

momentum.
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