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I *- ABSTRACT 

This paper studies the injection process into a storage ring and presents an analytic model for the 
nonstationary particle distribution after m ismatched or off-axis injection. The effects of nonlinear 
fields as well as coupling to the longitudinal motion are described by analytic expressions for the 
first moments of the particle distribution. The result contains two distinct approximations: first, 
the Hamiltonian has been replaced by a Hamiltonian averaged over the phase variable, secondly, the 
characteristic function of the longitudinal distribution has been confined to the first two cumulants. 
Functions of moments that remain invariant for this averaged Hamiltonian are constructed. 

Introduction- - 

The mom&t-description for a particle beam is relevant, since the moments correspond to measurable 
quantities. The behavior of the moments of a particle distribution as it is transported through a Hamiltonian 
system, e.g., the focussing channel of a storage ring or a linac, has been investigated in the past by several 
authors. A systematic treatment of the moments and the moment invariants for linear Hamiltonian systems 
can be found in Ref. [l]. The moment dynamics and moment invariants, based on the Lie-Poisson structure 
of the Vlasov equation, are discussed in Ref. [2]. 

In this paper, we deal with moments in the more specific context of the injection process. Suppose 
the operator in charge of a storage ring has already m inim ized particle losses at injection by adjusting the 
transverse tunes (to avoid-resonances). In addition, a suitable closed orbit has been chosen, and the operator 
decides to.inject either on or off the closed orbit. Since the injection losses have now been m inim ized, the 
effect of nonlinear fields on the beam over a single revolution may be considered small. Nevertheless, the 
accumulative effect over many turns on the particle distribution may lead to considerable enlargement of 
beam size and, thus, may degrade the injection efficiency. 

The above scenario suggests Lhe use of the averaging method, e.g., the replacement of the actual Hamilto- 
nian H(J, 4) by a H amiltonian H(I) averaged over the fast evolving canonical variable [3]. Hamilton-Jacobi 
perturbation technique has already been used to describe the nonlinear fields in the transverse plane [4-51 
in the action variable 
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Figure 1: Injected beam ellipsoid in phase space 

where ps(s) denotes the p-function [6], and q(s) denotes the phase advance. The normalized strength of 
sextupoles and octupoles around the ring are described by 1(2(s) and KS(S), and u, is the horizontal tune. 

A Taylor expansion of the sinusoidal rf waveform around the synchronous phase C& leads to an averaged 
Hamiltonian for the longitudinal motion [7] 

-ii(I) = L@- /.&P/2) , ” = -8Ru, 
-!+- { 1 + f tan2(q4,)} , 

where h denotes the harmonic number, cr is the momentum compaction factor, and 2Rn is the circum ference 
of the ring. To be specific we consider a high energy electron storage ring. The results can be adapted easily 
to proton rings. 

We introduce canonical variables (t, q) which are related to the measurable transverse coordinates 
(z,,pa) of th e b t t e a ron motion and the longitudinal coordinates (E, z) by: 

Longitudinal Transverse 

E (=ta 

z U 

43 
= 

c! t-5-d 

(4) 

where c denotes the relative energy deviation and .z describes the longitudinal position with respect to the 
synchronous particle. Their relation to the action-angle variables is given by 

17 = m  cos(4) ) < = d2 sin($) . (5) 

A typical initial condition for a Gaussian particle distribution in phase space is illustrated in Fig. 1. The 
corresponding distribution function in (I;+) at t = 0 looks like 

*-dP3 
2n exP {-(b + c)[ficos(Q> - &cos(%)]2 - (b - c)[&sin(fl) - &sin(flu)]‘} , (6) 

. .- 
with 

__- .-- ~*: -; 

0 =-(b - 4 ) fh3 = 40 - f$ , 60 = arctan(t0/70) , 

where the center-of-mass at injection is given by the coordinates 70, to. The coefficients b and c describe 
the injected beam ellipse in the lattice of the storage ring. In the transverse case they are composed of the 
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Twiss parameters associated with the injection point in the storage ring (a,P) and the Twiss parameters 
that describe the injected beam ellipse CX;,/?;. From Ref. [8] we have 

Pi P P Pi 2 
p+piSP; &-,a [ I> 

7 (7) 

and -c, 4 are given by 

, csin(2J) = ‘(oi - Pia) 
P ’ 

(8) 
6x0 

where cZo den&es the injected emittance. From these equations, we see that 

_. b2 - c2 = l/c;, . 

For.2 = 0, the initial distribution is described in phase space by circular contours centered around IO, 40. A 
parametrization of the coefficients b, c for the longitudinal plane is given in Ref. [7]. The product of injected 
energy spread times bunch length ~~0~~0 takes in the longitudinal plane the position of the transverse 
injected emittance. 

In the absence of damping and quantum fluctuations, the evolution of the distribution function is gov- 
erned by Liouville’s equation 

. 

If we replace t”h phase fl in Eq. 6 by . _ 

tm aii ai@ 
dt= 

--. 
dI aq5 (9) 

sz=$b- J t dt 8ti(I)/8I - cj = $J - wo(l - /iI>t - 4 , 
0 

the distribution function in Eq. 6 will be an exact solution of Liouville’s equation. The quantity wu 
denotes the revolution frequency times the tune. It is worth noting that the time evolution is not restricted 
to a Gaussian initial distribution. The only requirement is that the initial particle distribution is well 
approximated by a positive definite, but not necessarily smooth, function of the phase space variables. 

Ln the following we derive and discuss analytic expressions for the first and second moments of the 
distribution function. In Sec. 2, we introduce the characteristic function and truncate its expansion in 
cumulants to second order. Coupling between betatron and synchrotron motion will be discussed in Sec. 
3. In order to derive analytic results, we apply the same approximation method that has been used for the 
characteristic function. 

Finally, in Sec. 4 we discuss the injection process in the presence of damping and quantum excitation. 
We will ihow that the analytic results for the first and second moments presented..in Sec. 1 are still valid 
when the effect of damping is included. 

1. First and second moment 

B.eam instrumentation provides us with measurements of the first and second moments on successive rev- 
olutions afte&&ction. In the Stanford Linear Collider (SLC) damping rings, turn-by-turn data acquisition 
from beam positiox monitors and a fast-gated synchrotron light camera are used to analyse the injection 
process [g-lo]. 
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The main results of this article are the analytic expressions in closed form  for the first and second 
moments of the distribution function in Eq. 6 with the time evolution given by Eq. 10. In the appendix we 
derive the analytic expression for the first moments, 

(v+i() = II !&&exp(4) did+ 

= Ad2Io (b2 - c~)~- 
#(l - +)a/2 

zo[b+ccos(2no)lei(wol+~+no) ( 1 _ *+-2ifio ) exp { Xr - Xlzr cos(2G)) ,(II) 

with 
A210 

I *- P/c = b + i(lcwopt) , zk =  C/Pk , 
xk =  pk(l - 2;) ’ 

Using the definitions of A and fie in Eq. 33, it is straightforward to show that Eq. 11 fulfills the initial 
condition (7 + it),=, = &Gexp(i&). 

‘Since ]pr] increases with time, the asymptotic value of the first moment tends to zero: (7 + it),,, = 0. 
In this context one talks about the decoherence of the center-of-mass motion. This effect was observed 
and analysed in proton storage rings when the stored beam had been kicked by various angular deflections. 
Higher order multipole fields and their effects on the beam were studied by this method at the SPS Ill], 
at the TEVATRON [4] and recently at the Indiana University Cyclotron Facility [12-141. With c = 0 and 
40 = x/2, the distribution function describes the evolution of a beam which has been kicked. Equation 11 
reproduces, in-this special case, the result presented by Lia Merminga [4]. 

The resultcfor the second moments is given by 
_ 

(s2+t2)=2{g&+Io} ’ (12) 

and 
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It is straightforward to extract the single contributions (q2), (<“) and (70 from  Eq. 12 and the complex 
valued Equation 13 . The proof of these expressions is sim ilar to the proof of Eq. 11. For the second 
moment, we find the asymptotic relation 

(e2),,, = ( v2),,, = &2 + I0 ’ 
which is a rather important result since’it characterizes the amount of beam size enlargement after m is- 
matched and off-axis injection. Clearly, in the operation of a storage ring, one wants to m inim ize this 
quantity at injection. I want to emphasize that, up to this point, the only approximation is due to the 
averaging over the nonlinear fields in the Hamiltonian. We realize that the combination of moments in Eq. 
12 is an inva&$t un-cl& the nonlinear transformation, since the right hand side is time independent. Upon 
closer inspection of this moment invariant, we formulate the following statement: 
Let Q(I,+) b e a g iven function that describes the particle distribution at t = 0 and suppose, the time 
evolution of-the distribution function is governed by the Hamiltonian fi(l,t), such that for 2 > 0 the 
evolution of the distribution function is given by q(I, 4 - Jot aI?/aIdt). Let us now consider an arbitrary 

- ~. 
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Figure 2: Center-of-mass and normalized beam size for successive turns after injection. 

. 
function g which depends only on the action variable. The time evolution of the moment of this function is 
given by “- _ 

_ 
(s(v2 + t2))t = WNt = /--g(qu (I,+ J,” $$) dId4 

= JJ g(I)@(I, 4') dW' 
= (!?h2 + r2)),=, ' 

such that the moment of g remains invariant. 
In thiscontext, we give the expression for a quantity which will be used later in the discussion of coupling 

b&&en longitudinal and transverse motion 

@lo) = q ‘3 I cos( c$) cos( 4 - w( I)t) dIdc$ 

= J7Z-7 exp {-le[b + ccos(2Ro)]} 3? 
{ 

exp “Uo’~,:‘(‘~,“:i~s(2’o)} 
12 -1 

X 
[ 

1 + X1(1 - 221 cos(2fic) + 2;) + c+2i6 (A@ - .re-ifi0)2 - *r)]} . (15) 

The proof of this relation follows the same pattern as the proof of Eq. 11. 
Figure 2 i&&rat-e& the beam size enhancement and the decoherence of the center-of-mass motion due 

to sextupole fields,One thousand particles have been tracked in the lattice of the SLC damping ring which 
cont,ains 72 permanent sextupoles for 2000 revolutions. Figure 2 shows the center-of-mass motion (x)~ in 
millimeters aud the beam size d-l,/- normalized by the beam size at injection. The 
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analytic solution is based on Eqs. 11-13, and the amplitude dependent tuneshift was calculated according 
to Eq. 2. 

2. Characteristic function and cumulants of the distribution function 

Besides the distribution function !P([, q), the characteristic function O(U~T+) describes completely the 
dynamics of beam distribution in phase space. Distribution function and characteristic function are mutually 
related by a Fourier transform  [15], 

It follows immediately that the moments can be obtained from  the characteristic function by differentiation: 

Conversely, given all moments, the characteristic function can be written as a Taylor series 

For a variety of reasons, it is more convenient to describe the characteristic function by its cumulants - 

(17) 

where the first cumulants are given by 

co=o, C l(zl) = (~1) ,and C2(w2) = (v2) - (4(x2) - , 
More complicated cumulants can be found in Ref. [16]. In general, it is not possible to solve the integral 
in Eq. 16:~ To truncate the series expansion in Eq. 17 at a certain order is dangerous since, in general, 
the moments obey the relation (zn) > (z)~. It is, however, convenient to set cumulants higher than a 
certain order to zero [15]. The choice of- the order is considerably simplified by a theorem of Marcinkiewicz 
[17], which states that the characteristic function cannot be an exponential of a polynomial of degree larger 
than two. Either we truncate the series in Eq. 18 at n + m  = 2, or we include all terms up to infinity. 
Marcinkiewicz showed that a truncation at some order larger than 2 would violate the positive definiteness 
of the distribution function. 

We use the results in Eqs. 11-13 to express the cumulants Cr, C2 and truncate the series in Eq. 18 at 
n + m  = 2, in order to obtain an approximate expression for the characteristic function. 

The intro&cti& ‘and established approximation of the characteristic function will be justified in the 
following section, where we discuss coupling between longitudinal and transverse motion. We will then use 
the same method to obtain an approximate solution for the first moments. 

6 
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3 . -  CoupJ i ng  b e tween  b e ta t ron a n d  synchro t ron  m o tio n  

U p  to  th is  po i n t, w e  cons ide red  in ject ion t ransients in  on ly  o n e  d e g r e e  o f f r eedom. A  m o r e  real ist ic 
descr ip t ion o f th e  in ject ion process  into a  sto r a g e  r ing  inc ludes  coup l i ng  b e tween  th e  long i tud ina l  a n d  th e  
t ransverse m o tio n  v ia c h r o m a ticity a n d  d ispers ion.  T o  emphas i ze  th e  d i f ference with respect  to  th e  canon ica l  
var iab les,  w e  wil l  u se  th e  ra th e r  u n c o m m o n  n o ta tio n  D , fo r  th e  d ispers ion  a t th e  in ject ion po i n t a n d  V ; fo r  
th e  c h r o m a ticity. T h e  to ta l  dev ia t ion  o f a n  ind iv idua l  p a r ticle f rom th e  re fe r e n c e  orbi t  o f a  m a c h i n e  is g i ven  
by  

x(t) =  D ,c+ x p = D , 
J 

w h e r e  w e  u :!_ S e c d  th e  re la t ion E q . 4  fo r  th e  re lat ive e n e r g y  dev ia t ion  c a n d  th e  b e ta t ron a m p litu d e  xp. T h e  
canon ica l  var rab les  & , l;la : a n d  & , 7 7 2  a r e  assoc ia ted with th e  t ransverse a n d  long i tud ina l  p l anes . T h e  first 
a n d  second  m o m e n ts a r e  th e n  g i ven  by: 

a n d  

(22)  
w h e r e  th e  brackets  d e n o te  in tegrat ion with respect  to  th e  long i tud ina l  a n d  t ransverse d istr ibut ion func tions  
as  ind ica ted by- the subscripts. In  th e  fo l lowing,  w e  discuss al l  e l e m e n ts o f th e  r ight  h a n d  s ides o f E q s . 2 1  
a n d  2 2 . 

In te g r a tiog -ove r  th e  hor izonta l  d is tr ibut ion func tio n  in  th e  first te rms  o f E q s . 2 1  a n d  2 2  leads  to  a  factor  
o f o n e : (& )Z  Z  +  -  ([z)Z. In te g r a tio n  over  th e  long i tud ina l  d is tr ibut ion func tio n  is th e n  g i ven  by  E q s , l l - lA a n d  b % ,z -  

T h e  second  te r m  in  E q . 2 2  wil l  on ly  con tr ibute to  th e  b e a m  size if th e r e  is a  corre la t ion b e tween  
th e  t ransverse a n d  long i tud ina l  d is tr ibut ion func tions  a t t =  0 . A  d ispers ion  m ism a tch  w o u l d  corre la te  th e  
i ncom ing  t ransverse a n d  long i tud ina l  d is tr ibut ion func tions . T h e  Four ie r  t ransform o f b e a m  size d a ta  shou ld  
th e n  con ta in  a  p e a k  a t th e  b e ta t ron f requency  [1 8 ]. Th is  s igna l  was  actual ly  obse rved  in  th e  S L C  d a m p ing  
r ings  [lo ]. A  d ispers ion  m ism a tch  a t in ject ion is b e y o n d  th e  scope  o f th is  work  a n d  wil l  b e  neg lec te d . In  th e  
fo l lowing,  w e  a s s u m e  ( & & )  =  (&)(&) .  

W e  wil l  focus  o n  th e  second  te r m  in  E q . 2 1  a n d  th e  th i rd  te r m  in  E q . 2 2 . T h e  t ransverse tu n e  d e p e n d s  
o n - th e  a m p litu d e  o f th e  t ransverse act ion var iab le  a n d , in  add i tio n , o n  th e  re lat ive e n e r g y  dev ia t ion  o f th e  
ind iv idua l  p a r ticle. T h e  p h a s e  d i f ference a fte r  s o m e  e l apsed  tim e  (t -  to) m a y  b e  exp ressed  by  m e a n s  o f 
Hami l ton’s E q u a tions  

J 

t 

e(L,  + t  =  w& l  -  p&)( t  -  to) +  z@  
to  J t 

R  to 
d tc 

=  w ,(l -  p,I,)(t -  to) -  V ;y , ( 23 )  

w h e r e  cl d e n o tes  th e  s p e e d  o f l ight. T h e  cen te r  o f mass  m o tio n  is g i ven  by  in tegrat ing over  th e  d istr ibut ion 
func tions  

. .- _ _ -  -..-l ( Q  t iL)r,z =  
-*: - i  JJJJ Q k,@ z (vz t iL)  d L d $ z  d I&z  . ( 2 4  

W e  n o w  use  th e  resul t  o f E q . 2 3  a n d  in tegrate  over  th e  t ransverse d istr ibut ion func tio n , wh ich  leads  to  th e  
re la t ion g i ven  by  E q . 1 1  tim e s  a n  e x p o n e n tia l  con ta in ing  th e  c h r o m a ticity. 
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The “envelope” function I(u) is defined to be the integral over the longitudinal phase space 

e -it+-20) dIz.@, = (e-iu(r-so))z . (25) 

Similarly, for the second moments we obtain 

where the expressions ((qZ + i[Z)2)Z and (7: + sz)= are given by Eqs. 12 and 13. To obtain an analytic 
expression foJ the envelope function, we proceed in strict analogy to the characteristic function in the 
previous se&ion. We expand the envelope function by its cumulants C, and truncate the series at n = 2 

_. 

w x exp 
{ 

-izl(z) + iu(ze) - iu2 [C*(Z’) - Xz(ZZo) t Cz($j)]} 7 (28) 

where- the brackets denote integration over the longitudinal distribution function. The “mixed” cumulant 
C&~tc) = (ZZO)~ - (z)~(zo)~ is given by Eqs. 11 and 15. 

-From Eq. 13 we see that the first term on‘the right hand side of Eq. 26 goes to zero as t goes to infinity. 
With Eq. 14 for the asymptotic value of Eq. 27, we obtain the increase of the second moment due to 
filamentation 

D%, (29) 
where b,, c, b, ;ci ‘denote- mismatch parameters in the longitudinal and transverse phase space and Izo, Izo 
are the action coordinates of the initial beam centroid. This expression is equals the asymptotic value of 
the square of the beam size, since the first moments in Eq. 21 are then zero. The Fourier transform of Eq. 
22 contains peaks at the synchrotron sidebands of twice the betatron frequency 2w, -f 2nw, which are due 
to the coupling of the longitudinal to the transverse motion via chromaticity. The asymptotic Eq. 29 for 
the beam size shows that there is no final beam size enhancement due to this effect. This result is based on 
the various assumptions of our analytic model of the injection process. 

In Fig. 3, we show the power spectrum of the center-of-mass motion according to the analytic model in 
Eq. 21. Relevant input parameters for the analytic model are D,, I) v’ v,, us, pz, ps and c,o, uzou,o, Lo, Izo, b,, b,. 
The-tunes were chosen to be V, = .285 and V, = .012 . Synchrotron sidebands u, f nv, are clearly visible 
in Fig. 3. A comparison between the analytic model and actual turn-by-turn measurements, which allows 
for example the determination of the amplitude dependent tune shifts CL, and Pi, can be found in Ref. [19]. 

4. Damping and quantum excitation 

Until now we have neglected the effect of synchrotron radiation and the results apply only within a 
fraction of the damping time after injection. In the presence of damping and quantum excitation, the 
evolution of the distribution function is governed by the Fokker-Planck equation. The distribution function 
Eq. 6 with 

1 . .- 2t/7 
__- -._- Q = #J - wot t f(t)I - 4 , and f(t) = -wopT(e 2 -a (30) 
-*: -; 

is a solution of the Fokker-Planck equation in the limit of no quantum excitation [S]. The coefficients 
p, b, c, In in Eqs. 11-13 have to be replaced by 

wept ==k j(t) = 
1 
-wopT(e 21/r 

2 
- l), b _ i(t) = be2’/‘, c * E(t) = ce2t/T, IO =+ i(t) = Ioe-2t/T, (31) 

8 
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. F igu re  3 : P o w e r  spec t rum o f th e  cen te r -o f-mass  m o tio n  a fte r  m ism a tch e d  a n d  o ff-axis in ject ion 

w h e r e  r  d e n o tes  th e  d a m p ing  tim e . W ith  th is  m o d if ication, th e  first a n d  second  m o m e n ts o f th e  d istr ibut ion 
func tio n  a r e  g i ven  by  E q s . 1 1 - 1 3 . In  th e  p resence  o f q u a n tu m  excitat ion, th e  d istr ibut ion func tio n  o f typ e  
E q . 6  is n o  m o r e  a n  exact  so lu t ion o f th e  Fokker -P lanck  e q u a tio n . A n  a p p r o x i m a te  so lu t ion exists wh ich  
assumes  th e  in jected e m itta n c e  to  b e  m u c h  la rger  th a n  th e  equ i l i b r ium e m itta n c e  [8 ]. In  th is  case  th e  
func tions  Z(t), b ( t), f(t), i(t) d  e  e n  o n  th e  d a m p ing  tim e  a n d  equ i l i b r ium e m itta n c e . p  d  

G -r  -  -  
A c k n o w l e d g e m e n ts 

I a m  g r a te fu l  to  M ichiko M inty a n d  B o b  S i e m a n n  w h o  stim u la ted th is  work  in  m a n y  use fu l  d iscussions.  

A p p e n d i x : Eva lua tio n  o f th e  first m o m e n t o f th e  d istr ibut ion func tio n  

T h e  der iva t ion  o f E q . 1 1  is in  two steps . First, w e  e x p a n d  p a r t o f th e  d istr ibut ion func tio n  into a  p o w e r  
ser ies o f 1 0  a n d  c. These - te rms  r e p r e s e n t th e  d is tance o f th e  cen te r -o f-mass  a t in ject ion a n d  th e  dev ia t ion  
f rom-  a  c i rcular  p h a s e  space  p o r trait o f th e  in jected el l ipse. In  th is  r e p r e s e n ta tio n , th e  in tegrat ion can  b e  
p e .rfo r m e d ‘ a n d  leads  to  a  d o u b l e  ser ies invo lv ing h y p e r g e o m e tric func tions . T h e  second  ste p  consists o f 
re jo in ing  al l  th e  var ious  con tr ibut ions to  a  s ing le  analyt ic  express ion  fo r  th e  first m o m e n t. W e  sta r t wi th 
th e  d istr ibut ion func tio n  g i ven  by  E q . 6 -  

Q = d J- 
2 n  exp  { - (b  +  c> [J7 C O s ( fl) -  dZcos (G~) ]~  -  ( b  -  c)[&s in (R)  -  &s in (0u )12 }  , 

wi th 
i -&b-wt-cj ,  s -20  =  $ 0  -  $ 3  . 

W e  k e e p  in  m ind  th a t wt =  w e t -  f(t)1 d e p e n d s  o n  th e  act ion var iab le .  T h e  func tio n  f(t) equa l s  p w o t in  
th e  a b s e n c e  o f d a m p ing.  O therw ise  f(t) is g i ven  by  E q . 3 1 . W e  m o d ify th e  e x p o n e n t to  o b ta in  

_  .- 
-:< f -dm 

xr!=  - 2 n  exp{  -0  -  lu[b +  c cos (2Ru)  ] -  I c cos(20)  +  2 m  A  cos(Q  -  & ) }  , ( 32 )  

wi th 
b-c  

ta n ( fiu )  =  -  b  +  c ta n ( % )  y 2  +  c2  +  2cb  cos (2Qo)  . 

9  
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T h e  eva lua tio n  o f th e  first m o m e n t l eads  to : 

wi th 

(77  +  i t>  =  JJ q & & i +  & @ I =  ~~ i -~ (b+ccos (2no) )  Jm & $ R ( I)czb d I , 
0  

R(I) =  &J’” 
0  

exp(  i$)  exp  {  -1c  cos(20)  +  2 fl A  cos(  Q  -  & )  }  d q 5  . 

To -  eva lua te  th is  integral ,  w e  e x p a n d  e x p ( 2 m  A  cos(R -  & ) )  in  a  ser ies a n d  c h a n g e  th e  in tegrat ion 
var iab le  f rom 4  to  C : C  =  0  -  fiu  =  4  -  w t -  c$  -  i& , so  

‘g (1 )  =  &  e  ( 2 A ”J?“,i(Y t+ ~ + b ~ J  /,‘” exp  {i<  -  Ic cos(2(’ +  2 6 0 ) )  cosn(C)dC . 
n = O  . 

_ . 
A t th is  po i n t it b e c o m e s  c lear  th a t th e  in tegra l  g ives a  ze ro  con tr ibut ion if n  is e v e n . H e n c e  w e  rep lace  n  
by  2 n  +  1  a n d  use  th e  i den tity [2 0 ] 

2 n + l k 
)  

cm  (24  -  2kC  +  C)  , 

to  o b ta in  

R( i )  =  &  2  ‘2  :2 ~ n ~ + ~ ~ ) ~ ~ ,~ i(y’+ i+ b ,) J,‘” exp  {  i(’ -  Ic cos (26  +  2& ) }  cos { (an  -  2k  +  l )C} dc. 
n = b  k & O  . . 

A n o th e r  c h a n g e  o f th e  in tegrat ion var iab le ,  2 C  +  2 0 0  =  8 , l eads  to  a  k n o w n  in tegra l  th a t m a y  b e  exp ressed  
in  te rms  o f Besse l  func tions  

T h e  in tegra l  ove r  th e  act ion var iab le  in  E q . 3 4  can  b e  fo u n d  in  [2 0 ] a n d  leads  to  a  p o w e r  ser ies con ta in ing  
h y p e r g e o m ,e tric func tions . T o  sim p lify th e  n o ta tio n , w e  d e fin e  

n ,k =  C  [ 1  n-k  
G  

( 2 n  -  k +- l) !  2 n - k + 2  2 n - k + 3  
2 p  P ”+ 2 1 ’(n -k+1)  2  ’ 2  (36 )  

w h e r e  
P  =  b  +  if(t) , 

a n d  i d e n o tes  th e  imag inary  unit.  Fo r  th e  first m o m e n ts o f th e  distr ibut ion, w e  o b ta in,  us ing  E q . 3 4  , 

exp  {  - Io[b +  ccos(2Q 0 ) ] +  i (wot +  4 ) )  2  ‘2  (v1 [~~~1- f$ !2~‘1  
n = O  k = O  

1 : - .2 
-t: x- 1  exp  {  - i (2n  -  2k  +  l)f iu} G n p k m l  -  exp  ( i (2n  -  2k  +  l)fi,} G ”? ” ] . ( 37 )  -  

Th is  express ion  -was  a l ready  g i ven  in  [8 ], b u t fo r  th e  analys is  o f b e a m  pos i t ion d a ta  a fte r  in ject ion, th e  
express ion  it is n o t very pract ical .  In  th e  process  o f es tab l ish ing a n  a p p r o x i m a tio n  to  E q . 3 7 , e i ther  in  
powers  o f IO  o r  in  powers  o f b , I rea l i zed  th a t th e  con tr ibut ions o f al l  o rde rs  m a y  b e  s u m m e d  u p  in  a  

1 0  
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closed expression. This could be achieved by transforming the hypergeometric functions F(o, p, y, z) into a 
terminating series representation where cx or ,0 are negative integers. The key to the treatment of Eq. 37 is 
given by the two relations 

and (A~>2” G”J = e? 
n - I+ l)(n + I+ l)! p2(1_ z2)3/2 illCxz) + zll+l(Xz>l 7 

(38) 

(39) 

where It d&-r&es the modified Bessel function, 1 E 2+ and 

Z2 IoA2 
P ’ x = ,D(l - 9) * 

Proof of Eq. 38: From the definition of G”*k in Eq. ‘36 and the transformation relation of hypergeometric 
functions we obtain 

@n--l (n + I+ I)! 
pn+2 I! (1 - $)n+3/2 F 

l-n I-n-l 
2 (40) 

Because of the-pole of the gamma function in the denominator of Eq. 38 for n - I + 2 _< 0, the lower limit 
of the summ&ion index n is shifted from zero to n = I - 1. Hence, at least one of the first two coefficients 
of the hypergeometric function in Eq. 40 is a negative integer, and the series terminates. Using Eq..40, the 
left side of Eq. 38 becomes 

00 00 

n=l-l (n - I + l)!(n + [)!Gn” = c 
(A&J2” 1 

P2(l - 22)3’2 n=l-l An c 
(n+Z+l)! 

(n+I)!(n-Z+ l)!Z! 

(n - I + l)!a! 
(1+ k)!k!I’(n - 1 - 2k + 2) (q2k+...} . (41) 2 

The-nextstep is to sum over n for fixed index k. For k = 0 we use the power series expansion of the 
exponential and obtain 

z ‘1 O” 0 c Xn(n + 1 + l) 
1 zx I 

5 Enzlpl (n-I+l)! =F! 2 ( > 
eX(l + 2;) . 

Similarly, we have, for the arbitrary term, 

z 2k+l 

0 5 
An(n + I + 1) 1 

(n - I - 2k + l)! = k! (I + k)! 
l+k eX(l + 2~) . (42) 

Next. we add. up the various contributions over the index k. Inserting the derived contributions of Eq. 42 
into Eq. 41 &@btain 

I2 
(JW$~” 

n=[-1 
(n - t+ l)!(n + I)!Gn” = p2(l -f,9)312 ‘+{ k&k)! (;)‘“” •t k!(i+lfi- I)! ($)1+2k-1} ’ 

11 
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Comparing the right hand side with the power series representation of the modified Bessel function, gives 
the result shown on the left hand side of Eq. 38. End of proof of Eq. 38 . 

Equation 39 may be shown in a similar way 
Let us now go back to the original double series representation of the first moments in Eq. 37. In order 

to replace Gnvk-l and Gnlk by G”+-‘, we substitute for k either k = n - 1 + 1 or k = n - 1. Using the 
transformation relations for hypergeometric functions, we see that GnJ‘-l = GnJ‘+l holds and we obtain for 
the left hand side of Eq. 37 

J 
b2 - c2 ,-h[b+ccos(2~0)] +i(wOt+~+f&)2 2 (A&)2+1 

2 n=O 
I -- 

exp { -2il&} 
+fi-1)‘Gn+-‘(qn-I+2)(n+I)! + 

exp { 2;lfie) 

I=1 r(n - I+ 1) (n + I + l)! 

Substituting Eqs. 38 and Eq. 39 into Eq. 43, we obtain 

(77 + it) = A,/- ,-Zo[b+ccos(2Ro)l +‘ot+d+fio) ex e 
p2(1 - z2)3/2 

x 
. ..l 

Io(zX) + zIl(zX) + g(-1)’ (e-2i’Ao {11(2X) + z11-1(zX)} + e2i1’o {II + rlijl(Th)j)} . 
. 

At this point-Ithe summation over the index 1 may be replaced by the generating function of the Bessel 
functions to g&e _ 

(7)+ it> = A Jm - - ex e -Zo[b+ccos(2no)lei(wot+~+Ro) 

py1 - 22)3/2 ( 
1 _ ze-2ifio ) exp {-AZ cos(2fie)) , 

(44) 
which is the relation we wanted to prove. Higher moments and correlation functions may be treated similarly. 
Nevertheless, this approach seems to be restricted to a Hamiltonian of the form H(I) = w(1- p12/2) where 
higher-order contributions of I have been neglected. In order to evaluate moments of distributions, whose 
evolutions are governed by Hamiltonians of more general form, it would be of great value to find a more 
direct and simple approach. Certainly, it is possible to replace the summation over n by modified Bessel 
functions, in Eq. 35, but again, the subsequent integration over the action variable is rather troublesome. 

12 
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