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ABSTRACT

e,

This paper studies the injection process into a storage ring and presents an analytic model for the
nonstationary particle distribution after mismatched or off-axis injection. The effects of nonlinear
fields as well as coupling to the longitudinal motion are described by analytic expressions for the
first moments of the particle distribution. The result contains two distinct approximations: first,
the Hamiltonian has been replaced by a Hamiltonian averaged over the phase variable, secondly, the
characteristic function of the longitudinal distribution has been confined to the first two cumulants.
Functions of moments that remain invariant for this averaged Hamiltonian are constructed.

Introduction

The momént description for a particle beam is relevant, since the moments correspond to measurable
quantities. The behavior of the moments of a particle distribution as it is transported through a Hamiltonian
system, e.g., the focussing channel of a storage ring or a linac, has been investigated in the past by several
authors. A systematic treatment of the moments and the moment invariants for linear Hamiltonian systems
can be found in Ref. {1]. The moment dynamics and moment invariants, based on the Lie-Poisson structure
of the Vlasov equation, are discussed in Ref. [2].

In this paper, we deal with moments in the more specific context of the injection process. Suppose
the operator in charge of a storage ring has already minimized particle losses at injection by adjusting the
transverse tunes (to avoid resonances). In addition, a suitable closed orbit has been chosen, and the operator
decides to inject either on or off the closed orbit. Since the injection losses have now been minimized, the
effect of nonlinear fields on the beam over a single revolution may be considered small. Nevertheless, the
accumulative effect over many turns on the particle distribution may lead to considerable enlargement of
beam size and, thus, may degrade the injection efficiency.

The above scenario suggests the use of the averaging method, e.g., the replacement of the actual Hamilto-
nian H(I,¢) by a Hamiltonian H([I) averaged over the fast evolving canonical variable [3]. Hamilton-Jacobi
perturbation technique has already been used to describe the nonlinear fields in the transverse plane [4-5]
in the action variable ~

H(I) = w1 - pa1*/2) (1)
with

s4+C
- _@l_ﬂ]{ dsB2(s)o(s) + 6-‘4%7 # ds2V(5) () | ™ 4 B3/ (')
- {3 cos(¢(s") — P(s) — mvy) + cos(3y(s") — 3y(s) — 37r1/x)} @)

sin(mvy) sin(3rvy)
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Figure 1: Injected beam ellipsoid in phase space

where f,(s) denotes the S—function [6], and 4(s) denotes the phase advance. The normalized strength of
sextupoles and octupoles around the ring are described by K;(s) and K3(s), and v, is the horizontal tune.

A Taylor expansion of the sinusoidal rf waveform around the synchronous phase ¢, leads to an averaged
Hamiltonian for the longitudinal motion [7]

- : h2a
A =ald-wl2) . w=-gp {14 D) 9

where h denot®€s the harmonic number, o is the momentum compaction factor, and 2Rx is the circumference
of the ring. To be specific we consider a high energy electron storage ring. The results can be adapted easily
to proton rings.

We introduce canonical variables (£,7) which are related to the measurable transverse coordinates
(z4,p,) of the betatron motion and the longitudinal coordinates (¢, z) by:

Longitudinal Transverse

f\/gz == ik (4)
2= == e

where ¢ denotes the relative energy deviation and z describes the longitudinal position with respect to the
synchronous particle. Their relation to the action-angle variables is given by

n=v2I cos(d), &=+2I sin(¢). (5).

A typical initial condition for a Gaussian particle distribution in phase space is iﬂilstrated in Fig. 1. The
corresponding distribution function in (I, ¢) at ¢t = 0 looks like

U= ____”b;r—cz exp {_(b + ¢)[VT cos() — /T cos(2) ]* — (b — ¢)[VTsin(Q) - Ty sin(Rp) ]2} ) (6)
with ¥~

0=6-6, Qo=do-d, lo=(B+&), = arctan(fo/m) .

where the center-of-mass at injection is given by the coordinates 70, €o. The coefficients b and ¢ describe
the injected beam ellipse in the lattice of the storage ring. In the transverse case they are composed of the
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Twiss parameters associated with the injection point in the storage ring (@, ) and the Twiss parameters
that describe the injected beam ellipse a;,3;. From Ref. [8] we have

_ L (B B By, B ~
_2€xo(ﬂ+ﬁi+ﬂi[a' ﬂ“”’ ™
and -, ¢ are given by
_ , . _ 1 ;
ccos(2¢) = :‘?.—612_0 (%— - g - Bﬂ—;[ai - %a] 2) ’ ¢sin(2¢) = a(a; - ?ﬂ—a) , (8)

where €,g dé,ngtes the injected emittance. From these equations, we see that
‘ 2 2 2

For-¢ = 0, the initial distribution is described in phase space by circular contours centered around lo, ¢o. A
parametrization of the coefficients b, ¢ for the longitudinal plane is given in Ref. [7]. The product of injected
energy spread times bunch length 00,0 takes in the longitudinal plane the position of the transverse
injected emittance.

In the absence of damping and quantum fluctuations, the evolution of the distribution function is gov-
erned by Liouville’s equation

ov 9H 9V
| "o ©)
If we replace tl.fe' i)‘l}a'se Q.in Eq. 6 by
t ~ _ -
Q=¢_/ dt OR(D/OI — & = ¢ — wo(l—ul)t — @ | (10)
0

the distribution function in Eq. 6 will be an exact solution of Liouville’s equation. The quantity wp
denotes the revolution frequency times the tune. It is worth noting that the time evolution is not restricted
to a Gaussian initial distribution. The only requirement is that the initial particle distribution is well
approximated by a positive definite, but not necessarily smooth, function of the phase space variables.

In the following we derive and discuss analytic expressions for the first and second moments of the
distribution function. In Sec. 2, we introduce the characteristic function and truncate its expansion in
cumulants to second order. Coupling between betatron and synchrotron motion will be discussed in Sec.
3. In order to derive analytic results, we apply the same approximation method that has been used for the
characteristic function.

Finally, in Sec. 4 we discuss the injection process in the presence of damping and quantum excitation.
We will show that the analytic results for the first and second moments presented in Sec. 1 are still valid
when the effect of damping is included.

1. First and second moment

Beam instrumentation provides us with measurements of the first and second moments on successive rev-
olutions after igjéction. In the Stanford Linear Collider (SLC) damping rings, turn-by-turn data acquisition
from beam position monitors and a fast-gated synchrotron light camera are used to analyse the injection
process [9-10]. .
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The main results of this article are the ana.lytic expressions in closed form for the first and second
moments of the distribution function in Eq. 6 with the time evolution given by Eq. 10. In the appendix we
derive the analytic expression for the first moments,

{n+ i) = // Uv2[ exp(¢)dide
. | A V 2'[0 (b2 - C ) —Io[b4c cos(2Q2 i(wot+d+8 —2i} A
= 31 = 2P el (200)] ¢i( o) (1 — z1€ °) exp {/\1 -1z cos(QQo)} ,(11)
with -
B = b+ i(kwopt) 2 =c/B A Ao
o = 1 , = , = —

Using the definitions of A and Qo in Eq. 33, it is straightforward to show that Eq. 11 fulfills the initial
condition (1 + i€),_q = V210 exp(igo).

‘Since |8, increases with time, the asymptotic value of the first moment tends to zero: (7 + €)oo = 0.
In this context one talks about the decoherence of the center-of-mass motion. This effect was observed
and analysed in proton storage rings when the stored beam had been kicked by various angular deflections.
Higher order multipole fields and their effects on the beam were studied by this method at the SPS [11],
at the TEVATRON [4] and recently at the Indiana University Cyclotron Facility [12-14]. With ¢ = 0 and
$o = 72, the distribution function describes the evolution of a beam which has been kicked. Equation 11
reproduces, inthis special case, the result presented by Lia Merminga [4].

~The result-for the second moments is given by

vy 2 (gt} o
and
<(n + i£)2> = 2Vb2 — 2 exp {—Ip[b + c cos(2p)]}

exp {/\2 — Az cos(2Qo))}
B3(1 - 23)3/

X { €2i(w0t7+$+ﬁo) [)‘2(1 . 226—2iﬁo )2 _ 226—2iﬁ0] } . (13)

It is straightforward to extract the single contributions (n?), (¢€?) and (7€) from Eq. 12 and the complex
valued Equation 13 . The proof of these expressions is similar to the proof of Eq. 11. For the second
moment, we find the asymptotic relation

(€)= (P = e+ To »- (14)

which is a rather important result since it characterizes the amount of beam size enlargement after mis-
matched and off-axis injection. Clearly, in the operation of a storage ring, one wants to minimize this
quantity at injection. I want to emphasize that, up to this point, the only approximation is due to the
averaging over the nonlinear fields in the Hamiltonian. We realize that the combination of moments in Eq.
12 is an invarigiit under the nonlinear transformation, since the right hand side is time independent. Upon
closer inspection of this moment invariant, we formulate the following statement:

Let ¥(I,¢) be--a given function that describes the particle distribution at ¢ = 0 and suppose, the time
evolution of the distribution function is governed by the Hamiltonian H(I,t), such that for ¢t > 0 the
evolution of the distribution function is given by ¥(I,¢ — f; @H/0Idt). Let us now consider an arbitrary



pil

<x>/[mm]

1'0 1 T 1 -0 1 T 1 T T T T I T T T I l i 8 4 T T T ] ] T ¥ 1 { ] T 1 ¥ T T T 4 T I T i
L i e
- = gnalytic solution ] bN : === gnalytic solution ]
L 4 > L i
05 Hr — = 3 -
] » ]
- b -
0:0 nl — 2 —
1 E E
-0.5 pH — 1 . . T
" _r - multi particle tracking -
a multi particle trackmg . . i
_1 o i i i L l ! L 1 1__ i l L 1 1 L I 1 1 1 1 l L o b | I 1 L 1 1 l 1 1 1 L [ 1 1 ] | l L
o 500 1000 1500 2000 0 500 1000 1500 2000
¢ turns
urns

Figure 2: Center-of-mass and normalized beam size for successive turns after injection.

function g which depénds only on the action variable. The time evolution of the moment of this function is

given by -
//g(I)\II (I é— /Ot of ) dIde
- / / NY(I,4)dIdd

<g(n +£%) >t=0 ,

(9(n*+€7), = (9(D),

such that the moment of g remains invariant.

In this.context, we give the expression for a quantity which will be used later in the discussion of coupling
between longitudinal and transverse motion

(nmo) = 2 // ¥ cos(¢) cos(¢p — w(I)t)dId¢

exp {iwot +M(1-2 cos(2flo)}
B 7

Vb2 — % exp {~Io[b+ ccos(2Q0)]} R {

X [ 14+ 2(1-27 cos(2Qo) + 25+ et (Al(eim - zle"'ﬁ0 )2 — 21)]} . (15)

The proof of this relation follows the same pattern as the proof of Eq. 11.

Figure 2 ilaistrates the beam size enhancement and the decoherence of the center-of-mass motion due
to sextupole fields. One thousand particles have been tracked in the lattice of the SLC damping ring which
contains 72 permanent sextupoles for 2000 revolutions. Figure 2 shows the center-of-mass motion (z),; in

millimeters and the beam size \/ e — (z); /\/ 2 normalized by the beam size at injection. The
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ana.l-ytic‘sol_ution,is based on Eqgs. 11-13, and the amplitude dependent tuneshift was calculated according
to Eq. 2..

2. Characteristic function and cumulants of the distribution function

Besides the distribution function U (&, n), the characteristic function ©(uguy) describes completely the
dynamics of beam distribution in phase space. Distribution function and characteristic function are mutually
related by a Fourier transform [15],

Olug,uy) = [[ ¥(E m,t)eeE+unm dgan = (euektivar) (16)

v P

It follows immediately that the moments can be obtained from the characteristic function by differentiation:

wemy _ 1o
< 6 > Jntm anu amu e(ufvun)

ug=un=0

Conversely, given all moments, the characteristic function can be written as a Taylor series

O(’U{,U") — Z Z (ZUE) (zu’ﬂ) <£mnn> Lo (17)

t !
n=0m=0 nem:

For a variety af reasons, it is more convenient to describe the characteristic function by its cumulants

e(us,un)—exp{ZZ(’”‘) (iy)" n+m(£’”n”)}, (18)

It
n=0m=0 m-n.

where the first cumulants are given by
Co =0 ) 01(271) = (.’E]) ,and 02(331.'132) = ($1$2) — (131)(1?2) .y

More complicated cumulants can be found in Ref. [16]. In general, it is not possible to solve the integral
in Eq. 16, To truncate the series expansion in Eq. 17 at a certain order is dangerous since, in general,
the ‘moments obey the relation (z") > (z)". It is, however, convenient to set cumulants higher than a
certain order to zero [15]. The choice of the order is considerably simplified by a theorem of Marcinkiewicz
[17], which states that the characteristic function cannot be an exponential of a polynomial of degree larger
than two. Either we truncate the series in Eq. 18 at n + m = 2, or we include all terms up to infinity. -
Marcinkiewicz showed that a truncation at some order larger than 2 would violate the positive definiteness
of the distribution function. ~ :

We use the results in Eqs. 11-13 to express the cumulants C;,C; and truncate the series in Eq. 18 at
n + m = 2, in order to obtain an approximate expression for the characteristic function.

O(ug, up) ~ exp {iUe(f) + tun(n) - 5 [Ugcz(fz) + 2ugunCa(€n) + ul Co(n? )]} : (19)

The intro&ﬁ‘ctmn- and established approximation of the characteristic function will be justified in the

following section, where we discuss coupling between longitudinal and transverse motion. We will then use
the same method to obtain an approximate solution for the first moments.
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3. Coupling between betatron and synchrotron motion

Up to this point, we considered injection transients in only one degree of freedom. A more realistic
description of the injection process into a storage ring includes coupling between the longitudinal and the
transverse motion via chromaticity and dispersion. To emphasize the difference with respect to the canonical
variables, we will use the rather uncommon notation D, for the dispersion at the injection point and v, for
the chromaticity. The total deviation of an individual particle from the reference orbit of a machine is given
by
‘ =D._. if~+\ﬁ,.~ (20)

where we used the relation Eq. 4 for the relative energy deviation € and the betatron amplitude zg. The
canonical variables £z,7mz and §,,7, are associated with the transverse and longitudinal planes. The first
and second moments are then given by:

((t))e,: =

V}, (Eee + VBel€e)r.z (21)

and_ 4

(@ (O)s = 2222, 42D e 4 Bl (22)

where the brackets denote integration w1th respect to the longitudinal and transverse distribution functions
as indicated by.the subscripts. In the following, we discuss all elements of the right hand sides of Egs. 21
and 22.

Integratio_;‘oiler the horizontal distribution function in the first terms of Eqs. 21 and 22 leads to a factor
of one: (£,)z,, = (&:). and (€2),, = (£2),. Integration over the longitudinal distribution function is then
given by Egs. 11-13.

The second term in Eq. 22 will only contribute to the beam size if there is a correlation between
the transverse and longitudinal distribution functions at ¢t = 0. A dispersion mismatch would correlate the
incoming transverse and longitudinal distribution functions. The Fourier transform of beam size data should
then contain a peak at the betatron frequency [18]. This signal was actually observed in the SLC damping
rings [10]. A dispersion mismatch at injection is beyond the scope of this work and will be neglected. In the
following, we assume (£z€;) = (£)(&:)-

We will focus onthe second term in Eq. 21 and the third term in Eq. 22. The transverse tune depends
on the amplitude of the transverse action variable and, in addition, on the relative energy deviation of the
individual particle. The phase difference after some elapsed time (¢ — tp) may be expressed by means of
Hamilton’s Equations

i

1
/ weIoy )dt = wo(l - pple)(t = to) + V. -—/ dte
to

z—
. Ra ’
where ¢; denotes the speed of light. The center of mass motion is given by integrating over the distribution
functions

= (- mL)t - t0) - ¥,

(23)

(et i€)ee = [ [[[ 9%, (e +i6) dlede, aLas, . (24)

We now use the result of Eq. 23 and integrate over the transverse distribution function, which leads to the
relation given by Eq. 11 times an exponential containing the chromaticity.

(e + ibz)z. = (M + i) // v, e—w;(z_z")/(ka) dl.d¢, = (nz+ i)z E(vy/Ra) .
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The. “envelope” function £(u) is defined to be the integral over the longitudinal phase space

£y = [[ W, e aLdg, = (). (25)

Similarly, for the second moments we obtain
(e + i&)ze = (02 +16:)%)z E(20,/Rer) (26)
(773- + £3>x,z = (772 + sz s (27)

where the expressions ((7s + i€5)?)s and (n2 + €2), are given by Egs. 12 and 13. To obtain an analytic
express1on for the envelope function, we proceed in strict analogy to the characteristic function in the
previous section. We expand the envelope function by its cumulants C,, and truncate the series at n = 2

E(u) = exp {-—iu(z) + tu(z) — §u2 [02(22) - 2Ca(z20) + Cz(zg)]} ) (28)

where the brackets denote integration over the longitudinal distribution function. The “mixed” cumulant
Co(220) = {220} — (2).(20) is given by Egs. 11 and 15.

From Eq. 13 we see that the first term on the right hand side of Eq. 26 goes to zero as t goes to infinity.
With Eq. 14 for the asymptotlc value of Eq. 27, we obtain the increase of the second moment due to
filamentation -

(2}t = 00))a,: = %27;—’ {bzb + Izo} + 62 {bzb + Izo} : (29)

where b, ¢, bz,cz ‘denote mismatch parameters in the longitudinal and transverse phase space and I;o, I:0
are the action coordinates of the initial beam centroid. This expression is equals the asymptotic value of
the square of the beam size, since the first moments in Eq. 21 are then zero. The Fourier transform of Eq.
22 contains peaks at the synchrotron sidebands of twice the betatron frequency 2w, + 2nw, which are due
to the coupling of the longitudinal to the transverse motion via chromaticity. The asymptotic Eq. 29 for
the beam size shows that there is no final beam size enhancement due to this effect. This result is based on
the various assumptions of our analytic model of the injection process.

In Fig. 3, we show the power spectrum of the center-of-mass motion according to the analytic model in
Eq. 21. Relevant input parameters for the analytic model are Dy, vy, Vg, Vs, iz, fhs and €20, 0200¢0, 10, 120, bz, b
The tunes were chosen to be v, = .285 and v, = .012 . Synchrotron sidebands v, + nv, are clearly visible
in Flg 3. A comparison between the analytic model and actual turn-by-turn measurements, which allows
for example the determination of the amplitude dependent tune shifts y, and p,, can be found in Ref. [19].

4. Damping and quantum excitation

Until now we have neglected the effect of synchrotron radiation and the results apply only within a
fraction of the damping time after injection. In the presence of damping and quantum excitation, the
evolution of the distribution function is governed by the Fokker-Planck equation. The distribution function
Eq. 6 with

Q=¢—wot+ f()[—¢,and  f(t)= -wour(e”/f -1), (30)

is a solution of the Fokker-Planck equation in the limit of no quantum excitation [8]. The coefficients
i, b,c,Ipin Eqgs. 11-13 have to be replaced by

1 - .
wopt = f(t) = Ewour(ezth -1), b= b(t) = be?t!™ ¢ => é(t) = ce®!7, Iy = I(t) = Toe™ /7 (31)
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. Figure 3: Power spectrum of the center-of-mass motion after mismatched and off-axis injection

where 7 denotes the damping time. With this modification, the first and second moments of the distribution
function are given by Egs. 11-13. In the presence of quantum excitation, the distribution function of type
Eq. 6 ié no more an exact solution of the Fokker-Planck equation. An approximate solution exists which
assumes the injected .emittance to be much larger than the equilibrium emittance [8]. In this case the
functions é(t), b(t), f(t), I(t) depend on the damping time and equilibrium emittance.

- .
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Appendix: Evaluation of the first moment of the distribution function

The derivation of Eq. 11 is in two steps. First, we expand part of the distribution function into a power
series of Iy and ¢. These terms represent the distance of the center-of-mass at injection and the deviation
from a circular phase space portrait of the injected ellipse. In this representation, the integration can be
performed and leads to a double series involving hypergeometric functions. The second step consists of
rejoining all the various contributions to a single analytic expression for the first moment. We start with
the distribution function given by Eq. 6

V= _b;_;_c? exp {—(b + ¢)[VT cos(Q) — /Tp cos() )? = (b — ¢)[VTsin() — \/I_osin(Qo)]2} ,

with . B B

Q=¢-wt-9¢, Q=¢o—¢.
We keep in mind that wt = wot — f(t)] depends on the action variable. The function f(¢) equals pwot in
the absence of damping. Otherwise f(2) is given by Eq. 31. We modify the exponent to obtain

Vb= (2 ~ '
v _;Tc_ exp{—Tb— Iy[b + ccos(2Q) ] — Iccos(22) + 2+/IIp Acos(Q — Qo)}, (32)

with

tan(Qo) = Z ; z tan(QO) , A= \/l§+ c? 4+ 2¢b cos(2€) . (33)
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The évalﬁat_ion of the first moment leads to:
o0
(nt+i€) = / / UV2Ie* dpdl = /b? — c2e~To(b+ecos(2) / V2IR(I)e T dI, (34)
0

with
' R(I) = 517; /21r exp(i¢) exp {—Ic cos(2Q) + 2/1Iy A cos(2 — Qo)} do .
0

To evaluate this integral, we expand exp(2v1lp A cos(§2 %)) in a series and change the integration
variable from ¢to (: (=0 ~ Qo = ¢ — wt — ¢ — g, sO

.R(.I Z (QA\/ITO et (wi+d+80) / exp {zc Iccos(2¢ + 200)} cos™(()d

At this point it becomes clear that the integral gives a zero contribution if n is even. Hence we replace n
by 2n 4+ 1 and use the identity [20]

2n+1
os?"*1(() = 227{4—1 > ( Qn: ! )COS (2n¢ = 2kC+ ()
k=0

to obtain

. "% 2n+1 B 2n+1 L 2T o
R(I) = 2% YN ((;:gn)k)'“e'(”t+¢+n°) /(; exp {i( — Iccos(2¢ + 290)} cos{(2n — 2k + 1)} d¢.

Another change of the integration variable, 2¢ + 2o = 6, leads to a known integral that may be expressed
in terms of Bessel functions

002n+1(2A\/_IT0)+ . . ) N ) ~
tH{wt+d+Q0) f n—k+1 . —2i(n—k+1)Q2 n—k . 2i(n—k)Q
R(I) = nZO kz% mt 1o k)!k!e 0 {z Jn—k+1(icl)e O + "M Tk (icl e 0} :

(35)
The integral over the action variable in Eq. 34 can be found in [20] and leads to a power series containing

hypergeometric functions. To simplify the notation, we define

n—k _ ] ‘ _ _ 2
ok = [L] (2n —k +1)! F{Zn k+2, 2n k+3,n_k+1; [%] } (36)

23 pgrt2T(n —k+1) 2 2
where
B=0b+ 2f(t) ’
and ¢ denotes the imaginary unit. For the first moments of the distribution, we obtain, using Eq. 34 ,
. b2 — 2 co 2n+1 (_l)n_k+1 [A /_JIO 2n+1
N7 x fexp {—i(2n — 2%k +1)(} G™*! — exp {i(2n — 2% + 1)(20} Gk . (37)

This expression was already given in [8], but for the analysis of beam position data after injection, the
expression it is not very practical. In the process of establishing an approximation to Eq. 37, either in
powers of Iy or in powers of b, I realized that the contributions of all orders may be summed up in a

10
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closed expression. This could be achieved by transforming the hypergeometric functions F(e, 3,7, z) into a
terminating series representation where o or 3 are negative integers. The key to the treatment of Eq. 37 is
given by the two relations

ks A
(A\/I_0)2n 1 €
G™ = s ez i(A2) + 2L (A2)} (38)
n; F(n—1+2)(n+ 1) B2(1 — z2)3/2
o — (AVTp)? X
0)" nl €
"= e A D1 (A ) 39
2 T(n—Il+1(n+1+ 1)!G B2(1 = 22)3 {1i(Az) + zL141(A2)} (39)
where I; denotes the modified Bessel function, ! € Z* and
Y I, A?
== ’ A= ———— .
B B(1 — 22)

Proof of Eq. 38: From the definition of G™* in Eq. 36 and the transformation relation of hypergeometric
functions we obtain

l
el _ [Z (rn+1+1)! l-n l-n-1 9
crnt = <§> TR (1= 72)HT2 F 5 5 I+1;2°5 . (40)

Because of the pole of the gamma function in the denominator of Eq. 38 for n — [ + 2 < 0, the lower limit
of the summation index n is shifted from zero to n = I — 1. Hence, at least one of the first two coefficients
of the hypergeometnc function in Eq. 40 is a negative integer, and the series terminates. Using Eq..40, the
left side of Eq. 38 becomes

= (AVIo)*" n, 1 (n+1+1)! z\!
n:zz_l (n =1+ D)!(n+1)! ‘= WZ (n+l)'(n—l+1)'l'<2>

(n-D(n-141) (z)2 (n =14+ 1) (2)2'“
1 d . .
X{ LTS 3) ¥t UF T = 1= 2%k 2) + (41)
TA}_le'next-«step is to sum over n for fixed index k. For k = 0 we use the power series expansion of the
exponential and obtain

(z)’l X AMn4l+1) (z)\
l'

d Lot rerar A
2) T 2« T(a-I+1) 2) Aa+2p).

Similarlif, we have, for the arbitrary term,

2\ S A n+1+41) 1 A\ l+k ,
(5) k’(’+’?)’n=1§k_l (n—1—2k+ 1) K{I+R) ('2‘) e’(1+2—=). (42)

Next we add up the various contributions over the index k. Inserting the derived contributions of Eq. 42
into Eq. 41 \mec?bta.ln

0o A\/E)zn iy 1 \ ZA i+2k 1 ZA 4+2k-1
> o=t S e () s (2)°7).
(m—I+1)!(n+1)! A1 — 22)3/2° (I + k) l+k)' K(+k-1)\2

n=I-1

.11
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Corhpafing the riéht hand side with the power series representation of the modified Bessel function, gives
the result shown on the left hand side of Eq. 38. End of proof of Eq. 38 .
Equation 39 may be shown in a similar way

Let us now go back to the original double series representation of the first moments in Eq. 37. In order
to replace G™*=1 and G™* by G™"~!, we substitute for k either Kk = n — 14+ 1 or k = n — I. Using the
transformation relations for hypergeometric functions, we see that Gnnt = Gmnt holds and we obtain for
the left hand side of Eq. 37 :

: (77+ i€y = b2 ; c? e_Io[b+ccos(2ﬂo)] +i(wot+5+ﬁo)2 i (A\/I—0)2n+l

n=0

G © e exp {-—21'1()0} exp {22’1@0}
) { mJ“,;(_l)lG I(F(n—l+2)(n+1)! T+ )+t 1)!) (49)

- e

Substituting Eqs. 38 and Eq. 39 into Eq. 43, we obtain

A
L s - cos i{w b+ €
(n+i€) = Ay[2I5 (b2 — c2) e Tolbte (2no)1e(ot+¢+no>m

X _{IO(Z/\) + 2L (2A) + i(—n' (=2t (L(2X) + L1 (20)} + €29 (1(22) + le.,,l(zA)})} .
o =1

At this point-the summation over the index ! may be replaced by the generating function of the Bessel
functions to give . ‘

oo , o A A ~
(n+ &) = Ay/21p(b? — c?) e'I°[b+°°°s(m°)]e’(“’°t+¢+n°)szzj—a—ﬁ- (1 - ze'z‘n") exp {—/\z cos(QQo)} ,

(44)
which is the relation we wanted to prove. Higher moments and correlation functions may be treated similarly.
Nevertheless, this approach seems to be restricted to a Hamiltonian of the form H(I) = w(I — uI?/2) where
higher-order contributions of I have been neglected. In order to evaluate moments of distributions, whose
evolutions are governed by Hamiltonians of more general form, it would be of great value to find a more
direct and simple approach. Certainly, it is possible to replace the summation over n by modified Bessel
functions, in Eq. 35, but again, the subsequent integration over the action variable is rather troublesome.
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