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ABSTRACT 

Many RF structures have symmetries which can be exploited by field solvers with appro- 
priate boundary conditions. These symmetries allow a reduced problem to be solved, which 

.- 
_ leads to faster and/or more accurate solutions. Of particular interest to the accelerator commu- 

nity are periodic structures. Quasi-periodic boundary conditions allow modes with any desired 
phase advance given a single cell of the periodic structure. For symmetric periodic structures 
there is a variation which requires only a half cell of the periodic structure. These boundary 
conditions can also be used for rotationally periodic structures, such as cross-field amplifiers 
and magnetrons. Boundary conditions for some other symmetries, such as reflection symmetry 
about a plane and about a point, will also be reviewed. 

INTRODUCTION 

Symmetries of the microwave structure can reduce the size of a problem. Reduced problems 
take less time and space to solve numerically. Alternatively, a finer mesh can be used with the 
reduced problem to obtain a more accurate solution. The symmetries described in the following 
sections can be exploited using appropriate boundary conditions while leaving the formulation 
for the interior of the structure unchanged. Other symmetries, such as r&symmetry, lead to 
different formulations for the interior as well as different boundary conditions. 

The connection between Maxwell’s equations and a symmetry is that Maxwell’s equations, 
including the boundaries and any material properties, are invariant under the symmetry. Then 
fields can be found which are simultaneously eigenmodes of both Maxwell’s equations and the 
symmetry operator, but with separate eigenvalues. In the language of quantum mechanics, 
Maxwell’s equations (thought of as an operator) and the symmetry operator commute, so the 
operators are simultaneously diagonalizable. The size of the problem is reduced by constraining 
the solutions to be eigenmodes of the symmetry operator with a particular eigenvalue. 

Examples of the exploitation of symmetries will be presented. These examples are based 
on the following formulation of the eigenmode problem: given the region R and its material 
properties E and p, find the eigenmode fields E and the corresponding eigenvalues w”/c” such 
that 

Vx(p-‘VxE) = $eE in a, (14 

V . (eE) = 0 in R (lb) 
and fixE = 0 on Fmetal. PC) 

The region R represents the interior of the structure, and the surface Fmetal represents the 
perfectly conducting walls which bound the structure. Specifying either the dirichlet condition 
fixE = 0 or the neumann condition fix(p-‘(VxE)) = 0 on the boundary is sufficient for this 
type of problem. It should be made clear that despite the specific nature of these examples, the 
boundary conditions of the following sections are independent of the particular formulation for 
the interior of the structure. 

The following section is a review of reflection symmetry about a plane. While this symmetry 
is-well known and in common use, it will be helpful to introduce the operator notation and 
describe the steps leading to a reduced problem with this familiar case. 
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(4 (b) 
Fig. 1. (a) A structure with symmetry plane P. The shaded region is the interior Q, and the 

- normal to the symmetry plane is 6. (b) Th e region over which Maxwell’s equations must be 
solved is reduced to R, for a symmetric structure. The symmetry boundary is Fsym. 

REFLECTION SYMMETRY ABOUT A PLANE 

Consider a structure which is symmetric about a plane P, called the symmetry plane, 
defined by the equation xTp = p,, where p is a unit vector normal to the plane P and lpOl is 
its distance from the origin. An example is shown in figure la. 

Let P be the reflection operator about the symmetry plane P. The reflection operator P 
can act on various types of objects. P acting on a point x yields the point 

fix = P(x - @PO) + f% = (I - 2lW)(X - @PO) + fJpo, (2) 

where P = (I - 2ppT) is the reflection matrix and I is the identity matrix. The reflection L 
operator acting on a vector field E is the vector field PE. Evaluating the reflected vector 
field PE at a point x gives the vector 

(@E)(x) = P E(@-lx). (3) 

Finally, the reflection operator @ acting on a pseudovector field H is fiH. Evaluating the 
reflected pseudovector field at the point x gives the pseudovector 

(@H)(x) = -P H(Ii-lx). (4 

The minus sign is present for pseudovectors because the determinant of the reflection matrix P 
is -1. 

Consider an eigenmode of fi with eigenvalue p. Denoting one of the fields (E or H, for 
example) of the eigenmode by A, then @A = pA. Reflecting the mode twice gives the original 
mode, so 

@(PA) = @(PA) = p2A = A. (5) 

Thus p2 = 1, and the eigenvalues of P are p = fl. 
Let rsym be the portion of the symmetry plane P in the region R. This will be a boundary 

of a reduced problem. Noting that 

PX = x for x E rsym, (6) 
theh 
a. @E)(x) = P E(l?-‘x) = P E(x) = pE(x) 

(@H)(x) = -P H(@-lx) = -P H(x) = pH(x) for x ’ rsym 
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and thus 
PE =pE and - PH = pH on Fsym. (8) 

Consider the action of the reflection matrix P on a vector A. Let A,, = pa A be the component 
of A normal to the symmetry plane P, and let At = (I - fifiT)A be the portion of A tangential 
to the symmetry plane P. Then 

(PA), = At and (PA), = -A,. (9) 

That is, P reverses the normal component of the vector, but leaves the tangential component 
of a vector unchanged. Applying this to equation (8) yields 

Et = P&, En = -p&z, H1 = -pHt and H, = PH., on Fsym. (10) 

The case p = -1 corresponds to a perfectly conducting boundary with boundary conditions 

perfectly conducting : Et = 0 and H,, = 0 on Fsym, (11) 

and the case p = 1 corresponds to a perfectly insulating boundary with boundary conditions 

perfectly insulating : E, = 0 and Ht =0 on Fsym. (12) 

Similar conditions apply to D and B on Fsym. Like the boundary condition at perfectly con- 
ducting walls, the two boundary conditions at the symmetry plane are not independent. For 
example, given a solution to Maxwell’s equations and the boundary condition Ht = 0, then the 
other boundary condition E, = 0 can be derived if time-varying fields are assumed. 

Many field solvers call the perfectly conducting case a metal boundary condition and re- 
serve the words symmetry boundary to mean only the perfectly insulating case. While this is 
reasonable for calculating the fields in an RF structure, some post-processing calculations, such 
as power loss due to the finite conductivity of the metal walls, need to distinguish between a 
real metal wall and the perfectly conducting case of a symmetry plane. 

Here is a formulation for the eigenmode problem in a symmetric structure. The problem is 
reduced to a region R, which is half of the original structure, as depicted in figure lb. For the 
p = -1 (perfectly conducting) case: given the region R, and its material properties E and ~1, 
find the eigenmode fields E and the corresponding eigenvalues w2/c2 such that 

VX(~-‘VxE) = $eE in R,, (134 

V . (eE) = 0 in 52, 
and GxE = 0 on Fmetal and Fsym. 

And for the p = 1 (perfectly insulating) case: given the region Q, and its material properties E 
and CL, find the eigenmode fields E and the corresponding eigenvalues w”/c” such that 

Vx(p-lVxE) = $rE in R,, 

V. (EE) = 0 in a,, 
GxE = 0 on Fmetal 

and fix(p-‘(VxE)) = 0 on Fsym. 

(144 

(14b) 
(14c) 
(14d) 
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(4 (b) 
Fig. 2. (a) A t t s rut ure with two symmetry planes, Pi and Ps. (b) The region over which 
Maxwell’s equations must be solved is reduced to R,. The symmetry boundaries are Fsym-r 
and Fsyms2. 

It is possible for a structure to have more than one symmetry plane, in which case there is a 
symmetry operator for each symmetry plane. If the symmetry planes are perpendicular to each 
other then the symmetry operators commute and modes can be found which are simultaneously 
eigenmodes for all of the symmetry operators and of Maxwell’s equations. An example with 
two symmetry planes is shown in figure 2. Let Fsymccond) be the symmetry planes for which the 
perfectly conducting (p = 1) case is chosen, and let Isym(ins) be the symmetry planes for which 
the perfectly insulating (p = -1) case is chosen. Then a formulation for the eigenmode problem 
is: given the region R, and its material properties e and ~1, find the eigenmode fields E and the 
corresponding eigenvalues w2/c2 such that 

Vx(p-‘VxE) = $E in R,, (154 

V. (eE) 7 0 in R,, (15b) 
ihE = 0 on rmetal and rsym(cond) (15c) 

and i ix(p-l(VxE)) = 0 on Fsym(ins). (154 

Plane symmetry may be combined with another type of symmetry, for example periodic symme- 
try. The guiding rule is that both symmetries can be used as long the corresponding symmetry 
operators commute. 

REFLECTION SYMMETRY ABOUT A POINT 

Consider a structure which is symmetric about a point x,, the center of the structure. An 
example of such a structure is shown in figure 3. Let fi be the reflection operator about the 
center. The reflection operator acting on a point x gives the point 

Px = -1(x - x,) +x0 = -x + 2x,. (16) 

The reflection operator acting on a vector field E and a pseudovector field H gives 

@E)(x) = -E(@-lx) and @ ‘H)(x) = H(@-lx). (17) 

Let R, be half of the interior 52 of the structure, and let the symmetry boundaries FA, Fn 
a&l possibly the center x, be the portion of the boundary of R, which is in 0. The boundaries 
*FA and Fn are chosen such that the symmetry operator P maps FA to Fn and vice versa. An 
example is shown in figure 3c. 

4 



Fig. 3. (a) A structure with reflection symmetry about a point. (b) A 2d structure which is 
symmetric about its center x,. The shaded region is the interior R. (c) The region over which 
Maxwell’s equations must be solved is reduced to 52, for a symmetric structure. The symmetry 
boundaries are FA and I’n. 

As in the case of plane symmetry (equation (5)), re ec in fl t g an eigenmode of @ twice gives the 
original mode, so the eigenvalues of fi are p = fl. The boundary conditions for the boundaries 
l-‘~ and l?n are 

(@E)(x) = -E(@x) = pE(x) and (@H)(x) = H(@‘-lx) = pH(x). (lf-9 

A special case occurs at the center x0 since fix, = x0. At the center -E(x,) = pE(x,) and 
H(G) = pH(xo), so 

E(x,) = 0 if p = 1, (194 
H(x,) = 0 if p = -1. (19b) 

An example formulation for the p = 1 case is: given the region fl, and its material properties e 
and ~1, find. the eigenmode fields E and the corresponding eigenvalues w2/c2 such that 

VX(/J-~VXE) = f& in a, (204 

V - (EE) = 0 in 0, (2Ob) 
~IXE = 0 on Fmetal, W) 

EIX = -Elp, for x E I?* (204 
and EIXO = 0. POeI 

Technically there is also a relation between the derivatives of the field at the boundaries rA 
and rn which is useful for proving various mathematical theorems, but in practice the relation 
isn’t needed to exploit the symmetry in a field solver. Such relations will be neglected in this 
paper. The corresponding formulation for the p = -1 case is 

VX(~-~VXE) = $eE in R, (214 

V - (eE) = 0 in fI, 
ii x E = 0 on rmetal 

and EIX = Elp, for x E rA. 

(29 
PC) 
(214 

To exploit this symmetry in a field solver, the field quantities at a point on one boundary, 
sa; x E &, are constrained to be the same as the field quantities at the corresponding point on 
*the other boundary, @x E I?*, times the eigenvalue factor p. This is easily accomplished if the 
mesh, or discretization, of the problem has the same symmetry. An example of a finite difference 
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Fig. 4. An example of a finite difference mesh exploiting symmetry about a center x,,. The 
shaded region is part of fit, and the dotted and dashed lines are the boundaries FA and Pn, 
respectively. The filled circles are nodes where field values are computed. Dark gray lines 
indicate the field values necessary for a 5-point finite difference operator at nodes a and f. The 
field at node d is the field at node f times the eigenvalue p, while the field at point i is the field 
at node a times p. Note that the symmetry of the finite difference matrix M is preserved since 
M,f = M/w 

mesh is shown in figure 4. The field quantities are computed for points in the region f2, and 
on the boundary I’n. Whenever a field quantity at a point x outside of the region 52, or the 
boundary Fn is required by the finite difference operator, the field quantity at the point fix 
(which is in the region fi, or the boundary I’n) multiplied by the eigenvalue p is used instead. A 
finite element formulation need only ensure that the global basis functions satisfy the boundary 
condition between FA and Fn. The local basis functions of the finite elements remain the same. 

PERIODIC STRUCTURES 

A periodic structure has a symmetry operator fi which rigidly moves the structure by one 
period. The symmetry operator k acting on a point x can be written generally as 

l?ix=Rx+xo, (22) 

where the matrix R is an orthogonal matrix. That is, RTR = I. A common symmetry operation 
for periodic structures is translation by a cell length 1 along an axis, say 1. In this case x, = Ii 
and R = I. Thus Rx = x + 12. However, as indicated by the examples in figure 5, the 
general form of the operator fi allows more than translations. The symmetry operation can 
include a rotation as shown in figure 5b, and it can include a reflection as shown in figure 5c. 
A combination of translation and rotation describes helical structures, such as the example 
shown in figure 5d. These are all periodic structures and, as will be shown below, the modes 
of a periodic structure can be found by modelling a single period of the structure and using a 
boundary condition called the quasi-periodic boundary condition. 

Periodicity differs from the previous symmetry operators in that h2 is not the identity 
operator, so the eigenvalues of the symmetry operator are not simply fl. Floquet’s theorem, 
described below, gives the eigenvalues allowed for the symmetry operator k of a periodic struc- 
ture. 

Let A represent one of the fields, perhaps E or H, of a mode which is a solution to the eigen- 
mode problem in the periodic structure. Since Maxwell’s equations are second order in space 
derivatives, there are two independent solutions to the eigenmode problem with frequency w. 
For example, one solution could be A1 c( cos(kz) while the other solution could be A2 o( sin(kr). 
The fields ftAl and &A2 are also solutions to the eigenmode problem, and since any solution 
is.a linear combination of A1 and As, 

(23) 
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Fig. 5. Some examples of periodic structures. The dashed lines delimit one period, or cell, 
of the structure. The arrows indicate the action of the symmetry operations: (a) translation, 
(b) rotation and (c) glide reflection. The symmetry operation for a helical structure (d) is a 
combination of translation and rotation. 

Let A, = AAl + BA2 be an eigenmode of k with eigenvalue o. The eigenvalues CY and the 
corresponding coefkients A and B are obtained from the eigenvalue problem 

( 
all --(y al2 A 

a21 a22 - ff )( > 
B =o. 

It can be shown’ that alla22 - a12a21 = 1 for lossless structures. Then the characteristic 
equation is 

(all - cv)(a22 - a) - a12a21 = fx2 - (alI + a22)ct + 1 = 0. 

Letting p = (air + a22)/2, the eigenvalues are 

(25) 

CV=p+/m. (26) 

If IpI > 1 then the eigenvalues are real. One of the eigenvalues has IcrI > 1 and corresponds to 
a mode which grows geometrically along the structure. The other eigenvalue has loI < 1 and 
corresponds to a geometrically damped mode. These evanescent modes will not be considered 
further in this paper. If I/?[ 5 1 then the eigenvalues are complex, 

Since ICEI = 1 then the two eigenvalues are (Y = e *‘$J for some phase advance T/I. Furthermore, the 
field A is complex and represents a wave propagating along the structure. The real field A(x, t) 
can be obtained from the complex field A(x) using 

A(x, t) = Re {A(x)e-‘“‘} . 
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Fig. 6. One cell of the periodic structure of figure 5a. Cleft and Fri.& are the quasi-periodic 
boundaries. 

.- 
To exploit this symmetry the solutions are restricted to be eigenmodes of the symmetry 

operator R with a particular eigenvalue e ‘*. In other words, a phase advance $ is selected and 
the vector field E must satisfy 

E&x) = RE(x)e’+ (29) 
and the pseudovector field H must satisfy 

H(h) = fRH(x)e’$, (30) 

where the sign is the determinant of the matrix R. The sign is positive except for the examples 
of figure 5 except for glide reflection, in which case the sign is negative. 

Let the region fii be the interior of one period, or cell, of the periodic structure. The portion 
of the cell boundary in the interior s2 comprises the quasi-periodic boundaries Cleft and Fright. 
The symmetry operator k acting on the boundary Cleft is the boundary Fright. An example is 
shown in figure 6. There is no unique choice for the cell and its boundaries. The boundaries 
Cleft and Fright are usually planes, but in general they can be curved surfaces as shown in the 
example. 

Here is a formulation for the eigenmode,problem reduced to one cell fli of the periodic 
structure. Given the region 521, its material properties E and ~1 and a phase advance $, find the 
complex eigenmode fields E and the corresponding eigenvalues w”/c” such that 

Vx(p-lVxE) = $aE in 01, (314 

V-(eE) =0 in RI, (3W 
iixE = 0 on Pmetal WC) 

and Elax = RElxei$ for x E Cleft. (314 

SYMMETRIC PERIODIC STRUCTURES2 

Now consider a structure which is both periodic and symmetric. In other words, the struc- 
ture has two non-commuting symmetry planes. An example is shown in figure 7. Let a be the 
rigid motion operator which moves the structure or field one period (equation (22)) and let fi 
be the reflection operator about a symmetry plane Fsym,left (equation (2)). There is another 
symmetry plane Fsym,ri@ = R ^ 1/2r sym,left, where &‘I2 is the rigid motion operator which moves 
the structure or field one half of a period. The reflection operator about the symmetry plane 
r sym,right is h.‘/2+&t-“2 = ti. 

According to Floquet’s theorem, the fields can be decomposed into modes with phase ad- 
vance $. Consider the electric field E of a mode with phase advance $ satisfying E(k) = 
RE(x)e’d. The complex conjugate of the mode has the opposite phase advance, 

E*(h) = (RE(x)e’+)* = RE*(x)e-‘*. (32) 
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Fig. 7. (a) A symmetric periodic structure. The action of operator Ik is indicated by the arrow. 
(b) The region over which Maxwell’s equations must be solved is reduced to RI,.. The symmetry 
boundaries are I&+ft and rsym,right. 

@E is the mode reflected about the symmetry plane, and it also has the opposite phase advance, 
(@E)(h) = R(pE)(x)e-‘$. (33) 

Assuming E is a non-degenerate mode, equations (32) and (33) indicate that E* and @E are 
the same mode. Let 

E” = c&E (34) 
for some complex number CY. Conjugating equation (34) and substituting for E* with equa- 
tion (34) gives 

E = a*i)E* = &(&E) = CX*&~E = IaI”E (35) 
which implies loI = 1. Without loss of generality choose (Y = 1. A different LY would just 
multiply the mode by an overall phase factor. 

At the symmetry plane Isym,left, i)x=xso 

E*(x) = (@E)(x) = PE(+x) = PE(x) vx E rsym,left. (36) 
Let E, be the component of E normal to rsym,left and let Et be the vector tangential to rsym,left. 
Then the above conditions are Ez = -EL and Et = Et, or 

ReE,=O and ImEt= vx E rsym,left. (37) 
In other words, E, is imaginary and Et is real on rsym,left. 

At the other symmetry plane rSym,ri.+, x = ex. Replacing x with Px in equation (32) 
and using equation (34) gives 

E*(x) = E’@fix) = RE*(@x)emiti 
= R(@E)(@x)emiq = RPE(@‘x)e-‘q = RPE(x)e-‘+ kc E rsym,cght. 

(38) 

RP is the reflection matrix about the symmetry plane rSym,ri&, so let E, be the component of 
E normal to rsym,right and Et be the vector tangential to rsym,ri&t. Then the above conditions 
are EC = - E,,e-‘* and Et = Etemi+, or 

Re E,e -+,/2 = 0 and ImEte-i’b’12 = 0 vX E rsym,right- (39) 

In other words, E, oc ie”@/’ and Et o( ei+i2 on ISym,right. 
The eigenmode problem reduced to one half cell 521,. is: given the region RI,, material 

properties E and p and the phase advance $J, find the eigenmode fields E and the corresponding 
eigenvalues w”/c” such that 

Vx(p-‘VxE) = $E in fh,, 

..- 

V. (EE) = 0 in RI,, (4Ob) 
iixE = 0 on Imetal, (4Oc) 

Re E, = 0 and Im Et = 0 on rsym,left, (404 
and Re E,e-i@/2 = 0 and Im Etesiti12 = 0 on rSym,right. (404 
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Fig. 8. (a-d) Snapshots of the electric field of the lowest dipole mode with phase advance TJ = 
7r/2 for an X-band accelerator structure (disk loaded waveguide). The left and right sides are 
the symmetry planes. The size and direction of the arrows indicate the magnitude and direction 
of the fields. (e) Dispersion diagram for the five lowest dipole modes. 

An example using symmetric quasi-periodic boundaries is shown in figure 8. Some dipole 
modes of an X-band accelerator structure were calculated using the finite element field solver 
YAP?The first four figures illustrate the complex nature of a mode with phase advance $J = 1r/2. 
The snapshot at wt = 0 is the real part of the calculated field and the snapshot at wt = r/2 
is the imaginary p.art of the calculated field. .Two intermediate snapshots are included to aid 
visualization of the wave travelling to the right. Since the modes can be calculated for an 
arbitrary phase advance using these boundary conditions, it is easy to calculate the dispersion 
diagram shown in figure 8e. If only metal and symmetry boundary conditions were available in 
the field solver then calculation of the dispersion diagram would be much more work for both 
the computer and the user. 

CONCLUSION 

Boundary conditions for exploiting reflection symmetry about a plane, reflection symmetry 
about a point, periodicity, and periodicity with a symmetry plane have been described. These 
conditions do not change the formulation for the interior of the structure and they are easy to 
implement in a field solver. Taking advantage of the symmetries of an RF structure reduces the 
size of the problem. This leads to less work for the computer and the user of the field solver. 
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