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The coefficients appearing at leading and subleading order in the l/m expansion 
of bilinear heavy quark currents are related to each other by imposing reparametriza- 
tion invariance on both the effective current operators and the short-distance coef- 
ficient functions in the heavy quark effective theory. When combined with present 
knowledge about the leading order coefficients, the results allow to calculate all co- 
efficients appearing at order l/m to next-to-leading order in renormalization-group 
improved perturbation theory. They also provide a meaningful definition of the ve- 
locity transfer variable v . v’ to order l/m. 
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I. INTRODUCTION 

Over the last few years, heavy quark effective field theory has been established 
as an efficient tool to analyze decay processes involving hadrons containing a heavy 
quark [l-5]. I n such systems the heavy quark is almost on-shell and interacts with 
the surrounding soup of light quarks, antiquarks and gluons predominantly via the 
exchange of soft gluons. As rnQ >> AQ~D these soft interactions cannot resolve the 
structure of the heavy quark; in particular, they are blind to its flavor and spin. In 
this limit the heavy quark acts as a featureless color source. This is the origin of 
a spin-flavor symmetry, which relates the properties of hadrons containing different 
heavy quarks [6,7]. 

Since, in the mQ + 00 limit, the heavy quark velocity v is conserved with respect 
to soft QCD interactions, it is appropriate to split the total momentum into a “large” 
kinetic piece and a “small” residual momentum k, which puts the heavy quark slightly 
off-shell: pi = mQ?J + k. Because all dynamics resides in k, it is useful to absorb 
the mass-dependent piece of the momentum by a field redefinition. To this end, one 
introduces a velocity-dependent field by [2] 

Q(z) = eimQ”‘” hv(z) 

and imposes the on-shell condition $ ~Jx) = &,(z), corrections to which are sup- 
pressed as AQcD/mQ. The new fields carry the residual momentum k, which by 
construction does not scale with mQ. Their strong interactions are described by the 
so-called heavy quark effective theory (HQET), w ic essentially provides an expan- h’ h 
sion in k/&Q. To lowest order in l/mQ, the effective Lagrangian is [2,3] 

L, = h,,iv-Dh,, (2) 

where D is the gauge-covariant derivative. Such a Lagrangian has to be written for 
every heavy quark in the process under consideration. For Nh heavy quarks of the 
same velocity, the total Lagrangian is then invariant under a SU(2Nh) spin-flavor 
symmetry group. This symmetry is explicitly broken at order l/mQ by the presence 
of higher dimension operators [ 1,5]. 

For the effective theory to provide a converging expansion it is necessary that k 
be of order AQcD. This implies that the heavy quark velocity v must be close to the 
velocity vh of the hadron containing the heavy quark: 

’ = vh + o(AQcD/mQ). 

This still allows some freedom in the choice of v, however. Instead of using (v, k) as 
the heavy quark velocity and residual momentum, one can as well construct HQET 
using some different set of variables (v + q/mQ, k - q), as long as Q is of order A~cn 
and satisfies 2~.q + q2/mQ = 0, so that the new velocity is still a unit four-vector. 
The effective theories obtained in these two ways must, of course, be equivalent [8]. 

‘This so-called reparametrization invariance of HQET is a very useful concept in that it 
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relates the coefficients of operators appearing at different order in the l/mQ expansion 
[9]. These relations are renormalization-group invariant, i.e, they are true to all orders 
in perturbation theory and cannot be subject to nonperturbative corrections either. 

In this paper, we use reparametrization invariance to derive relations between 
the coefficients appearing at leading and subleading order in the expansion of heavy 
quark currents in H&ET. Some of these relations were already obtained in Ref. [9], 
by imposing reparametrization invariance on the operators in the effective theory. 
However, it was not realized until now that additional relations can be derived by 
writing also the velocity-dependent short-distance coefficients in a reparametrization 
invariant form. In fact, we show that all coefficients of the effective current operators 
of dimension four can be determined that way. In Sect. 2 we briefly discuss the 
heavy quark expansion of currents in H&ET. In Sect. 3 we recall the concept of 
reparametrization invariance and study its implications for the coefficients in the 
expansion of currents. Sect. 4 deals with an interpretation of the reparametrization 
invariant extension of the velocity transfer variable v . v’. A short summary of the 
results is given in Sect. 5. 

II. EXPANSION OF CURRENTS IN HQET 

Let us consider currents of the form Q’ l? Q, which mediate transitions between 
two heavy quarks Q and Q’ of, in general, different flavor. In principle I could be 
an arbitrary combination of Dirac matrices. For the weak currents, however, I’ = 
Y(l - Y5h w e are interested in hadronic matrix elements of these currents between 
hadron states H(vh) and H’(vi) w ic contain the heavy quarks. HQET can be used h’ h 
to make the dependence of such matrix elements on the heavy quark masses explicit. 
In the effective theory each current has a representation as a series of operators built 
from the new fields h, and h:, replacing Q and Q’. These effective current operators 
can have dimension higher than three, in which case they are multiplied by inverse 
powers of the heavy quark masses. In general, one has 

1 Oj + 0(1/m2), 

where the symbol e is used for equations which are true in matrix elements only, and 
m stands generically for mQ or mQ’. Both the coefficients and the operators in this 
expansion depend on I. The {J;} are a complete set of dimension three operators 
with the same quantum numbers as the original current. Similarly, the {Oj} form 
a basis of dimension four operators. Since in the effective theory the fields carry 
velocity labels, the effective current operators can depend on v and v’. In case of the 
vector current &‘rP Q, for instance, the dimension three operators are 

J1 = h:, yp h, , 

J2 = h:, vp h, , 

J3 = h;, v+ h, , (5) 
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while a convenient basis for the dimension four operators is 

01 = h:,yfii$h,,, OS = -h:,iFyfih,, 

02 = hL,vpiJ9h,, 09 = -hl,iFv”h,, 

03 = hl, vtp iJ9 h, , Olo = -hl, i F vtp h, , 

Oq = h:, iDp h, , 011 = -?(,, is h, , 

O5 = hl, yp iv’- D h, , 012 = -h’,, iv.zTp h,, 

0s = hl, VP iv’- D h, , 013 = -h:, iv+‘Dvp h,, 

07 = hl, vQ‘iv’.D h,, Old = -h:, iv.‘0 v’fi h, . 

(6) 

Similar sets of operators can be constructed for the expansion of the axial vector 
current Q’ ~“75 Q. In (6) we have not included operators that vanish by the equation 
of motion iv.D h, = 0 following from the effective Lagrangian (2). They are irrelevant 
at the level of matrix elements. For simplicity we have evaluated the currents at x = 0; 
otherwise the operators in HQET would acquire a phase according to (1). 

Eq. (4) provides a separation of short- and long-distance contributions to current 
matrix elements. The perturbative corrections arising from hard gluons (with virtual- 
ities of order mQ or mQ#) are factorized into the coefficients C;, Bj and Bj, which are 
functions of the heavy quark masses, the velocity transfer v ev’, as well as an arbitrary 
matching scale p: C; = Ci( mQ, mQ’, vev’, p) etc. In particular, these functions contain 
any logarithmic dependence on the heavy quark masses resulting from the running 
couplings &(mi) and &(mQI). All long-distance effects, on the other hand, are still 
contained in the hadronic matrix elements of the effective current operators, which 
are to be evaluated between states of the effective theory. These matrix elements 
can be parameterized by universal functions of the hadron velocity transfer vh *vi, 
which are independent of the heavy quark masses. They do depend on the matching 
scale, however, in such a way that the right-hand side of (4) is p-independent. For 
the vector and axial vector currents the coefficients Ci are known to next-to-leading 
order in renormalization-group improved perturbation theory [lo]. The coefficients 
Bj and Bi, on the other hand, have so far only been calculated in leading logarithmic 
approximation [ 113. 

III. RELATIONS IMPOSED BY REPARAMETRIZATION INVARIANCE 

The effective theory must be invariant under reparametrizations of the heavy 
quark velocity and residual momentum which leave the total momentumpQ = mQv+k 
unchanged. Luke and Manohar have investigated the implications following from 
this simple statement in detail [9]. They f ound that the velocity and the covariant 
derivative must always appear in the combination 

.-. v=v+J-$ (7) 
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which can be interpreted as the gauge-covariant extension of the operator FQ/mQ. 
A subtlety which has to be taken into account is that the heavy quark spinor fields 
transform under reparametrizations in a nontrivial way. They become invariant by 
including a Lorentz boost A(Y, v), which transforms v into V. The result is that 
the effective Lagrangian of H&ET, as well as any composite operator in the effective 
theory, must be built of V and i,, = A(Y, v) h,. At order l/m, the explicit form of ?I, 
is 

?I,= (,+g)h,=yh,. (8) 

Given this result, one can immediately relate some of the coefficients in (4), namely 

PI: 
B1=B;=Cl, 

B2 = f B4 = B; = c2, 

(9) 
Since all dimension four operators in (6) contain a covariant derivative acting 

on one of the heavy quark fields and are therefore not reparametrization invariant by 
themselves, it is clear that there must be additional relations. For instance, derivatives 
acting on h, can only come in combination with a coefficient l/mQ, while those acting 
on h,,~ must come with l/mQt. Hence 

Bj=O; j=S,...,14, 

B;=O; j = 1,...,7. (10) 

What remains to be determined, then, are the coefficients Bj for j = 5,6,7 and Bj 
for j = 12,13,14. The important new observation which accomplishes this is that 
not only the effective current operators, but also the velocity-dependent coeficient 
functions must be written in a reparametrization invariant way. This means that 
the variable w = v . v’ which these functions depend on has to be replaced by the 
reparametrization invariant operator 

ijj = p. )J = (6$).(v+Z), (11) 

where it is understood that iD acts only on h,, while i‘D acts on h:,. Inserting 
the expansion (for simplicity, we suppress the dependence of Ci on the heavy quark 
masses and on p) 

iv’- D iv-‘0 
--mQ’ +O( “Q 1 
5 
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into (4) one does indeed generate the remaining operators O5 to Or and Oi2 to Oi4. 
We find 

B5=Bi2=2z, 

B6=Bi3=2$$ 

BT=B&2$ (13) 

Eqs. (9)-( 13) summarize our main result: Reparametrization invariance relates 
all coefficients appearing at order l/m in the heavy quark expansion of the vector 
current to the coefficients appearing at leading order, and to their derivatives with 
respect to w = v . 2)‘. A similar statement applies, of course, for any other current. 
These relations are valid to all orders in perturbation theory, and they cannot be 
modified by nonperturbative corrections either. 

At this point it is worthwhile to compare our exact results to some approxi- 
mate expressions for the short-distance coefficients known so far in the literature. In 
Ref. ‘[ll] the coefficients have been calculated in leading logarithmic approximation, 
working with an average heavy quark mass m. In accordance with the relations (9) 
and (13), one then obtains 

G(w) = h(w) = B;(w) =. 

where 

(k(W) = 33 82nj & 1+ + -) - 1 
[ 1 7 

(14) 

(15) 

and nf is the number of light quark flavors. All other coefficients vanish in this 
approximation. ’ Given our exact relations and the fact that the coefficients C; are 
know to next-to-leading logarithmic order [lo], it is now possible to derive much more 
accurate expressions for Bj and B(1. 

. 

‘We can also compare to Ref. [la] , w h ere the matching contributions of order c~,(TIxQ,)/~Q~ 

arising at p = mQt have been computed. The results given there satisfy the relations (9) 
and (13). The expression presented for the coefficient Ci is incorrect, however. The correct 
result is given in Ref. [lo]. 



IV. REPARAMETRIZATION INVARIANT VELOCITY TRANSFER 

At order l/m, the effect of the operator i2 in the short-distance coefficients can be 
readily evaluated at the level of matrix elements. The equation of motion iv-D h, = 0 
and the corresponding equation for h:, allow one to replace the covariant derivatives 
in (12) by total derivatives acting on the current, e.g. 

h~Jiv’-Dh, = iv’.d[hk,rh,], (16) 

where l? is again arbitrary. From translational invariance, and taking into account 
the phase factors in the definition of the effective heavy quark fields in (l), one finds 
that the s-dependence of a current matrix element between hadron states H(vh) and 
iI’ is given by exp(-i$ + x), where 

C$ = (mH vh - mQ v) - (mH’ v; - mQ’ v’) . (17) 
Using this, together with the fact that mH - mQ = mH’ - mQ’ to leading order in 
the l/m expansion, it is straightforward to show that 

(G-‘1) (H’(v#& r h,,JH(qJ) = yy;;; h-1) (04I~:~ r h,lH(vh))+O(l/m2) ) 

where wh = vh . vfi. Note that the hudron velocities appear in this equation. To 
order l/m, it follows that in matrix elements the operator G in the short-distance 
coefficient functions C; can be replaced by the reparametrization invariant velocity 
transfer variable 

w=1+ mHmH’ 

mQmQ’ 
(oh*?& - 1). (19) 

If this variable is used in the coefficient functions, the operators 05 to Or and 012 to 
014 no longer appear in the expansion (4) since, for instance, 

1 G Cl(W) 51 + O(l/m2). 

Let us explore in more detail the physical meaning of the variable ~0. One might 
have expected that the reparametrization invariant generalization of the quark veloc- 
ity transfer would be the velocity transfer of the hadrons, wh = vh. vi. This is not the 
case, however. Rather, in (19) th ere appears an additional scaling factor depending 
on the hadron and quark masses. The kinematic region for w extends from ti = 1 at 
zero recoil (vh - vf, = 1) up to a maximum value given by 

- 
wmax - 

1 = mHmH’ (mH - mHt)2 = crnQ - "Qd2 
mQmQ’ 2mHmp 2mQmQ’ + O( l/m2). (21) 
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This is just the maximum velocity transfer attainable in a decay of free quarks. In 
fact, it can be readily seen that (19) ’ p IS recisely (up to terms of order l/m2) the 
condition 

(PH - PHd2 = (PQ - PQ'j2 (22) 

that the momentum transfer to the hadrons equals the momentum transfer to free 
heavy quarks. 

It is not hard to see why, away from zero recoil, the quark velocity transfer il, seen 
by hard gluons is different from the hadron velocity transfer ?Jh. Consider the weak 
decay H --t H’ + IV. In the initial state, the heavy quark Q moves on average with 
the hadron’s velocity ZJ~. When the W boson is emitted, the outgoing heavy quark 
Q’ has in general some different velocity vQt. Over short time scales this velocity 
remains unchanged, and this is what is seen by hard gluons. After the W emission, 
however, the light degrees of freedom in the initial hadron still have the initial hadron’s 
velocity. They have to combine with the outgoing heavy quark to form the final state 
hadron H’. This rearrangement happens over much larger, hadronic time scales by 
the exchange of soft gluons. In this process the velocity of Q’ is changed by an amount 
of order l/m (its momentum is changed by an amount of order AQ~D). Hence the 
hadron velocity transfer differs from the “short-distance” quark velocity transfer by 
an amount of order l/m. The precise relation between 2oh and w is determined by 
momentum conservation and is given in (19). At zero recoil, no such rearrangement 
is needed, and indeed w = wh = 1 in this limit. 

V. SUMMARY 

We have shown that, to order l/m in the heavy quark effective theory, the 
form of renormalized bilinear heavy quark currents is completely determined by the 
reparametrization invariant extension of the leading order currents. This is achieved 
by imposing reparametrization invariance on both the effective current operators and 
the velocity-dependent short-distance coefficient functions. This way, the velocity 
transfer variable w = v . v’ is promoted into an operator G, which in matrix elements 
can be replaced by a new variable w that can be interpreted as being the “short- 
distance” velocity transfer of free heavy quarks, i.e., the velocity transfer seen by 
hard gluons. This variable depends only on the hadron velocities and is therefore 
invariant under reparametrizations. For the vector current, the result reads 

&‘Y’ Q e Et/ [G(G) yb + ~44 v + c3(q VP] i, 

1 C&i) J1 + 2 + + C&i4 Q 
4’ 
2: 1 1 J2 + 022;204 + 09 

Q 2mQt 1 
+ C3(uI) J3 + -% + 01;;2011 

2mQ 1 + Wlm2> 7 
9’ 

(23) 
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with V and ?I, as defined in (7) and (8), respectively. The generalization to other 
currents is straightforward. The matrix elements of the effective current operators J; 
and Oj can be parameterized by universal functions of the hadron velocity transfer 
in the standard way [4, 131. R p e arametrization invariance relates the anomalous 
dimensions of the dimension three and dimension four operators in (23), and this 
leads to relations between the p-dependence of the associated universal functions. 

For the vector and axial vector currents, the coefficients C; are known to next-to- 
leading order in renormalization-group improved perturbation theory, for an arbitrary 
ratio of the heavy quark masses. The ingredients which go into their calculation are 
the one- and two-loop anomalous dimensions of the operators J; [4,14], and the full 
one-loop matching between QCD and the heavy quark effective theory [lo, 151. In the 
case of different heavy quark masses one needs in addition the anomalous dimensions 
and matching in the intermediate effective theory, which governs the region mQt < 
~1 < mQ [16-181. Detailed lists of the numerical values of C; as functions of ti and 
the heavy quark masses are compiled in Ref. [lo]. By virtue of (23) the currents are 
now known to order l/m with the same accuracy. 
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