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Abstract 

Starting from free relativistic particles whose position and velocity can only be 
measured to a precision < ArAv >Z ftc/2 meter’sec-‘, we use the relativistic 
conservation laws to define the relative motion of the coordinate r = r1 - r2 of 

(h-kz) * two particles of mass ml, m2 and relative velocity v = ,Bc = (L1+lcZ) m terms of the 

conic section equation v ’ = I’[2 f 11 where “+” corresponds to hyperbolic and “-” 
to elliptical trajectories. The Jquaiion is quantized by expressing Kepler’s Second 
Law as the conservation of angular momentum per unit mass in units of n. Then 

the principal quantum number is n E j + f with “square” 6 = (n - l)nK2 E 
&([a + 1)~‘. Here & = n - 1 is the angular momentum quantum number for 
circular orbits. In a sense, we obtain “spin” from this quantization. Since IT/a 
cannot reach c2 without predicting either circular or asymptotic velocities equal to 
the limiting velocity for particulate motion, we can also quantize velocities in terms 
of the principle quantum number by defining ,8: = $ = $(A) = ($-)2. For the 
Coulomb case with charges Zle, Zze of the same sign and Q - e2/m,,c, we find 
that I’/c2a = 21&a. The characteristic Coulomb parameter q(n) E Z~&CY/,& = 
Zl.Z$Nr then specifies the penetration factor C2(q) = 27rq/(e2”q - 1). For unlike 
charges, with q still taken as positive, C2(-77) = 27rq/(l - ew2*q). For gravitation 
F/c?.a = rnlrnacuc/rnfj with CWG = Gmy/tw. 

Relativistic quantum mechanics is recovered if the smallest distance which can 
be measured electrodynamically is Al = Ii/2 172,~ or K: = h/m, The starting point 
for quantum electrodynamics is achieved by taking CY = e2/m,,c + e2/hc M l/137. 
We extend our previous result for the hydrogen spectrum to Coulomb scatter- 
ing. The starting point for quantum gravity is given by taking CYG = Gmp/Kc + 
Gmifhc E 1/(2127+136). 0 ur d erivation of “spin” from Kepler’s second law allows 
us to show that the classical tests of General Relativity are met. If we postulate 
crossing symmetry rather than just CPT, we predict that free anti-matter near the 
surface of the earth will “fall” up. 
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“[Mathematics] begins by being a most useful servant when dealing with phe- 
nomena of the ordinary scale of magnitude, but ends by dragging us by the scruff 
of the neck willy nilly into the inside of the electron where it forces us to repeat 
meaningless gibberish.” 

- P.W.Bridgman, The Logic of Modern Physics, 1927, p. 149. 

1. A MODERN OPERATIONAL METAPHYSICS .* 
Segrk often used to remark that “You can’t measure errors.” Philosophers 

almost always ignore this inconvenient fact, and physicists often do so when they 

stray from familiar laboratory protocol into unfamiliar subjects such as “quantum 

mechanical measurement theory” . 

Errors fall into two rough classes: qualitative and quantitative. Qualitative er- 

rors may be due to mistakes in procedure which are undetected at the time but can 

be given a rational explanation after the fact which suggests testable hypothesis. 

Or they may be due to some unexpected phenomenon which becomes relevant as 

further knowledge accumulates, and again can lead to a qualitative explanation. 

Or, as experimentalists know to their sorrow, and people who talk about Science 

without understanding it never recognize, errors can remain inexplicable “forever”. 

Quantitative errors are of two rough types: statistical and bounded. Statistical 

errors can be attributed to causes so uncorrelated and unstructured that, in the 

absence of further information, they can be given equal weight in a case count. 

Elaborate theories can be erected on such a hypothesis, but they are no guard 

against errors of the first type, which are often called “systematic errors”. These 

have left many a beautiful theory in ruins once they were recognized. 

Bounded errors are the type that arise when you can say with reasonable 

certainty that an experimental value must fall between fixed limits, but when 

you cannot say much about where they fall in that range. The typical case for ._- 
us has been called the “counter paradigm”. We idealize this as a device with 

linear macroscopic size AI measured using some standard laboratory protocol for 
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measuring length in well understood units, and a recording device connected to a 

clock. If the counter fires, the time read by the clock is recorded, eg by bits on a 

magnetic tape which count the number of ticks of the clock after some reference 

tick. If the counter does not fire, no such number is recorded. The time interval 

between two ticks is called At, and again is established by standard laboratory 

protocol. Obviously, without further information, we can assign no meaning to the 

“time between ticks”. Events of this type will be called NO-YES events. 

We take the operational position that these quantitative, finite bounds on mea- 

surement uncertainty have to be taken seriously. We are precluded by our meta- 

physics from giving any meaning to “time between ticks” or “position within a 

counter” where an unjustifiable extrapolation to shorter distances might seduce us 

into trying to give meaning to a finer grained “space time event structure”. Of 

course, as we construct more elaborate theories, we may do so indirectly and shrink 

our Al and At bounds accordingly. But we must always be prepared for surprises 

when we do so. Plenty have occurred in the history of modern physics. - 

Bridgman suggested that we construct our theories in such a way that we 

are prepared for such extrapolative failures. He did not succeed in providing any 

precise protocol for doing so. Perhaps we now know enough to start doing just 

that. I suggest that we have learned from relativistic quantum mechanics that 

our conceptual models cannot measure distance directly to better than h/2m,c 

using electrodynamics because we produce electron-positron pairs and the prob- 

lem becomes non-local. If we try to push our theory to indirect bounds set by 

the Planck mass, hf$lanck = h/G, we have to stop at F~/Mpl,,~kc z 10-35meter 

because there is, currently no generally accepted theory of quantum gravity*. We 

try to implement Bridgman’s suggestion that we build limits of measurement into 

our theory before we hit these new and only partially understood phenomena by 

postulating a technological bound on the accuracy of relativistic space-time mea- 

surement, AZ = cat, and a bound on the measurement of area per unit time of 

* See Appendix 1, letter from CtJ.Isham to HPN. 
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< ArAv >: f~/2 meter’sec- ‘. We call “K” Kepler’s constant. 

REMEMBER that we can never be sure that we have eliminated qualitative 

errors. 

2. REDUCTION OF PARTICLE 
DYNAMICS TO INTEGERS 

2.1 LABORATORYSCATTERING MEASUREMENT 

We reduce the dependence of our analysis of measurement on the concept of 

mass by replacing it with mass ratios measured relative to some standard particle 

beam using only space, time, velocity and velocity change measurements. For 

this purpose we use counter telescopes consisting of two counters with thickness 

AZ connected to recording clocks having the time between ticks At. We pick our 

units such that Al = cAt = 1, making all measurable distances and times integers. 

This commits us to insuring that we never talk about fractional space and time 

intervals as nxeasurable. If the spatial interval between the counters is L and the 

time interval between two sequential counter firings is T we attribute the counter 

firings to the passage of a particle with velocity V = L/T. All data discussed here 

will be collected at a slow enough rates so that the interval between the passage 

of particles allows this measurement to be unambiguous. 

We now consider the arrangement of four counter telescopes pictured in fig- 

ure 1. The arrangement is set up to measure the process (1,2) + (3,4). S1 is 

a source of particles (eg an accelerator) of known type and S2 a second source 

of particles of the same or a different type. D3 and Dq are detectors which may 

or may not be included in the setup, and if included are used to identify what 

types of particles emerge through the counter telescopes 3 and 4. After a sufficient 

number of calibration experiments, we can use this setup to measure mass ratios of ._- 
all type’s of particles we encounter relative to some one source taken as providing 

particles with a standard mass. 
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The entrance counters into the scattering chamber for the incident particles (1’ 

and 2’) and the exit counters for the scattered or produced particles (3 and 4) lie on 

a circle of macroscopic radius d, and all four telescopes point to the center of this 

circle. This “center” is not a point but a region specified somewhat inaccurately 

by the geometrical arrangement. The recording clocks in each of the eight counters 

are synchronized to a single time sequence by using the Einstein synchronization 

procedure, so that the lengths of the counter telescopes can be given as “radar 

distances”, i.e. as half the time it takes a light signal to go from one position to 

the other and be reflected back. Thus the length of each telescope Li and the time 

L!‘i it takes a particle of velocity ui = /?;c to traverse each telescope can be specified 

in terms of two time parameters (t: > t;, i E 1,2,3,4) on this synchronized scale 

bY 

Li = N(t: - ti); Ti = N(ti + ti); ,Bi = Li/Ti; i E 1,2,3,4 (24 

Often we cannot measure velocities directly by “time of flight” as this paradigm 

implicitly assumes. In that case, we need to make a more complicated analysis to 

arrive at the uncertainty < Av >. We make a start in that direction by introducing 

a factor N, as is done in Eq. 2.1, in such a way that t:ft; are known to the nearest 

integer, but Li and Ti may be known less accurately. 

We consider two correlated sequences of events interpreted as caused by a single 

scattering event, namely 

t1 < t’l < t3 < tQ 

and 

t2 < t; < t4 < t; 

._- 
which we simplify by using the standard notation 11’33’ and 22’44’. If the scatter- 

ing event is presumed to take place at the center of the chamber at time t on the 
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same time scale, the correlation implied by this assumption is that 

t = ti + t: + d/,L?ic (2.2) 

to the accuracy of our knowledge of the eight times and the geometry. For suffi- 

ciently weak beams, the association of a single t with the eight counter firings will 

be unambiguous. 

2.2 MEASUREMENT OF MASS RATIOS 

Consider the special case when all four of the counter telescopes (four pairs of 

counters) record the same speed, ,f3ic = /?c = v. We assume that the lines 1’3 of 

length b and 2’4 of length b’ are parallel and are bisected by a line perpendicular to 

them through X, as illustrated in figure 2. That is we have two isosceles triangles 

with a common vertex and parallel bases b, b’. Calling their inferred altitudes _ 
a, a”and angles at the vertices opposite the bases r - 8, r - 6’ we have, as a first 

approximation, 

u2 = d2 - ab2 = 2dZsin2i = u2[(:)2 _ t] (2.3) 

and similarly for u’, 8’. We take the coordinate direction j parallel to the alti- 

tudes a, u’, take the coordinate direction Ic parallel to the bases b, b’, and assign 

coordinates (xi, zk) as follows: 

1’ : (0,O); X : (a, b/2); 3 : (0, b) (2.4) 

We now relate this geometry to the common velocity v registered by all four 

counter telescopes and the fact that we can only measure times to an accuracy 

AT = tl + ti. Explicitly 
..- 

. 

1’X = X3 = d = 2vAT; 1’3 = b = (;)2vAT P-5) 
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and the velocity components are 

2)+x +zJ; p =+; 453 =(L),; 3 vp + vi = v2 (2.6) 

We attribute this confluence of events to the scattering of one particle from each 

beam within the region X. Note that this is a fiction. We have know direct way of 

knowing what happens inside the scattering chamber, let alone that it happened 

at X. The approach to short distances through scattering is necessarily non-local. 

However, we can use these non-local measurements to define the ratio of the mass 

m’ of the particles in the second beam to the mass m of the particles in the first 

beam by the equality 

m’b’ = mb P-7) 

It is a matter of experience that the scale invariant equality m’/m = b/b’ is inde- 

&&lent of the common measured velocity v for all known pairs of particles which 

can be compared in this way and hence defines a velocity invariant mass ratio scale 

for all particles relative to any one type. Note that we make the comparison at the 

same velocity to avoid the complications of relativistic kinematics. 

2.3 MASS QUANTIZATION;LORENTZ BOOSTS IN ENERGY-MOMENTUM SPACE 

Assume that there is a smallest measurable mass, or energy change, which 

we call Am. However we arrive at our mass quantization, no current empirical 

information prohibits us from assuming that energy, momentum and velocity can 

be parameterized - using units such that c = 1 - in terms of two integers kl, k;! 

by the equations 

E = (kl + k2)A m; P = (kl - ka)A m; /3(/q, k2) = f = Icl - Ic2 (2.8) ._- E kl + k2 . 

In order to calculate Lorentz boosts in l+l dimensions, and in particular in l+l 
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energy-momentum space, it suffices to know the velocity addition law 

pv = P •t P’ 

1tPP’ 

For our rational fraction velocities, this gives us the transformation law 

(2.9) 

(2.10) 

For reasons which come from the way conservation laws are used in high energy 

physics, and also because of crossing symmetry, it is useful to consider the special 

case ki + k2, kk + kg. This reduces the transformation law to 

p” = h - k3 
h + k3 

(2.11) 

Clearly, for rational fraction velocities, we can always use the definition and useful 

symmetric identity 

together with 

Pij E ki - Icj * pij t pjk + pki = 0 

e;j = ki + kj; GjPij = pij 

(2.12) 

(2.13) 

for any three integers ki, kj, kk. These definitions then guarantee that the velocity 

addition law never takes us out of the space of rational fraction velocities. 

We now note that for three fixed integers defining the velocities, the invariants 

E2 - P2 E C2 can be scaled up from the unobserved quantum of mass Am by any 

integer N < 101’ as follows 

Eij = N( ki + kj)Anl = e;j NAm 

Ej = N(ki - kj)Am = ,L?ijEij = PijNAm (2.14) 

._- 
Sij = sijN2Am2 = ~~j = (NaijAm)2 = 4N2 kikjAm2 (2.15) 

fn classical relativistic particle mechanics the invariant C for a free particle is 

just the “rest mass” of the particle, but in quantum mechanics, or for a system 
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with internal energy, we must often consider the more general case C # m. This 

is sometimes called “off mass shell”. It is analagous to the “off energy shell” 

situation in non-relativistic quantum mechanics which arises from the “energy- 

time uncertainty principle.” 

We can now define the standard l+l Lorentz transformations in terms of the 

usual dilation factor y, with ,B(kr, k2) given by (2.10) as 

P’ = $p + PE); E’ = Y(E + Pp) (2.16) 

where 

y2 = (h + Ic2)2; 
4kl h 

?2p2 = y2 _ 1 = (kl - k2j2 
4h k2 

(2.17) 

We assert that the implied square root in this standard form need never be taken. 

2..4- THE VELOCITY CONSTRAINT 

Clearly, if we use counter telescopes to measure space-time and velocity coor- 

dinates in the manner discussed in the section on mass-ratio measurement (Sec. 

2.2), we have two different integer ratio velocities, V/C = (ti - t;)/(ti + ti) defined 

by the counter telescope and what we called uli 13’ = (b/2+. This is characteris- 

tic of a situation in which we make both position-velocity and energy-momentum 

measurements on the same particle. We generalize it by the following definitions 

R = N(t’-t)Al; T = N(t+t’)At; P = N(k’-k)cAm; E = N(k+k’)c”Am (2.18) 

In the simplest situation, the two velocities are the same and 

._- 

t/--t k’ - k 
P+t =- k’ + k 

+ t’k = tk’ (2.19) 

Then, for t, t’, k, k’integer, we have a minimum period T/N and minimum energy 

E/N bounded from below by our time and mass quantization, but which can be 

10 



scaled up by any factor N without destroying any integer relationships we establish 

at short distance and small momentum. Thus we can give a general description of 

any free particle in terms of four integers respecting the relativistic conservation 

laws down to some lower bound set by technology - or, eventually down to the 

constraint set by being able to measure Planck’s constant in some unambiguous 

way. 

-2.5 THE SIXTEEN DEGREES OF FREEDOM 

The standard kinematic relations”’ used in relating theoretical predictions to 

experimental observations (cross sections, which are Lorentz invariant probabili- 

ties) in the practice of high energy particle physics are given in Ref.1, p 162, et. 

seq. They express both Lorentz invariance and the conservation of energy and mo- 

mentum in scattering experiments (particle reactions) such as (1,2) + (3,4). We 

have seen above that we can use four integers to define the position, time, energy 

momentum of any free particle, and hence 16 integers for any such scattering exper- 

iment. Once we have related these sixteen integers to the conventional Mandelstam 

variables in a scale invariant way, the assumption that these sixteen numbers can 

be expressed as integers on some length and time scale compatible with the integer 

definition (Ref 1, p. 2) of the limiting speed for information transfer 

c E 299 792 458 m .s~c-~ (2.20) 

amounts to defining a minimum distance and time resolution bounded from below 

by technology. The step to relativistic quantum mechanics is then trivial once we 

have some well defined laboratory phenomenon dependent on Planck’s constant h 

or ii = h/2x, such as deBroglie wave interference, the hydrogen spectrum, Compton 

scattering, black body radiation, electron-positron pair creation, . . . . It is 

Al + h/m,c; At --+ ii/m,c2 (2.21) 

._- 
&rr task then becomes to deduce all the well known quantum effects, - a task 

which is still “work in progress”. 
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Returning to Figure 1, we note that we have already defined eight of the sixteen 

degrees of freedom by the eight times ti, t{. Four more parameters relate the whole 

apparatus to the walls of the laboratory and the laboratory clock. We can choose 

the remaining four parameters to be the chords connecting the two entrance and 

two exit counters: B1'3, B34, B42/, B211’. This particular choice corresponds to going 

around the circle representing the scattering chamber in a clockwise sense. The 

remaining two distances, I3184 and &3 are fixed if, as we have implicitly assumed 

so far, all four counters lie in a plane. In the general tetrahedral situation given 

in figure 3 taken from an earlier attempt to discuss bit-string scattering theory PI 

these two additional numbers provide useful information. They turn out to be 

fixed by the conservation laws when we have made enough measurements, and 

hence provide the kind of “redundant” information that experimentalists use to 

estimate systematic and reduce statistical uncertainties. 

We will relate these 16 parameters to bit-string kinematics on another occasion. 

Here we show instead how to make use of scale invariant quantization in the context 

of bound state orbits and scattering trajectories traditionally explained in terms 

of an inverse square law “action at a distance”. This is important because it shows 

that these concepts are still useful in a relativistic theory where measurement 

accuracy is bounded from below but otherwise is scale invariant. This in turn 

allows us to find a well defined “correspondence limit” for relativistic quantum 

mechanics in classical relativistic particle mechanics with e/m fixed and classical 

electromagnetic and gravitational fields, as we rough out in Appendix 2. 

2.6 CROSSING SYMMETRY AND ANTI-PARTICLES 

One reason for expressing relativistic particle kinematics in the succinct Man- 

delstam form goes beyond its simplification of structure. Feynman proved long 

ago that if one represents the matrix elements of relativistic quantum field the- 

ory order by order in terms of some coupling constant by “Feynman Diagrams”, ..- 
ihe diagrams obtained by reversing the velocity of a particle represent a quantum 

number and energy-momentum conserving process in which the particle has been 
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replaced by its antiparticle. Since reversing a velocity is equivalent to reversing 

the time in the derivative which defines the velocity, this gave rise to the intuitive 

picture of an anti-particle as a particle “moving backward in time”. 

The more inclusive symmetry consistent with this is that if the quantum num- 

bers of all particles, called C for generalized Charge conjugation, are reversed and 

the coordinates are mirrored, called P for Purity, and the velocities are reversed, 

_ .called T for Time reversal the theory must predict identical probabilities for the 

process so described. This is called the CPT theorem. Simply changing one or 

more (but not all) the particles for anti-particles is a more restrictive symmetry 

called crossing symmetry. The consequence is also supposed to lead to a process 

for which the theory gives a unique answer, but since the kinematics change, one 

needs a detailed theory to make any predictions. Although Chew’s S-matrix theory 

took crossing symmetry as a postulate, it has so far proved impossible to cast the 

theory in a general form which both conserves probability (i.e. is unitary) and is 

“crossing symmetric”. To show that bit-string physics might meet this challenge 

is a task for the future. 

Making use of the fact that CPT invariance requires anti-particle masses r5ti 

to be identical to particle masses m;, we simply note that the kinematics for the 

anelastic process (1,2) + (3,4) and four-vectors p; E (m;;Fi), with inner products 

pipj = EiEj - p’; * pli and the 4-vector conservation law 

Pl + p2 = p3 + pq (2.22) 

defines the physical ranges for the Mandelstam scalar invariants 

s = (Pl + p2)2; t = (p1 - p3)2; u = (pl _ p4)2 

s+t+u=m~+m~+m~+m~ (2.23) 

These are s 2 (ml + m2)2 and t in the negative range given by (E.5, Ref 1). Then 

crossing symmetry asserts that the dynamics for the anelastic process (1,2) + 
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(3,4) must also describe the process (1,3) + (2,4) when t 2 (ml + m3)2 and 

s and u are in the negative ranges analagous to (E.5) appropriate to serve as 

momentum transfer variables. This is called the “t-channel”. Further, it must 

also describe the process (1,4) --t (2,3) when u 2 (ml + mq)2 and s and t are in 

the appropriate negative ranges. The arbitrariness in how we choose to designate 

the labels 1,2,3,4 for the particles implies additional discrete symmetries which are 

particularly important when two or more of the particles are indistinguishable. 
. _‘.. 

3. QUANTIZED CONIC SECTIONS 

3.1 KEPLER’S SECOND LAW: SPIN 

Biedenharni3’ has attacked the problem of why Sommerfeld was able to calcu- 

late the fine structure of the hydrogen atomic spectrum correctly without having 

heard of “spin” in the Pauli or Dirac sense. Here we provide another explana- 

tion.based on lower bounds on measurement of angular momentum using Kepler’s 

second law and our definition of “Kepler’s Constant” K =< AlAv >. 

Consider a particle moving past a center which moves a distance VAT in time 

AT in a direction perpendicular to a line from the center bisecting the line con- 

necting its initial and final positions. Assume that the initial and final positions 

are the same distance r from the center, forming an isosceles triangle with apex 

at the center, sides r, base VAT and hence altitude u2 = r2 - ~(vAT)~. In the 

absence of further information, Kepler’ second law states that the area A swept 

out by the line r in time AT is a constant of the motion. Using the formula that 

the square of the area of a triangle with sides a, b, c is given by 

16A2 = (a + b + c)(u + b - c)(b + c - u)(c + a - b) 

we find that 

..- 
: . 

(&)2 = $J~AT~[(--&~ - t] (3.2) 

This formula gives us two choices for the ratio r/VAT, which differ by fl. 
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According to our philosophy, the optimum measurement of either of these distances 

cannot be smaller than Al. If we consider the “line” between the two positions from 

which the motion starts to be a rectangle with side vAt in the direction of motion 

and width Al, this defines two values for r, drawn to the two nearer or the two 

farther corners respectively. For the case of “circular” motion with radius R = r 

and period T, the two lines forming the long sides of the rectangle correspond to 

the chord and the tangent to the circle respectively. If we define the half-integer 

j = 1, + f and require the polygon formed by the straight line segments to equal 

the radius of the circle and close, we have that for the chords 27rR = &VT, and 

that for the tangents that 2aR = (la + 1)vAT. Calling the area per unit time K, 

we find that the square of this constant of the motion is given by 

(3.3) 

- -Here we have taken the obvious step of using this as the paradigmatic case 

for defining the minimum unit for Kepler constant K. If our smallest relevant 

mass is m,, the two cases correspond to a minimum angular momentum irnetc 

and hence to $fi in a conventional quantum theory. This is consistent with all the 

known quantum phenomena, as we will explain in detail elsewhere. In a classical 

theory bounded from below by technology, this limit might be set, for example, by 

the smallest dipole magnetic moment which could be measured in the multipole 

expansion of the electromagnetic field due to a self-consistently specified system of 

moving charges with a fixed and measured charge to mass ratio. 

We can immediately extend our circular model to elliptical orbits with semi- 

major axis a and semi-minor axis b, by identifying the principle quantum number 

n and orbital angular quantum number e as 

Then the extension to parabolic and hyperbolic orbits is immediate if we use the 
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standard gravitational equation [41 

v2 = r[f f $ (3.5) 

where r is now the relative distance between the two gravitating objects, “+” 

corresponds to hyperbolic (scattering) trajectories, “-” to elliptical and circular 

orbits, and the unique case in between, i.e v 2 = 2I’/r, to the parabolic or escape 

trajectory. Since we have relativistic S-momentum conservation in our formalism, 

this “one particle” formula actually applies to two systems in the relativistically 

defined zero momentum frame with an invariant energy also relativistically defined 

and required to reduce to mlm2/(ml + m2) in the naive treatment. 

As we have already noted, until new phenomena are included which show 

that K = -h/m, rather than simply being bounded from below by some larger 

number, the actual quantization is “unobservable”. It is imposed by our refusal to . _ 
extrapolate beyond what we can “measure” unambiguously to specified accuracy. 

It is an a priorior “metaphysical” quantization rather than a physical theory which 

can be tested. 

3.2 “CLASSICAL" QED AND QUANTUM GRAVITY 

It will seem somewhat bizarre to model a “classical” Bohr-Sommerfeld hydro- 

genie system without using Planck’s constant. Yet we trust that what we have 

done above gives sufficient clues as to how we intend to do so. Although we have 

not given all the details, we have been at some pains to show that we are dealing 

with a finite and discrete “relativistic” formalism with the usual etipiricul relations 

between mass, energy, momentum, time dilation and so on down to our fixed mea- 

surement accuracy. Consequently, if we replace the usual continuum quantization 

for the hydrogen atom by a lowest orbital frequency, or lowest measurable energy ._- 
change,‘or some such postulate, we can construct such “atoms” which can make 

only a finite number of energy changes. All we need do is replace ti by me6 in 
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the usual treatments and then check that we have not introduced phenomena that 

could be observed without measuring Planck’s constant. 

In our lowest order treatment of the hydrogen atom”’ McGoveran and I started 

with the “deBroglie quantization” 2xr = jX = jh/p for circular orbits in the 

hydrogen atom, and arrived at the relativistic Bohr formula. Clearly we can get 

the same result in our “classical” theory because we have derived the same relation 

jn the last section without using Planck’s constant. However, it is useful to quote 

a more recent 161 discussion. 

“We consider the bound system with mass p interacting with a larger system 

which can have a maximum mass-energy A4, = Nm where N is an integer to 

be fixed by the intent of the modeling exercise. Our first assumption is that the 

bound state is stable against spontaneous decay. However, in a “second quantized” 

theory “I virtual transitions up to this maximum can occur. Assuming that “ex- 

ternally” p is at rest, these fluctuations can be interpreted as massless radiation 

whose energy and hence whose momentum is p = N,u. However, since ml + ma 

must have the same non-spatial conserved quantum numbers as p, a fluctuation 

leading to this radiation and a system of Nm masses will have energy E = Nm 

But for the overall system E2 - p2 is invariant and equal to the square of the rest 

energy of the bound state with which we started: 

p2 = (Nm)2 - ( NP)~ (3.6) 

“To recover our previous result, we rewrite this as 

p2 + (5)” = m2 

or 

( 7)2[1 + ($2, = 1 

(3.7) 

(3-S) 
.-- 

ff we tike N = 137n, with n = e + 1 the principal quantum number and 137 

an approximation for tLc/e2, this is Bohr’s relativistic generalization of his model 
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- 

.  r(_ - 

for the energy levels of the hydrogen atom!’ Non-relativistically, or to order (Y = 

e2/hc x l/137, th e energy levels given by this formula are c(n) x 6. The orbital 

velocity is Pn = 1/137n = l/N and the radii of the orbits are R, = nh2/me2 = 

nh Jamc.” 

Thus we see that the “quantization” of bound, relativistic systems amounts to 

relativistic S-momentum conservation with all the degrees of freedom corresponding 

*to electromagnetic radiation which can be emitted and absorbed by such systems. 

Further, we now think that the results claimed in our abstract follow. The basic 

point is that neither orbital nor close encounter nor exterior velocities can reach 

c. This allows us to set an energy scale enforcing this restriction, which reduces 

to the relativistic Bohr atom in the restricted case already considered, and allows 

us to quantize velocities in terms of the principle quantum number by defining 

Pi = $ = $(A) = ( &-)2. For the C ou om 1 b case with charges Zre, Zze of the 

same sign-and cy z e2/m,,c, we find that I’/c2u = Zr&cr. The characteristic 

Coulomb parameter q(n) E 21220/P~ = Zl&nNr then specifies the penetration 

factor C2(q) = 27rq/(e2”” - 1). For unlike charges, with v still taken as positive, 

C2(-7) = 27rr)/(l - e-‘*q ). For gravitation r/c2u = mlrnpG/rni with CUG = 

Gmp/tw. 

In both cases, our classical limit shows us how to quantize hyperbolic trajecto- 

ries simply by using the smallest energy interval allowed in the bound state case, 

rather than introducing the “continuous spectrum” which leads to infrared diver- 

gences. We hope that this way of looking at “radiative corrections” to high energy 

charged particle scattering will eventually lead to practical applications in data 

analysis. 

As already noted, relativistic quantum mechanics is recovered if the smallest 

distance which can be measured electrodynamically is Al = h/2m,c or IC = h/m, 

As in earlier work, we take our first approximations for the fine structure constant 

from the combinatorial result : 

a = e2/m,r;c -+ e2/fic M l/137 
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Similarly, the combinatorial starting point for quantum gravity is 

a~ = Gmp/m --f Gmi/hc M 1/(2127 + 136) 

Our recent derivation of the Maxwell equations PI and Ref. 6 show that we 

have “spin 1” photons in addition to the attractive and repulsive Coulombic cases 

_ discussed above. As we have discussed elsewhere, all that is needed to get the clas- 

sical predictions of General Relativity is the Newtonian case we already developed 

above and “travelling gravitons” with spin 2. Since for gravitation like “charges” 

attract, we cannot use spin 1 for gravitation and must go to spin 2 as the next sim- 

plest hypothesis. As is well known, this “weak quantum gravity” is in agreement 

with experiment. Our treatment provides it with a proper correspondence limit. 

But the question of what happens under crossing symmetry remains open. 

X3- .GENERAL RELATIVITY vs. CROSSING SYMMETRY: ANTI-GRAVITY* 

We have already given a brief discussion of crossing symmetry above. Ap- 

plied to our version of electrodynamics it provides all the usual Coulombic and 

spin effects for electrically charged particles and anti-particles achieved by more 

conventional methods. In our bit-string theory, this crossing symmetry derives 

from the fact that, if we make the proper identification between quantum num- 

bers and kinematic variables derived from bit-strings, interchanging O’s and l’s 

in a bit-string corresponds to interchanging particle and antiparticle. In particu- 

lar, this is true of our representation of the standard model of quarks and leptons 

using strings of 16 bits, although the published demonstrations of this statement 

are incomplete. If we interchange the O’s and l’s in all the strings for a theory 

in which the combinatorial hierarchy construction has closed, we produce a dual 

theory which is formally distinct but which is indistinguishable so far as all phys- 

@al predictions go. I have called this Amson invariance. In conventional theories 

k QUOTED, IN PART, FROM REF.9. 
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this is the CPT theorem: changing all particles to anti-particles, reversing their 

velocities (Pi + -Pi), and making a mirror reflection across three perpendicular 

planes (Ji + -Ji) can have no observable consequences. In particular, this the- 

orem requires particles and anti-particles to have identical inertial masses. But 

in the absence of an accepted theory of quantum gravity, gravitational mass (or 

better “gravitational charge”) could either reverse or stay the same. 

_ _.. It is important to realize that crossing symmetry is more restrictive than CPT 

invariance. For instance, since we know that protons fall toward the earth, all CPT 

says is that anti-protons fall toward an anti-earth. This is not helpful for construct- 

ing an experiment crusis! But crossing symmetry applied to the coulomb problem 

tells us that anti-particles have opposite electric charge to particles and hence 

that if a particle is attracted toward a center, an anti-particle will be repelled by 

it. This follows immediately from the conic section formalism we have developed. 

But for gravitation, the definition of inertial mass remains the same as for coulomb 

attraction, and the same crossing symmetry applies. Hence, since particles are .- 
known to attract each other gravitationally, a particle and its anti-particle should 

repel each other. Our prediction of anti-gravity is that simple. From our empirical 

point of view, the ultimate decision must rest with the outcome of anti-proton and 

anti-neutron experiments which are already being vigorously pursued. 
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4. Appendix 1: Lack of consensus on 
how to formulate “quantum gravity”. 

29 July 1992 

Dear Pierre: 

It is my genuine belief that there exist basic conceptual incompatibilities be- 
tween quantum theory and general relativity; or, more precisely, between the cat- 
egorical schemes in which both are normally presented. However, it must be said 

_ at once that this is a complex issue since, at the very least, it requires agreement 
on precisely what those ‘categorical schemes’ are, and a universally held position 
on this is not easy to find. But, for example, I do not think it is hard to argue for 
an incompatibility between the so-called ‘Copenhagen interpretation’ of quantum 
theory (with its assignment of an a priori status to the notions of measurement and 
a classical realm) and any view that a theory of quantum gravity should maintain 
the conventional spacetime picture of general relativity. Some of the reasons for 
this are discussed in my Schladming notes; others are spelt out in more detail in 
a review paper that I have almost finished on the problem of time in quantum 
gravity. (This paper is based on a course of lectures I gave last month in Spain: I 
shall. send you a copy when the final version is completed.) 

- However, it is clear that to judge whether or not any real incompatibility exists 
between quantum theory and general relativity one needs first to decide how large 
the domain of each of the two theories actually is and, in particular, if the two 
domains really overlap at all. If they do not, i.e. if one suspects that the standard 
technical or conceptual structures of quantum theory and/or general relativity 
must be modified in some way before they come into meaningful contact with each 
other, then the problem of quantum gravity looks very different, and it is rather 
misleading to talk about an ‘incompatibility’ between then. 

To my mind, it is still unclear what superstring theory has to say about all this. 
It may well be that superstrings, or some related idea, will provide a coherent theory 
of quantum gravity, but I do not see that this has yet been shown conclusively at 
all. The main claim of superstring theory is that graviton scattering amplitudes 
are free of ultra-violet divergences, and that is undeniably a very important result. 
The problem is that all such calculations are made from within a framework of some 
sort of fixed background spacetime structure within which the gravitons propagate, 
which is precisely what most people who work in “traditional” quantum gravity 
have always tried to avoid. What is needed is a new non-perturbative approach to 
$,ring theory in which the notion of a graviton is not so basic. Several have been 
suggested along that line (e.g. the Friedan-Shenkar ideas, string field theory) but 
activity in that directions seems to have petered out in recent years. 
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As I said in an earlier letter, in some respects the situation is not dissimilar 
to that which would have applied had the graviton calculations of naive quantum 
gravity turned out by some miracle to be finite: that would have been the beginning 
of the really exciting part of the quantum gravity programme, not the end. In so 
far as the string graviton amplitudes are finite, there is a prima facie case for 
saying that starting with a superstring approach is a better bet than starting with 
conventional GR, but a lot more work is needed to show that this view is justified. 
The considerable interest shown in the Ashtekar programme demonstrates that 
the debate is very far from being settled, at least in the eyes of those who work in 

“conventional’ quantum gravity. 

Which brings us to the sociological issues. Like you, I get annoyed by the 
over-hyping that is sometimes given to superstring theory, particularly when it is 
made by people who are quite ignorant (or at the best, only partly aware) of the 
enormous literature on quantum gravity and, in particular, of what those working 
in that subject deem to be the real problems of their subject. Unfortunately, 
this issue frequently generates great emotions, and so it is difficult to arrive at 
a rational resolution. The more aggressive superstring affectionados present the 
quantum gravity community as being made up largely of ‘has-beens’ who are simply 
incapable of understanding superstring theory, and conversely unflattering views 
&&ge from us about the general ignorance of the, largely particle-physics trained, 
superstring community. The whole business is very stupid and childish but it is 
deeply ingrained. For example, when giving talks about the Ashtekar approach 
to quantum gravity I frequently get the reaction from superstring activists that 
“it must be wrong because (i) quantum gravity is non-renormalisable, and (ii) 
superstring theory is right”; which ignores the fact that (i) the whole point of the 
Ashtekar programme is the claim that the normal perturbative results are irrelevant 
and, (ii) the scientific enterprise in general is not based on the deliverance of ez 
cuthedru pronouncements that a certain theory is correct, although this is precisely 
what is happening in this case. 

However, I fear these remarks of mine will not help you much. If you pass them 
on to one of the strident superstring people he will merely tell you that “Chris 
Isham is one of yesterday’s men”, and it is not easy to refute that type of attitude. 
I always find this particularly irritating because I was actively. supporting (i.e. 
pushing the award of SERC grants, etc.) the work of, for example, Mike Green 
long before it became popular. And I still give my full support to requests for 
funding in these areas. But there you are, it is an unfair world! 

..- All good wishes 
‘7 . 

Chris Isham 
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5. Appendix 2: ON THE CORRESPONDENCE LIMIT 
OF RELATIVISTIC QUANTUM MECHANICS* 

One of the many problems of second quantized relativistic field theory is that 
the “correspondence limit” either in non-relativistic quantum mechanics for atomic 
systems or in non-relativistic quantum mechanics for strongly interacting nuclear 
systems or in classical relativistic particle mechanics is not well specified. In this 
paper we argue that by using a fully finite and discrete approach to relativistic 
quantum mechanics we can arrive at a theory which does not have these defects, yet 

. Sproduces many of the same empirical results which are conventionally accounted 
for by elementary particle physics and the related physical cosmology. 

To illustrate one difficulty with the conventional approach, consider Weinberg’s 
discussion of the low momentum limit of massless fields whose quanta carry spin 

3. .[“I He shows that as the momentum p carried by the field quanta approaches 
zero, Lorentz invariance requires the interaction to vanish like #. This would 
be a disaster for the conventional theory since only scalar quanta could survive, 
ruling out photons and gravitons ! He saves the second quantized relativistic field 
theory by showing that if one also requires gauge invariance, a well specified limit 
exists. The resulting theory then predicts that the force between two identical 
particles mediated by a field whose quanta have spin 1 is repulsive while the force 
between particle and anti-particle is attractive. For spin 0 and spin 2 the predicted 
force is always attractive. Both predictions are consistent with currently available 
experimental information. 

This result appears to be a triumph for the theory, particularly since subse- 
quent developments have singled out the class of non-abelian gauge theories as ap- 
propriate for describing the observations cited in support of weak-electromagnetic 
unification and quantum chromodynamics. But this success has a price. It re- 
quires in some sense the reification of the concept of “potential” at a fundamental 
level, in contrast the classical situation where potentials have no objective signif- 
icance. Although the Aharanov-Bohm effect might seem to support this point of 
view, there is no consensus. For instance, topological explanations which invoke 
only forces rather than the electromagnetic vector potential have been put forward; 
unfortunately they do not compel acceptance. 

Ill-131 
An alternative fundamental theory, (see also Ref. 5) which has been dis- 

cussed at the three previous conferences in this [“I series, offers a route by which 

c * Ab$tract submitted to the Symposium 011 the Foundations of Modern Physics 1993, 
Cologne, Germany, June 1-6, 1993. Full text will be issued as SLAC-PUB-6010 
on or after that date. 
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all these problems can be avoided. Define particles as the concept& carriers of 
conserved quantum numbers between events and events as regions across which 
quantum numbers are conserved. Take as the basic paradigm for two events the 
sequential firing of two counters separated by distance L and time interval T, where 
the clocks recording the firings are synchronized using the Einstein convention. De- 
fine the velocity of the “particle” connecting these two events as u = PC = L/T 
where c is the limiting velocity for the transfer of information. Given a beam of 
particles of this velocity selected by a collimator and counter telescope incident on 
two slits a distance u, apart we find a double slit interference pattern at a detector 

. -.. 
array a distance D behind the slits whose maxima are separated by a distance s. 
Define the deBroglie wavelength X = ws/D using laboratory units of length. If a 
different source producing particles with the same velocity incident on the same 
arrangement gives a fringe spacing s’, define the mass ratio m’/m = s/s’ Introduce 
Planck’s constant h by the definition X = h/p where ,6’ = PC/E, E2 -p2c2 = m2c4. 
Postulate that two events mediated by a particle of mass m and velocity PC can, 
but need not, take place only when they are separated by an integer number of 
deBroglie wavelengths. 

Consider a particle bound to a center a distance r away which receives an 
impulsive force toward the center each time it has moved a deBroglie wavelength. 
Assume that the area swept out per unit time by the radial distance to the particle 
is constant for each step (Kepler’s Second Law) and that the polygon closes after 
j steps. If we take 27rr = jX, and compute the square of the quantized angular 
momentum consistent with this correspondence limit we find it equal to (j2 - 
$)h” = @+1)ti2 where we have defined JJ = j - 3. Assuming that the probability of 
the impulsive force occurring after one Compton wavelength is l/137 we obtainl”] 
Bohr’s relativistic formula (y)2[1+( 137(:+1))2] = 1 for the levels of the hydrogen 

atom(Ref. 8) in the approximation e2/iic E l/137, and hence his correspondence 
limit. Adding a second degree of freedom gives us the Sommerfeld formula and an 
improvement of three significant figures lrll in our value for e2/fic. After deriving the 
commutation relations, we can invoke Feynman’s proof of the Maxwell Equations 
(Ref.3) to show that we also have the correct classical fields in the appropriate 
correspondence limit. For gravitational orbits about a center containing N particles 
of mass m, orbital velocity reaches c when e = 0 and N = Mplanc-/m where 

MPl anck = (s)i is the Pl anck mass. Consequently the shortest distance (between 
two events!) in the theory is the Planck length h/Mplanctc. Thanks to the fact 
that our Lorentz-invariant (for finite and discrete boosts and rotations!) theory 
predicts-both the (quantized) N ew t onian interaction and spin 2 gravitons, it meets 
the three classical tests of general relativity. Other successes of the theory will be 
reported. 
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FIGURE CAPTIONS 

1) Laboratory measurement of Mandelstam variables (Sec. 2.3) using counter 
telescopes for the process (1,2) + (3,4). 

2) Geometrical arrangement for measuring mass ratios when all four telescopes 
record the same velocity. 

3) The eight counter paradigm. 
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