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ABSTRACT 

_ We revisit the question of isospin analysis applied to the pr decay modes of 
the B as a tool to extract the CKM angle between v,*,I&d and I$:&, without 
ambiguities or uncertainties due to penguin amplitude contributions. We find that 
a maximum-likelihood fit of the parameters to the full Dalitz plot distribution can 
successfully extract the parameters-perhaps with as few as 1000 events. This 
result is from a study of Monte-Carlo-generated events without inclusion of detec- 
tor efficiency or background effects. The interference between channels is a large 
effect and provides additional constraints on the parameters compared to channel- 
by-channel studies. These can usually lift the degeneracy between the multiple 
solutions that plague such studies. Inclusion of charged B decays in the analysis 
would provide an direct check of the Standard Model prediction that the penguin 
amplitude weak phase for this channel is cancelled by the weak mixing phase. 

Submitted to Phys Rev. D 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 



1. Introduction 

Asymmetries in the decays B -+ p7~ can be used to extract a measure of the 

angle between v,*,Vud and I$V&. This is the angle Q of the “unitarity triangle” 

derived from the orthogonality of the first and third columns of the three generation 

Cabibbo-Kobayashi-Maskawa matrix. Together with Lipkin and Nir (LNQS) [l] 

we pointed out previously the possibility of using an isospin analysis of rates in 

these channels to extract the angle and eliminate uncertainties due to penguin 

contributions. Gronau [2] h owever, stressed that multiple discrete ambiguities 

would inevitably plague such a treatment. Since measurements of o from the two 

pion channel may also suffer from ambiguities due to penguin corrections [3] it 

would be valuable to have an independent and unambiguous measurement from 

this channel. 
_ _ 

The purpose of this note is to show that such ambiguities can indeed be re- 

solved, provided sufficient data is available to make a full study of the Dalitz plot 

for the r+7r-a” final states that arise from B” and 3 decays. We find that, for 

most values of the parameters, a 1000 event sample would be sufficient for this 

analysis, a sample that could reasonably be expected to be collected in a few years 

of running at a B-factory. 

The interference between B” + p+~‘, B” -+ p-?r+ and B” -+ p”7ro can be 

used to help lift the strong phase/weak phase ambiguity and to determine penguin 

amplitudes. In addition, with sufficient data, interference makes it possible to 

resolve the ambiguity [4] between & = cy and &, = 90 - Q that plagues the 

study of individual B channels. 

- --In addition, if charged B + p7r decays can be included in the analysis one 

can independently fit for the weak phase of the penguin contributions. This would 
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provide a separate test of the Standard Model prediction that, for this channel, 

the weak phase of the penguin amplitudes is cancelled by the weak mixing phase. 

This cancellation will not persist in many models beyond the Standard Model, 

since additional mixing contributions are a common feature of such models [5]. 

However, the channel p+?r” has two neutral pions in the final state, and hence this 

measurement may be quite difficult to make. 

In this note we illustrate the power of this method using a maximum likelihood 

fit to Monte-Carlo-generated samples of B + p7r decays. No detector simulation 

is included here; detector and background issues have been addressed in Ref. [4]. 

Our study shows that good fits to the parameters of both the tree and the penguin 

amplitudes can be obtained with of order 1000 p7r events. For some values of input 

parameters we found an alternate false solution at 90 - Q that gave comparable 

likelihood to the correct solution for a 1000 event sample, but that was no longer 

competitive when the event sample was doubled. 

The remainder of this note is organized as follows: Section 2 presents the theory, 

Section 3 describes the event generation and its parameters, Section 4 discusses the 

fitting procedure, Section 5 presents our results, and Section 6 some conclusions. 

2. Theory 

We use a notation based on that introduced in LNQS for the amplitudes for 

the various channels. The penguin contributions are identified by the isospin of 

the final pi state to which they contribute. Tree contributions are denoted by 7”j 

where i-and j denote the p and w charges respectively. Isospin constraints allow 

the elimination 2”’ in terms of the other four. 
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&A@+ + p+n”) = s1 = T+O + 2pl 

diA(B+ + ,oor+) = sz = TO+ - 2pl 

A(B” + p+r-) = s3 = T+- + pl + p. 

A(B” + /I--A+) = s4 = T-+ - pl + p. 

2A(B” + p”ao) = & = y’+- + T-+ - T+O _ ~0s _ 2p. 

(24 

Similarly for the CP conjugate channels we define the amplitudes Si, ?j, and 

F; which differ from the original amplitudes only in the sign of the weak phase of 

each term. In the Standard Model the weak phase of the penguin contributions to 

this process cancels with the phase of the BB mixing, 

- 

-where q parameterizes the mixing in the B mass eigenstates [6], 

B”-qBo (2.3) 

Equation (2.2) is actually an approximation which is correct up to contributions 

of order (mz - m$)/m&. It neglects the kinematic differences in the contributions 

to the coefficient of the CKM matrix elements for the penguin diagrams with c 

and u quarks in the loop. In our analysis we assume (2.2). Our results for the 

- tree weak phase Q do not depend on this assumption, but the values of the various 

tree and penguin contributions and their strong phases do. In order to be able 

determine the weak phase of the penguin contributions in addition to that of the 

tree contributions one needs to include the charged B channels in the maximum- .-- 

likelihood analysis. 
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In LNQS we considered only the information given by separate time-dependent 

decay rates in each p7r channel. A study of the full Dalitz plot and time dependence 

for ?r+?r-n’ allows the extraction of several further quantities which arise from the 

interference between the different channels. We denote the Breit Wigner kinematic- 

distribution functions for the pions produced in the decay of the p by j+, j-, and 

j” where the superscript denotes the charge of the decaying p. For p decay to a 

pion pair of mass m this function is given by 

j(rrQ) = co.58 x 0.5ry(mp - m - io.5r,) (2.4) 

where mp = 0.77 GeV and I’,-, = 0.15 GeV. The dependence on the helicity angle 

8 arises because only p-helicity zero is allowed in the decay B + pr, since the 

total spin of the pn system must be zero, the spin of the parent B. This angular _ - 

dependence (I cos 012 in the rates) substantially enhances interference effects, since 

it increases the number of events in which two of the three possible 7r7r pairings 

both have low invariant mass. 

The amplitude for B” 4 7rlT+7r-7ro can then be written, ignoring non-resonant 

contributions, as 

A@‘) = j+& + j-S4 + j”S5/2 (2.5) 

while that for the CP conjugate channel is given by 

4B') = f -33 + j+s, + jq,p . (2.6) 

_---A study of the time-dependent Dalitz plots from initial B” and B decays in 

principle shows the measurement of the coefficients of each of the combinations 
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- 

r_ . . . *  _*  

of time dependent and kinematic functions shown in Table 1. The sign of the 

sin(Amt) terms changes when the initial particle is B. 

Now note from (2.1) that 

s3 + s4 + 275 = T+’ + To+ E T 

and similarly, 

The angle between T and Tis precisely o in the Standard Model, with no ambiguity 

in its determination. 

One can readily check from Table 1 that the Dalitz plot contains sufficient infor- 

mation to determine the magnitudes and phases of the quantities S3,??3, SJ, 34, S5 
- 

and 3s up to one overall unphysical phase ambiguity. From these one can then 

extract the quantities T, T +-, T-+, PO and Pi and the weak phase o between the 

T amplitudes and the CP conjugate T amplitudes, given any arbitrary definition 

of an overall phase convention, and the input assumption, Eq. (2.2), that the weak 

phase of the penguin contribution is cancelled by the mixing weak phase. In prac- 

tice the parameters can best be found by using the maximum-likelihood method 

to fit the full set of parameters to the full Dalitz-plot and time distributions. 

The fourth column of Table 1 shows the Q dependence of the tree contributions 

alone for each term. Note that terms proportional to cos(2cr) appear from the 

interference terms. These terms are crucial to the resolution of the ambiguity 

between cy and 90-a when the penguin contributions are small. Note however these 

terms vanish when T’- = T- +, that is when the two different channels happen 

to have equal amplitudes. For larger penguin contributions the tree-penguin cross 
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terms are also useful in distinguishing the two angle choices, but again in special 

cases the ambiguity can remain unresolved. 

Since only the combination Sr + $4 = T+’ + To+ = T enters for B” decays 

we cannot fit separately for these two amplitudes in this treatment. In an analysis 

that included charged B decays two additional parameters would appear (namely, 

magnitude and phase for the difference of these two amplitudes) and four additional 
> 

total rates would be measured. Thus if the B+ decays to p+r” and to par+ and 

the conjugate B- decays can be measured further constraints on the fit will arise 

from the inclusion of these channels in the maximum-likelihood calculation. Only 

when these channels are added can the fit determine the weak phase of the penguin 

contributions in addition to that of the tree contributions. Without the charged 

channels any value of the penguin weak phase can be accommodated by the fits, by 

changing the values of the tree and penguin contributions and their strong phases; 

fortunately, the value of o extracted is unaltered by such changes. 

The check of the expected penguin weak phase cancellation by the mixing 

phase provides another important test for physics beyond the Standard Model and 

therefore it is important to attempt this determination. In many extensions of the 

Standard Model there are additional contributions to the mixing and hence the 

relationship (2.2) would not hold in such theories [5]. However the p+r” channel 

decays to a final state R+?~‘?T’. Th’ is rate may be difficult to measure because of 

efficiency and background problems in detecting the two neutral pions. 
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3. Monte Carlo Generation of Events 

Events are generated with a flat distribution for the B -+ 7rT+w-7ro Dalitz 

plot, and an exponential time distribution (t = - log,(R)/I’) and random tag 

(tag = Itl). Events are accepted or rejected events based on whether a random 

number is less than or greater than IM12/IMmax12, where the amplitude M is a 

I Jnnction of the position on the Dalitz plot, the time t and whether a B” or i? 

(tag = &l) tag was selected. IMmaxI is chosen so that it is larger than the largest 

value of IMI that occurs. M is constructed as follows: For tag = +l the time- 

dependent amplitude is given by 

M=M+=e -rt12(cos(AMt/2)A(Bo) + iqsin(AM2/2)A(g)) (34 

where r is the B decay width and AM is the mass difference between the heavy 

and light neutral B mass eigenstates. The dependence on this quantity arises from 

the B-B mixing. Similarly for tag = -1 the amplitude is 

M = Me = emrtf2 (q cos(AMtl2)A(?) + i sin(AMt/2)A(B”)) (3.2) 

i.e. A(B”) and A(B’) exchange roles. A(B’) is given by Eq. (2.5), and A(3) by 

(2.6). 

Figure 1 shows an example of the Dalitz plot of a 6500 event sample obtained 

with this generator. These events were generated with all strong phases set to 

0 and with Q = 20”. The penguin amplitudes (Po,Pr) were also set to 0. Tree 

normalization were taken to be 
: 

ITI = 0.9 WV 
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and I 

IT+-1 =2lT-+I = 1.0 (3.4) 

which corresponds to a ‘color-suppression’ factor NN 0.3 for the B" + pox0 am- 

plitude [7]. Th e c us 1 t ering in the interference regions where the p bands overlap 

(the three corners) can clearly be seen. This is caused by the I cos 131~ dependence 

I discussed above. 

In a real experiment the three pion Dalitz plot would receive contributions from 

non-resonant background and from higher (p’, etc.) resonances. The latter can be 

removed by a cut which eliminates the kinematically allowed region for such events. 

Alternately, parametrizations of these additional channels could be included in the 

fitting procedure and possibly help improve the accuracy of the determination of 

the-weak phase cr. The heavier resonances populate a region corresponding to a 

smaller triangle inside that populated by p?r events. As can be seen in Figure 1, 

cutting out such a region would not remove many pr events. Cuts to reduce non- 

resonant background may also be needed. Our purpose here is not to produce a 

full study of this problem but rather to demonstrate the power of the Dalitz plot 

and time distribution analysis to determine the amplitudes. Hence we study only 

this “ideal” data sample without including backgrounds or the effects of detector 

resolution and inefficiencies. 

..- 
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4. Fitting 

We use a maximum likelihood fit to the events generated by the Monte Carlo 

above to extract an estimate of the parameters and the associated errors. The 

log-likelihood is given by 

lo&L = ~ilo&((M/~norm(2) (4-l) 

where the sum is over generated events, Mi is the amplitude defined above 

(M+, M-) in for event i and A4 nOrm is a normalization factor. The normalization 

term is given by 

lMKmtl12 = (INI + 17q2)/:! (4.2) 

with 

IN2 = W312 + I&l2 + lS512/4) (I fl”) 
(4.3) 

+ W2S3S,* (f+f-*) + S3S; (j+ j"*) + S& (j-j"*)) 

and similarly for lXl2 in terms of the Si amplitudes. Here (I jl”) is the square of a 

Breit-Wigner function averaged over the Dalitz plot and (j” j**) is the product of 

the Breit-Wigner functions for two different charges of p averaged over the Dalitz 

plot. The averages are calculated using a high statistics Monte Carlo integration. 

The parameterization above contains 12 parameters for all B" decays to three 

pions. These are determined as follows: 

l The overall phase is not meaningful and is arbitrarily fixed. 

..z We do not fit for the total rate, which would fix the overall normalization. If 
. 

acceptances are uniform then this parameter is independent of the remaining 
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parameters; in a real experiment with non-uniform acceptances it would need 

to be included in the fitting procedure. 

l We fix IT+-1 = 1 and set the strong phase for this amplitude 6+- = 0. This 

fixes our overall normalization and phase definitions. 

l We input the Standard Model assumption, Eq. (2.2), that the weak phase 

of the penguin contribution is cancelled by the mixing phase. 

l The remaining 9 parameters are determined by the maximum-likelihood fit; 

these are the weak phase of the tree amplitudes (o),the normalization and 

strong phase for sum of the charged B decay amplitudes (ITI and 6~)~ the 

normalization and strong phase for the tree amplitude for B” + p-r + decays 

(IT-+( and 6-+) and th e normalization and strong phases for the I=0 and 

I=1 penguins (IPi] and bp,). _ - 

l We use MINUIT (81 t o maximize the log-likelihood (Eq. (4.1)) as a function 

of these 9 parameters, using a number of different starting values for the 

parameters, for each “data” set. 

5. Results 

In order to study the efficacy of this method we have generated 1000 event 

samples for several different sets of input parameters. We also generated different 

sampIes with the same input parameters to test the reproducibility of the results. 

In addition we generated some larger samples to study how the results improve 

with increased statistics. We studied a variety of input parameters to test that the 

--sensiti.vity of the method was not peculiar to a particular choice of input variables. 

For example if QI is near 90’ rates are much more sensitive to penguin effects than 
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if ~3 is near 0’. We find similar results for most input parameters, except that 

ambiguous solutions persist to larger samples when the input parameters include 

no penguin contribution, or are close to some arbitrary special values that do have 

ambiguous solutions. 

We found that the fitting procedure generally converges to stable set of param- 

eters, but that the result depends on the starting values of the parameters. There 
I -.. 

are apparently multiple local maxima of the likelihood function and the simple 

fitting procedure that we used will converge to any one of them. As an example 

of this for just one of the variables, Figure 2 shows a plot of likelihood versus the 

weak phase angle Q for the same input parameters as given for Figure 1. In any 

real experiment a systematic search of parameter space over some reasonable range 

must be undertaken. In particular when one maximum of the likelihood function is 

found it is advisable to test the values of the parameters that would correspond to 

the related ambiguous solutions of a single channel treatment, namely CII = 90 - cr, 

and cos2 (Sk) = sin2((r),sin2(o’) = cos2(6~). The likelihood function may have 

additional local maxima corresponding to these values. 

The cases where the fitting procedure did not converge were readily understood. 

Most often they corresponded to solutions with very small value for one or more 

penguin amplitudes and the lack of convergence was due to the inability to define a 

phase for that quantity. In this cases we simply ran another fit in which the strong 

phase of the penguin contributions were fixed to zero and this readily converged 

to a solution. 

In one case a the fit generated excessively large contributions to both penguin 

amplitudes, and then could not then find a satisfactory convergence. This would : 

clearly have been avoided if charged B data were included in the likelihood fit, 
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since these depend on only one of the penguin amplitudes. 

In Table 2 we tabulate our results for a case where the input penguin amplitudes 

vanish and all strong phases were set to zero. The table shows the two highest 

likelihood solutions for the same 1000 event sample and similarly for a 2000 event 

sample. We find that the ambiguity between Q and 90 - o is not always resolved 

with a 1000 event sample generated with no input penguin contributions, see Table 
I 

2. When the event sample was doubled to 2000 events the results clearly favored 

the correct angle choice. 

If we knew from other evidence, or from improved theoretical calculations, that 

penguin contributions in this channel can reliably be neglected, then alpha could 

be determined with smaller errors and, except in special degenerate cases, with no 

ambiguities even using the smaller event sample. For a number of 1000 event data 

samples generated with vanishing penguin amplitudes, we tested this by fits in 

which we fixed all penguin amplitudes to zero. All ambiguities in the asymmetry 

angle and strong phases were resolved except when 7rr+p- and w-p+ amplitudes 

happen to be close to identical. (The degeneracy in this case can be explained by 

noticing that all cos(2cr) in Table 1 vanish when these amplitudes are equal.) The 

error on the angle Q given by these fits was of order f 1.7’. The larger errors shown 

in Table 2 indicate the additional residual uncertainty due to the inclusion of the 

additional penguin parameters in the fitting procedure. 

When the input parameters included non-zero penguin amplitudes then even 

with only 1000 events there was no ambiguity as to the best fit, see for example 

Table 3. In this case the input strong phases were chosen using a random number 

ge-nerator, the maximum likelihood fit does a remarkably good job of obtaining all . 

input parameters from the 1000 event sample, though uncertainties in the strong 
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phase angles are quite large. We ran fits for a number of other cases with similar 

results. In general if the input weak phase angle is small we find there is less 

sensitivity to the penguin contributions, and hence the penguin amplitudes are 

less well determined. In all our fits we used the Standard Model assumption, 

Eq. (2.2) for the ph ase of the penguin amplitudes. However, although the values 

obtained for all other parameters are sensitive to the assumed penguin weak phase, 
~ -._ 

fortunately the results for the weak phase of the tree diagrams are not. This is 

because this phase is given directly by the angle between T and T, while the other 

quantities can always be chosen to compensate any penguin weak phases in fitting 

the extracted values of the amplitudes 5’; and 3;. 

6. Conclusions 

- We find that the method of fitting isospin amplitudes for tree and penguin 

contributions to the Dalitz plot and time distributions for three-pion final states 

using a maximum-likelihood method looks promising. With a thousand Monte- 

Carlo-generated events we found at worst a two-fold ambiguity in the fit parameters 

and in many cases a unique choice of best fit parameters that reproduced the input 

parameters well. The error on the unitarity matrix angle CY is typically of order 

6’ or less. Penguin contributions and strong phases of all amplitudes were also 

determined by these fits, though the accuracy of the strong phase determination 

was poor. (Note that, if we were to assume that the penguin contributions are 

negligible, this analysis would result in a value for o with considerably smaller 

errors, typically of order 1.7’, thus if this assumption could be justified the method 

would be significantly more powerful. ) : . 

When the input value of the penguin contribution was set to zero an ambiguity 
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between the cr and 90 - cx solutions tended to remain. In one case the incorrect 

solution registered three units of likelihood larger than the correct choice; a warning 

that solutions with close-by likelihood values should not be too quickly discarded. 

With a doubling of the samples to 2000 events the results improved to eliminate the 

incorrect solutions, giving significantly higher likelihood to the fit with parameters 

close to the input values. 

Estimates for the rate of pr production from B decays at a B factory vary 

somewhat, but a sample of 1000 events collected over a few years of running seems 

not an unreasonable estimate. Thus this mode could complement the ~7r mode, 

not only in determining the angle o but also in yielding information about the 

sizes of penguin contributions. 

In order to include the charged B decays in the determination of these pa- 
- 

rameters one will need to be able to reconstruct B+ + ~+7r’7r’ as well as the 

easier B+ + X+X-T+. Further one will need a good understanding of the relative 

efficiencies for the different charge channels in order be able to make a combined 

fit. However the inclusion of the charged channels is needed if one wishes to also 

determine the weak phase of the penguin contributions for these channels, and thus 

to test the Standard Model prediction that it is cancelled by the mixing phase. 
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Table 1. The time and kinematic dependence of contributions to the 
distribution of events. 

time dependence kinematic form I 1 amplitude measured 1 Q dependence (all Pi = 

1 

cos(AMt) f+f+* 

sin( AMt) f+f+* 

- -* 
s3s; - s4s4 

Im(qS4s;) 

1 

sin(2o) 

1 

cos( AMt) 

f-f-* 

f-f-* 

sin(AMt) 1 f-f-* I 

s4sq* + 53s; 

s4sq* - 33s; 

Im(q33S,*) 

1 f”fo* (sss; + 35334 1 

cos( AM) f”fo* (S5sJ - 35?3/4 1 

sin( AMt) fOfo* Im(q~sS;)/4 sin(2a) 

1 Re(f+f-*) 
- -* 

Re(S3S,* + S4S3) 1 

.cm(AMt) Re(f+f-*) 
- -* 

Re(&Sq* - S4S3) 1 
. . 

sm( AMt) 

1 

Re(f+f-*) Im(qT& - q*S&) sin(2cu) 

Im(f+f -*) Im( S3Si + 274Z~) 1 

cos(AMt) 

sin( AMt ) 

1 

Im(f+f-*) 
- -* 

Im(&S4* - S4S3) 1 

rm(f+f-*) Re(q%S, - q*S&) cos( 20) 

Re(f+f ‘*) 
- -* 

Re(S3Sj + s&)/2 1 

cos(Akft) 1 Re(f+f’*) 1 Re(SsSj -F&,)/2 1 J 

sin(AMt) 1 Re(f+f’*) ( Im(q$S; + q*S3%)/2 1 sin( 20) 

I Im(f+f’*) I Im(S3S; t-3&)/2 I 

cos( AM) Im(f+f’*) Im(&S; - ZT&)/2 1 

sin( A&It) Im(f+fO*) Re(qs&‘; - q*S3$)/2 cos( 2a) 

I Re(f -f”*) I Re(S& + 333;)/2 ) 1 

.ces(AMt) I Re(f-f”*) I Re(S4Sj -s&)/2 ( 

sin(AMt) 

1 

cos(AMt) 

sin(AMt) 

Re(f-f”*) Im(q%S; - q*s&) sin(2cr) 

Im(f-f”*) Im(S4Sj + &??;)/a 1 

Im(f-f”*) 
- -* 

Im(&sj - s&)/2 1 
- 

Im(f-f”*) Re(qS3S; - q*S&)/2 cos( 203 



Table 2. Example of fit results with vanishing input penguin ampli- 

tudes. 

I quantity 

IT-+1 6-+ 

E 
IPOI b 
Ifi1 

input I fit 1 

I 1000 events 

70 70 f 6 

0.9 0.80 f 0.03 

0.0 9f 13 

0.5 0.46 f 0.03 

0.0 4.6 f 3.9 

0.0 ( .Ol f 0.6 

’ 31f6 1 68f4 

5f12 1 0.2f3 

0.20 f 0.11 I 0.02 f 0.04 

4flO 1 174f34 

fit 4 

2000 event! 

26 f 4 

0.97 f 0.15 

2f6 

0.34 f 0.11 

0.2 f 7 

0.15 f 0.09 

-2fll 

0.08 f 0.08 

159 f 40 

17590.5 
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- .-.. . . * _ _ 

Table 3. Example of fit results with non-vanishing input penguin 

amplitudes. 

quantity I input 

ST I 197 

-: .++I 1 0.5 

fit 1 I fit 2 I fit 3 

1000 events 1000 events 2000 events 

1000 events 1000 events 2000 events 

65 f 6 27 f 6 70 f 5 

0.91 f 0.07 1.8 f 0.5 0.87 f 0.05 

211 f 18 1 205 f 26 1 208 f 17 

0.44 f 0.04 1 0.24 f 0.16 1 0.50 f 0.03 

fit 4 

2000 even1 

2000 

19 f 6 

0.92 f 0.2 

201 f 21 

0.24 f 0.1 

37 f 19 

0.51 f 0.1 

109 f 24 

0.53 f 0.0 

137 f 10 

17042.1 

.-- 
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FIGURE CAPTIONS 

Figure 1: Sample Dalitz Plot of B" + pr. 

Figure 2: Maximum Likelihood as a function of (fixed) fit value of Q for input 

weak phase Q = 20’. 

TABLE CAPTIONS 

Table 1. The time and kinematic dependence of contributions to the distribu- 

tion of events. 

Table 2. Example of fit results with vanishing input penguin amplitudes. 

Table 3. Example of fit results with non-vanishing input penguin amplitudes. 
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