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Abstract
We present the one-loop helicity amplitudes with five external gluons. The computation em-
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Calculations beyond the leading order in quantum chromodynamics are important to refining
our understanding of known physics in present-day and future collider experiments, such as the
Tevatron or the SSC and LHC. In jet physics, next-to-leading order calculations are important
to curing several deficiencies of their leading-order counterparts: the strong spurious dependence
on the renormalization scale; the lack of sensitivity to the jet resolution parameters, namely the
minimum transverse energy and the jet cone size; and the absence of a warning about dangerous
infrared logarithms. The one-loop corrections to matrix elements for 2→ 2 processes in QCD, a key
ingredient of the next-to-leading order calculations of inclusive-jet and two-jet cross-sections and
distributions, were computed by Ellis and Sexton [1]. To go beyond these cross-sections, whether to
higher orders for two-jet cross-sections, or to next-to-leading order for three-jet cross-sections and
distributions, requires the computation of the one-loop corrections to the 2 → 3 matrix elements.
At hadron colliders, the QCD coupling αs, and the manner of its running, can be extracted from
purely hadronic processes by comparing three-jet production to two-jet production, at various
center-of-mass energies. The presence of infrared logarithms in both of these quantities means that
this cannot be done sensibly unless both quantities are known to next-to-leading order.

We present here the one-loop matrix elements with five external gluons, which are the hardest
part of a 2→ 3 calculation if a traditional diagrammatic method is used. We have performed the
calculation using the string-based methods developed in ref. [2] as more efficient tools for one-loop
calculations with external gluons. The rules presented there were derived by taking the infinite-
tension limit of an appropriately-constructed heterotic string amplitude. The structure of the rules
can also be understood in conventional field theory [3], and the application of such methods to
a calculation such as the present one does not require any knowledge of string theory. (It turns
out that it is possible to construct a set of rules yielding more compact integral representation of
gluon amplitudes at intermediate stages than would emerge from a straightforward application of
the rules in ref. [2]. This alternate set of string-based rules will be discussed elsewhere.)

In the string-based method, one first decomposes the n-gluon amplitude, depending on the
external momenta, helicities, and color indices ki, λi, and ai, into sums over certain permutations
of color factors, times partial amplitudes, in analogy to the helicity [4,5] and color [6] decomposition
of tree amplitudes. At one-loop order in an SU(N ) theory, one must also sum over the different
spins J of the internal particles; this takes the following form when all internal particles transform
as color adjoints,

An ({k,λi, ai}) =
∑
J

nJ

bn/2c+1∑
c=1

∑
σ∈Sn/Sn;c

Grn;c (σ) A[J]
n;c(σ) (1)

where Grn;1(1) = N Tr (T a1 · · ·T an), Grn;c(1) = Tr (T a1 · · ·T ac−1) Tr (T ac · · ·T an), Sn is the set
of all permutations of n objects, and Sn;c is the subset leaving the trace structure Grn;c invariant.
The T a are the set of hermitian traceless N×N matrices, normalized so that Tr

(
T aT b

)
= δab. For

internal particles in the fundamental (N + N̄ ) representation, only the single-trace color structure
(c = 1) is present, and it is smaller by a factor of N . We take in each case a spin-J particle with
two states: gauge bosons, Weyl fermions, and complex scalars.

The objects one calculates are the partial amplitudes A[J]
n;c, which depend only on the external

momenta and helicities. For the five-point function, there is only one independent partial amplitude
for each configuration of external helicities; A5;2 and A5;3 are related to the adjoint contributions
to A5;1 via decoupling equations [7].

The string-based method meshes well with the spinor helicity representation for the polariza-
tion vectors [4,5], which provides an efficient method for extracting the essential gauge-invariant
information in an on-shell amplitude. This method yields expressions written in terms of spinor
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products 〈i j〉 and [i j], which are square roots of Lorentz products sij = (ki + kj)2 (up to a phase).
Unfortunately, the relations — momentum conservation and the Schouten identity — between dif-
ferent forms of a given expression are nonlinear, which makes it hard to give a canonical form for
such expressions, or equivalently makes it hard to simplify complicated expressions. However, one
can evaluate “phase-invariant” combinations of spinor products in terms of sij and contractions of
the Levi-Civita tensor ε(i, j, m, n) = 4iεµνρσk

µ
i k

ν
j k
ρ
mk

σ
n = [i j] 〈j m〉 [mn] 〈n i〉−〈i j〉 [j m] 〈mn〉 [n i].

It suffices to calculate the ratios

〈i j〉 [j k]
〈i l〉 [l k] =

silsjk + sklsij − siksjl − ε(i, j, k, l)
2silskl

, (2)

using e.g. methods in reference [8]. In this way spinor products can be eliminated from any
expression, apart from an overall prefactor.

For massless five-point kinematics, such an expression can then be written as a rational function
in the five kinematic variables {β1, β

∗
2 , β3, β

∗
4 , β5} (or any cyclic permutation of this set), where

βi = [i, i+ 1] 〈i+ 1, i+ 2〉 [i+ 2, i+ 3] 〈i+ 3, i〉 ×
(
−

5∏
j=1

sj,j+1

)−1/2

. (3)

The only independent Levi-Civita contraction is given by ε(1, 2, 3, 4)/(−
∏5
j=1 sj,j+1)1/2 = (β5β

∗
2 +

β1β3 + β∗2β
∗
4 + β3β5 + β∗4β1)/β3 = βi − β∗i for any i, and the independent Lorentz products by

si,i+1 = −1/((βi+β∗i+1)(βi+2 +β∗i+3)). Simplification of rational functions in βi is straightforward.
The βi variables are related to the variables γi and ∆̂5 used in ref. [9] to perform pentagon

integrals, via β
(∗)
i = −(γi+2 ±

√
∆̂5)/2. Indeed, the derivative approach to evaluating tensor

integrals [9], when applied to the pentagon integrands encountered in the five-gluon calculation,
and expressed in terms of the appropriate set of βi variables, allows one to significantly reduce the
degree and size of the Feynman parameter polynomials in the integrand.

At tree-level, certain helicity amplitudes vanish identically [10]. The corresponding one-loop
amplitudes are then free of infrared divergences. The remaining amplitudes are infrared-divergent;
for practical purposes these divergences must be regulated using dimensional regularization. The
computation of these helicity amplitudes thus requires the knowledge of five-point loop integrals in
D = 4− 2ε [9, 11].

For the finite helicity amplitudes, supersymmetric identities [12] imply that the contributions
of particles of different spin circulating around the loop are related, A[1]

n;c = −A[1/2]
n;c = A

[0]
n;c. (This

holds true for the partial amplitudes whether or not the theory as a whole is supersymmetric.)
Indeed, in the string-based method, these identities hold for the integrands of each diagram. The
amplitudes are

A
[1]
5;1

(
1+, 2+, 3+, 4+, 5+

)
=

i

96π2

s12s23 + s23s34 + s34s45 + s45s51 + s51s12 + ε(1, 2, 3, 4)
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉 ,

A
[1]
5;1

(
1−, 2+, 3+, 4+, 5+

)
=

i

48π2

1
[1 2] 〈2 3〉 〈3 4〉 〈4 5〉 [5 1]

[
(s23 + s34 + s45)[2 5]2 − [2 4] 〈4 3〉 [3 5] [2 5]

− [1 2] [1 5]
〈1 2〉 〈1 5〉

(
〈1 2〉2〈1 3〉2 [2 3]

〈2 3〉 + 〈1 3〉2〈1 4〉2 [3 4]
〈3 4〉 + 〈1 4〉2〈1 5〉2 [4 5]

〈4 5〉

)]
.

(4)
In order to present the results for the remaining, infrared-divergent amplitudes in a compact
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form, it is helpful to define the following functions,

L0(r) =
ln(r)
1− r , L1(r) =

ln(r) + 1− r
(1− r)2

, L2(r) =
ln(r)− (r− 1/r)/2

(1− r)3
,

Ls1(r1, r2) =
1

(1− r1 − r2)2

[
Li2(1− r1) + Li2(1− r2) + ln r1 ln r2 −

π2

6

+ (1− r1 − r2) (L0(r1) + L0(r2))
]
,

(5)

where Li2 is the dilogarithm; a prefactor,

cΓ =
(4π)ε

16π2

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

, (6)

a universal function,

V g = − 1
ε2

5∑
j=1

(
µ2

−sj,j+1

)ε
+

5∑
j=1

ln
(
−sj,j+1

−sj+1,j+2

)
ln
(
−sj+2,j−2

−sj−2,j−1

)
+

5
6
π2 − δR

3
, (7)

the following functions for the (1−, 2−, 3+, 4+, 5+) helicity configuration,

V f = − 5
2ε
− 1

2

[
ln
(

µ2

−s23

)
+ ln

(
µ2

−s51

)]
− 2, V s = −1

3
V f +

2
9

F f = −1
2
〈1 2〉2 (〈2 3〉 [3 4] 〈4 1〉+ 〈2 4〉 [4 5] 〈5 1〉)

〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉
L0

(
−s23
−s51

)
s51

F s = −1
3

[3 4] 〈4 1〉 〈2 4〉 [4 5] (〈2 3〉 [3 4] 〈4 1〉+ 〈2 4〉 [4 5] 〈5 1〉)
〈3 4〉 〈4 5〉

L2

(
−s23
−s51

)
s3

51

− 1
3
F f

− 1
3

〈3 5〉 [3 5]3

[1 2] [2 3] 〈3 4〉 〈4 5〉 [5 1]
+

1
3

〈1 2〉 [3 5]2

[2 3] 〈3 4〉 〈4 5〉 [5 1]
+

1
6
〈1 2〉 [3 4] 〈4 1〉 〈2 4〉 [4 5]
s23 〈3 4〉 〈4 5〉 s51

,

(8)
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and the corresponding ones for the (1−, 2+, 3−, 4+, 5+) helicity configuration,

V f = − 5
2ε
− 1

2

[
ln
(

µ2

−s34

)
+ ln

(
µ2

−s51

)]
− 2, V s = −1

3
V f +

2
9

F f = −〈1 3〉2〈4 1〉[2 4]2

〈4 5〉〈5 1〉
Ls1

(
−s23
−s51

, −s34
−s51

)
s2

51

+
〈1 3〉2〈5 3〉[2 5]2

〈3 4〉〈4 5〉
Ls1

(
−s12
−s34

, −s51
−s34

)
s2

34

− 1
2
〈1 3〉3(〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉
L0

(
−s34
−s51

)
s51

F s = −〈1 2〉〈2 3〉〈3 4〉〈4 1〉2[2 4]2

〈4 5〉〈5 1〉〈2 4〉2
2 Ls1

(
−s23
−s51

, −s34
−s51

)
+ L1

(
−s23
−s51

)
+ L1

(
−s34
−s51

)
s2

51

+
〈3 2〉〈2 1〉〈1 5〉〈5 3〉2[2 5]2

〈5 4〉〈4 3〉〈2 5〉2
2 Ls1

(
−s12
−s34

, −s51
−s34

)
+ L1

(
−s12
−s34

)
+ L1

(
−s51
−s34

)
s2

34

+
2
3
〈2 3〉2〈4 1〉3[2 4]3

〈4 5〉〈5 1〉〈2 4〉
L2

(
−s23
−s51

)
s3

51

− 2
3
〈2 1〉2〈5 3〉3[2 5]3

〈5 4〉〈4 3〉〈2 5〉
L2

(
−s12
−s34

)
s3

34

+
L2

(
−s34
−s51

)
s3

51

(
1
3
〈1 3〉 [2 4] [2 5] (〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)

〈4 5〉

+
2
3
〈1 2〉2〈3 4〉2 〈4 1〉 [2 4]3

〈4 5〉 〈5 1〉 〈2 4〉 − 2
3
〈3 2〉2〈1 5〉2 〈5 3〉 [2 5]3

〈5 4〉 〈4 3〉 〈2 5〉

)

+
1
6
〈1 3〉3 (〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉
L0

(
−s34
−s51

)
s51

+
1
3

[2 4]2[2 5]2

[1 2][2 3][3 4]〈4 5〉[5 1]

− 1
3

〈1 2〉〈4 1〉2[2 4]3

〈4 5〉〈5 1〉〈2 4〉[2 3][3 4]s51
+

1
3

〈3 2〉〈5 3〉2[2 5]3

〈5 4〉〈4 3〉〈2 5〉[2 1][1 5]s34
+

1
6
〈1 3〉2 [2 4] [2 5]
s34 〈4 5〉 s51

.

(9)

For positive values of sij , the logarithms and dilogarithms develop imaginary parts according to the
prescription sij → sij+iε. We also remind the reader of the tree amplitudes, Atree

5 (1−, 2−, 3+, 4+, 5+) =
i〈1 2〉4/(〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉) and Atree

5 (1−, 2+, 3−, 4+, 5+) = i〈1 3〉4/(〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉).
In terms of these functions, the MS renormalized amplitudes are

A
[0]
5;1 = cΓ

(
V sAtree

5 + iF s
)
,

A
[1/2]
5;1 = −cΓ

(
(V f + V s)Atree

5 + i(F f + F s)
)
,

A
[1]
5;1 = cΓ

(
(V g + 4V f + V s)Atree

5 + i(4F f + F s)
)
.

(10)

The rest of the helicity amplitudes are related by cyclic permutations or complex conjugation to
those given above. It is interesting to note that in supersymmetric theories, the V s and F s terms
cancel out of the final amplitude, and that in N = 4 supersymmetric theories only the V g term
survives. The separation implied above into g, f , and s pieces arises naturally on a diagram-by-
diagram basis within the string-based approach. In this approach the V g term represents the only
calculational difference between the contributions with gluons circulating around the loop, and
those with fermions; this term has a particularly simple expression at every intermediate stage of
the calculation. The parameter δR controls the variant of dimensional regularization scheme [2]:
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for δR = 0, one obtains the four-dimensional helicity scheme, while for δR = 1 one obtains the
’t Hooft–Veltman scheme.

There are several checks we have applied. We have checked gauge invariance, both by com-
puting amplitudes with longitudinal gluons, verifying that one obtains zero, and by calculating
a helicity amplitude with an alternate choice of spinor-helicity reference momenta, and verifying
that the result is unchanged. In addition, the forms given above display manifestly the reflection
symmetries expected of the amplitudes, symmetries that are not present in the contributions of
the individual diagrams. The amplitudes also have consistent limits as one of the gluon momenta
becomes soft, and as two adjacent momenta become collinear.

At next-to-leading order, only the infrared-divergent helicity amplitudes (5–10) enter into the
construction of a program for physical quantities. In order to construct such a program for three-jet
quantities, one must form the interference of the tree amplitude with the loop amplitude; this has
the form [7]

∑
colors

[A∗5A5]NLO = 2g8N4
(
N2 − 1

)Re
∑

σ∈S5/Z5

Atree ∗
5 (σ)A5;1(σ)

+
1
N2

Re
∑

ρ∈S5/Z5

[
Atree ∗

5 (r · ρ)A5;1(ρ)−Atree ∗
5 (ρ)A5;1(r · ρ)

]

+
2
N2

Re
∑
h∈H5

∑
p∈P
(

5
3

)Atree ∗
5 (h · p)A5;3(p)

 ,

(11)

where r is the permutation (2 4 1 3 5); P
(

5
3

)
is the ten-element set of distinct partitions of five ele-

ments into lists of length two and three; andH5 = {(1 2 3 4 5), (3 4 1 2 5), (3 1 2 4 5), (2 1 3 4 5), (3 2 1 4 5),
(3 4 2 1 5)}. For QCD with nf flavors of massless quarks, one substitutes A5;1 → A

[1]
5;1 + nf

N
A

[1/2]
5;1

and A5;3 → A
[1]
5;3 into equation (11). One must then combine this virtual correction with the sin-

gular terms in the 2→ 4 matrix elements arising from the integration over soft and collinear phase
space. The Giele-Glover formalism [13] makes use of the color ordering in construction of universal
functions representing the results of the soft and collinear integrations, and is the most convenient
one for doing so. We have used it to check that the poles in ε do cancel as expected.
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