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1. Introduction

The purpose of this paper is to introduce the concept of impedance
to calculate the wake field forces left behind by a short bunch which
travels at relativistic speed through a structure with discontinuities.1

We will try to be as intuitive as possible and leave the more rigorous
derivations to the second paper on this subject by J. Wang.

2. Representation of Cavity by Equivalent Circuit

We will consider the cavity shown in Fig. (2.1) which has rotational
symmetry about the z axis and is excited by the beam current, IB,
passing through the gap. For the time being, we will consider only
one mode of excitation for the cavity; namely, the mode where the

magnetic field ~B is azimuthal around the beam direction as shown.
The current IL flows in the outer cavity wall in the direction shown to
oppose the magnetic field in the cavity excited by the beam current.
This current IL causes a build-up of positive and negative charges on
the exit and entrance plane of the gap as shown. This charge build-
up produces an increasing electric field in the direction opposite to
the direction of the beam current.

We will use Gaussian units and write Maxwell’s equation as

∇× ~B =
4π

c
~J +

1

c

∂ ~E

dt
(2.1)

where ~J is the current density, ~B the magnetic field, ~E the elec-
tric field, c the speed of light, and t the time. The coefficient (4π

c ) is

? Work supported by Department of Energy contract DE-AC03-
76SF00515.
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where ~J is the current density, ~B the magnetic field, ~E the electric
field, c the speed of light, and t the time. The coefficient (4π

c ) is
equal to Z0, the impedance of free space, which in practical units is
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Figure 2.1. Cavity excited by Beam Current IB.

377 Ω. We integrate both sides of Eq. (2.1) over the surface area of

a plane perpendicular to the direction of the beam current as shown

in Fig. (2.1). The area of integration includes the walls of the cavity.

The term
∫ ∫

(∇× ~B) · d ~A =
∮
~B · d~l = 0, since the boundary of the

surface is in the walls of the cavity where B = 0. The integral of
~J over the area gives the current IB + IL. The integral of the time

variation of the electric field is defined as a displacement current

IC =
1

4π

∫
∂ ~E

∂t
· d ~A (2.2)

The surface area integral of (2.1) yields Kirchoff’s Law

IB + IL + IC = 0 (2.3)
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We can represent this cavity by an equivalent circuit with IB a source

current as shown in Fig. (2.2). Note that the wall resistance of the

cavity has been included as a resistance in series with the induc-

tance. This comes about because the finite conductivity of the wall

produces a non-zero electric field parallel to the cavity wall which is

proportional to the current IL. The circuit shown in Fig. (2.2) can

be excited to large voltages when the time variation of the exciting

current IB is near the resonant frequency ω2 = (1/LC). If, at this

frequency, the series resistance is small compared to the inductive

reactance, i.e. r <<
√
L/C, then the circuit in Fig. (2.2) can be well

represented by the circuit shown in Fig. (2.3) with a shunt resistance

R = (L/rC). For this circuit Kirchoff’s Law becomes

C
dV

dt
+

1

R
V +

1

L

∫
V dt = −IB (2.4)

Capacitive + Resistive + Inductive = Driving
term term term term

It is quite common to take the time derivative of Eq. (2.4) and use

3
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the following notation

1

C
=
ωrR

Q
and ω2

r =
1

LC
(2.5)

to arrive at the second order differential equation

V̈ +
ωr
Q
V̇ + ω2

rV = −ωrR
Q

İB (2.6)

So far, we have considered an equivalent cavity with only one pos-
sible mode. Most cavities have many modes of excitation. We can
represent these cavities by a generalization of the equivalent parallel
circuit as shown in Fig. (2.4). We obtain a separate equation for the
voltage Vn of each mode n excited by beam current IB,

CnV̈n +
V̇n
Rn

+
Vn
Ln

= −İB (2.7)

The total voltage is given by the sum of the voltages over all N
modes of the cavity

Vt =
N∑
n=1

Vn (2.8)
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Figure 2.5. Cavity excited by external current.

While the main purpose of this paper is to discuss how the beam ex-

cites wake fields in vacuum structures, it is useful, for completeness,

to illustrate how a cavity can be driven in its fundamental mode

from an external source with a coupling loop as shown in Fig. (2.5).

Kirchoff’s Law, Eqs. (2.3-2.6), still holds. However, we need to in-
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clude the generator current −IG in the loop for the driving term

along with the beam current, so

C
dV

dt
+

1

R
V +

1

L

∫
V dt = IG − IB (2.9)

where we have chosen the direction of the current IG to produce

an accelerating voltage. This circuit equation is used extensively to

describe the cavity voltage in a steady state, or in a slowly varying

amplitude and phase approximation, and will be discussed in the

papers by P. B. Wilson and F. Pedersen. Our purpose is to illus-

trate their connection to single bunches traveling through different

structures in the ring vacuum chamber.

3. Driving Current of a Short Pulse of Charge

We will consider a charge pulse of length σ = vT , where the center of

the pulse passes through the cavity center z = 0 at time t = 0. The

time duration of the pulse is T , and the pulse velocity is v, which we

will assume is close to the speed of light. The linear charge density of

the pulse can be represented by λ(s) with s = (vt− z), the position

of the charge in the bunch relative to the center of the bunch. Note

that the front of the bunch passes through the cavity at s < 0 as

shown in Fig. (3.1). This illustrates that bunch density profile is

what one would see on an oscilloscope trace. The reader should be

careful to note that other authors may display a snapshot of the

bunch density profile at a fixed time so that the front of the bunch

would be reversed from the convention of this paper. The beam

current, which is to be used in the equivalent circuit of the previous

section, is given by

IB(t) = vλ(vt− z) = vλ(s) (3.1)

The pulse λ(s) can also be represented by its Fourier transform λ̃(ω)

with

λ(s) =
1

2π

∫
λ̃(ω)e−iωs/cdω (3.2)
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Figure 3.1. Linear density profile of bunch.

and

λ̃(ω) =
1

v

∫
λ(s)eiωs/cds (3.3)

One of the most common pulse distributions considered is the Gaus-

sian distribution

λ(s) =
Q√
2πσ

e−s
2/2σ2

(3.4)

where Q is the total charge in the bunch. This Gaussian distribution

has a Fourier transform

λ̃(ω) = Qe−ω
2σ2/c2 (3.5)

The spectrum for λ̃(ω) falls off rapidly for frequencies ω > c/σ as

shown in Fig. (3.2). Of course, when the density distribution is

influenced by the wake fields, the assumption that the distribution

is Gaussian is suspect.

It is instructive to consider the case when the time variation of the

current or the time of interest for the cavity voltage is small com-

pared to the resonant period of the cavity modes, i.e. when the

bunch is short enough or the mode frequencies of the cavity low

enough that ωnT << 1. For this case, we can ignore the second and

third terms on the left hand side of Eq. (2.7) and approximate the
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Figure 3.3. Wake voltage for short bunch (capacitive).

wake voltage in the cavity as

V (t) =
N∑
n=1

Vn = −
N∑
n=1

1

Cn

∫
IB(t)dt (3.6)

We denote this form of the wake field voltage as seen by the charge

in the bunch as a Capacitive Wake. This is shown in Fig. (3.3).

Next we consider the case when the time variation of the current or

the time of interest for the cavity voltage (equal to the duration of the

bunch passage through the cavity) is large compared to the resonant

period of the cavity modes, i.e. ωnT >> 1. We also assume that

the Q of the cavity is sufficiently high that the fields do not decay

appreciably during the passage of the bunch through the cavity. For

this case, the third term is the dominant term on the left side of
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Figure 3.4. Wake voltage for long bunch (inductive).

Eq. (2.7), and we can approximate the wake voltage in the cavity as

V (t) =
N∑
n=1

Vn = −
N∑
n=1

Ln
dIB
dt

(3.7)

We call this form of the wake field voltage as seen by the charge in the
bunch an Inductive Wake. This type of wake is shown in Fig. (3.4),
where we see that the energy lost by the front of the bunch is gained
by the rear of the bunch, so that, for a pure inductive wake, the net
energy lost by the bunch is zero.

There is one other case which we should consider for completeness;
namely, the case of a very long bunch or a very lossy cavity where
the fields decay in a time much shorter than the time it takes for the
bunch to pass through the cavity. In this case, ωnT >> Q, and we
can approximate the cavity voltage as

V (t) =
N∑
n=1

Vn = −
N∑
n=1

1

Rn
IB (3.8)

This is called a Resistive Wake and is shown in Fig. (3.5), where we
see that the cavity voltage and bunch density are exactly in phase.

For the case of high Q cavities and intermediate bunch lengths, the
total wake field is the sum of the capacitive and inductive parts of
the wake as shown in Fig. (3.6). Note that even for a zero shunt
resistance (i.e. an infinite Q), there is a net loss of energy for the
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bunch, just as in the case when a resistive term is present. In addition

to the bunch length, both the transverse distance to the outer wall

and the length of the gap determine whether the cavity is capacitive

or inductive. Three examples of cavity shapes and bunch lengths are

shown in Fig. (3.7), one illustrates a capacitive wake, and the others

inductive wakes. For the first example, shown in Fig. (3.7), we see

that if

(g + l/2)l < 2(b− a)2 (3.9)

with g the gap length, l the bunch length, a the radius of the inner

wall, and b the radius of the outer wall, the fields produced by the
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front of the bunch do not have time to propagate to the outer cavity
wall and back before the bunch leaves the cavity. The cavity modal
frequency, ωn, is of the order of c/b. The time duration T of the pulse
is given by l/c so that the condition ωnT << 1 satisfies Eq. (3.9),
and the wake field of this example is mainly capacitive. On the other
hand, if the field produced by the front of the bunch can propagate
to the outer wall and back in time to effect most of the particles in
the bunch, the wake field is mainly inductive. This is shown by the
last two examples in Fig. (3.7).
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In order to properly define a ”short” bunch it is necessary to consider

the relativistic energy parameter of the beam γ which is defined as

the ratio of the particle energy to the rest mass energy. We assume

that the particles in the bunch travel near the speed of light, and

we can substitute c for v except when the difference is required, and

then we can substitute (c − v) by c/(2γ2). As discussed above, the

bunch is short when the cavity gap and the bunch length are much

smaller than the transverse size of the cavity.

However, even in this case there are two regimens of interest which

are shown in Fig. (3.8). In the first regime, which we refer to as

the “very short” bunch regime, we find that (a/γ) >> lB, even for

γ >> 1. The second regime, which we refer to as the “short” bunch

regime is where (a/γ) << lB << a. The reference frame used in

Fig. (3.8), which we designate by a prime on the bunch length, is

a reference frame moving at the velocity of the bunch (i.e. the rest

frame of the beam). In the “very short” bunch regime the length of

the bunch in the rest frame of the particles is still much less than

the transverse size of the chamber, but in the “short” bunch regime,

the length of the bunch in the rest frame of the particles is much

greater than the transverse size of the chamber. The first regime is

where many Free Electron Lasers operate, while the second regime
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is where the high energy colliders considered in this school operate.
In the following, we will consider only the “short” bunch regime, so
that only wake fields which are due either to the finite conductivity
or to the discontinuities of the vacuum chamber are considered.

4. Connection Between Wake Potential and Impedance

In the previous section, we found that the wake voltage V could be
written as a function of the driving current (or its equivalent the
linear charge density of the bunch). We write

V (s) = −
∞∫
−∞

W‖0
(
s− s′

)
λ(s′)ds′ (4.1)

where we have chosen V positive for an accelerating voltage.2 For the
capacitive, resistive and inductive wakes discussed in the previous
section, the potential kernels are given by the following expressions:

W‖0
(
s− s′

)
=

N∑
n=1

1

Cn
H
(
s− s′

)
(4.2a)

W‖0
(
s− s′

)
= c

N∑
n=1

1

Rn
δ
(
s− s′

)
(4.2b)

and

W‖0
(
s− s′

)
= c2

N∑
n=1

Ln
dδ (s− s′)

ds
(4.2c)

where H(s) is the unit step function equal to one for s > 0 and equal
to zero for s < 0, while δ(s) is the Dirac Delta function. When Eqs.
(4.2a-4.2c) are substituted into Eq. (4.1), one obtains Eqs. (3.6),
(3.7) and (3.8). It is useful to define the longitudinal impedance by
the Fourier transform of the wake function W‖0(s)

Z‖ (ω) =
1

c

∫
W‖0(s)eiωs/cds (4.3a)
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and

W‖0(s) =
1

2π

∫
Z‖(ω)e−iωs/cdω (4.3b)

where the impedance can be written as the sum of the real part
(resistance) and imaginary part (reactance)

Z‖(ω) = R‖(ω) + iX‖(ω) (4.4)

From causality, W (s) is zero for s < 0, so that R‖ is an even function,
and X‖ an odd function of ω. The amount of energy lost by the
bunch, which travels through a cavity, divided by the charge in the
bunch is called the loss factor and is given by

k‖ = − 1

Q

∫
λ(s)V (s)ds (4.5a)

or in terms of the impedance

k‖ =
1

Q

∫
λ̃2(ω)R‖(ω)dw (4.5b)

where we have used the fact that the term X‖(ω) integrates to zero.

A more general expression for the impedance may be given by ex-
panding in powers of (1/

√
ω) (Eq. 3),

Z(ω) = −iωL+B
√
ω +R

+
Z1√
ω

+
1

ωC
+ · · · (4.6)

The first term is the inductive term caused by bellows, slots, ports,
etc. in the vacuum chamber, and is only valid for the lower frequen-
cies below cutoff. This term is discussed in the previous section. The
second term, proportional to

√
ω, is due to the finite conductivity

of the chamber wall and is present even in a smooth chamber. This
term is valid up to frequencies, where the displacement current in
the wall becomes comparable to the ohmic current. The third term
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is a resistive term with R the usual dc resistance, also discussed in
the previous section. The fourth term, proportional to 1/

√
ω, is due

to the diffraction of the electromagnetic field at sharp discontinu-
ities in the chamber. This term is valid for the frequencies driven by
the beam in the “short bunch” regime. The last term is the usual
capacitive term which is higher order in 1/

√
ω and can be ignored

for high frequencies. Both the resistive wall term and the diffraction
term are discussed below.

5. Resistive Wall Impedance

In order to understand physically the wake field, which is responsible
for the resistive wall impedance, consider the following argument.4

As the beam passes by a given point in the vacuum wall, a surface
current is induced on the wall. Subsequently, if the conductivity
of the wall is finite, this current diffuses into the metal giving rise
to wake fields. This process can best be illustrated by a simple
example. We will examine the currents in the wall for the case of a
charge particle pulse traveling parallel to an infinite metallic plane as
shown in Fig. (5.1c). Imagine that the pulse of particles is made up
of two semi-infinite beams, one positive and one negative, as shown
in Figs. 5.1a and 5.1b. The image charges and currents are also
shown for the case of a perfectly conducting wall. Because the wall
conductivity is infinite, no current can exist inside the metal, and the
induced currents stay on the surface of the wall. The wall currents
and charges due to the (+) and (-) beams have the same magnitudes
but opposite signs; by superposition, they cancel each other in the
region behind the pulse as shown in Fig. (5.1c). Hence, no current is
left in the wall for the case of a perfectly conducting wall. However,
if the wall conductivity is finite, the surface currents can diffuse
toward the inside of the metal. The diffusion of the image currents
of the (+) and (-) beams is shown in Figs. (5.2a) and (5.2b). Because
these image currents are turned on at different times, the wall current
corresponding to the (+) beam has diffused farther into the metal
than that of the (-) beam at the same point along the wall. This gives
rise to currents in the wall in the region behind the pulse as shown
in Fig. (5.2c). Near the wall surface, the currents are positive, and
inside the metal the currents are negative. Hence, in the presence of
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wall resistance, there are wall currents left behind a pulse of charged

particles. These currents provide the source for the wake fields.

The diffusion distance of the current into the wall is given by the

skin depth

δ = c/
√

2πωσc

where ω is a frequency given by ω`B ∼ c, see Fig. (3.2). The conduc-

tivity of the wall is denoted by σc which for copper is 0.5×1018/sec.

The current density at the wall of radius a is J ∼ I/aδ. This cur-

rent density corresponds to a longitudinal electric field component

Ez = V/`w = J/σc, where `w is the total length of the resistive wall.

Hence, the impedance Z(ω) = V/I ∝ √ω. Because of causality,

Z(ω) = Z∗(−ω), and the actual value of B in Eq. (4.6) is given by

B =
(1− i)`wZ0

2a
√

2πσc

with Z0 = 4π/c the impedance of free space equal to 377 Ω.

6. Diffraction Impedance

The diffraction term was originally derived by J. D. Lawson in the

“very short bunch” regime to obtain the γ dependence for the en-

ergy lost by a zero length bunch passing through a cavity.5 It should

be pointed out that the dependence of 1/
√
ω for the impedance of

the diffraction term is quite subtle, and its derivation and range of

validity were the subject of a whole special issue of Particle Acceler-

ators devoted to a workshop attended by the “experts” in the field

of impedances for short bunches. A beautiful physical argument to

derive this result has been given by R. B. Palmer.6 With his kind

permission, we have repeated his treatment here.

We consider the cavity excited by a short bunch as shown in Fig. (6.1).

When the bunch enters the cavity, the electromagnetic field which

had been contained within the pipe of radius a starts to diffract

away from the cavity edge as shown. When the rear of the bunch is
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beam passing through a short gap.

at position z from the edge of the cavity, the electromagnetic field
at radius a, which started at the front of the bunch, has diffracted
transversely a distance δ such that the field at r = a+δ and r = a−δ
is at a distance `B behind the field at r = a. We will consider the
case where δ << a and z >> `B. The transverse distance δ is related
to the longitudinal distance z by√

z2 + δ2 =z + `B

or (6.1)

δ ≈
√

2`Bz

When the distance z equals the gap width g, the beam enters the
pipe, and the portion of the field that has diffracted by the amount
δ ≈
√

2`Bg is retarded such that it can not catch up with the beam.
This portion of the energy is lost. In the “very short bunch” regime,
we must substitute `B = a/γ, while in the “short” bunch regime, `b
is the length of the bunch. The electromagnetic field at radius a in
the pipe is given by

Er(a) = Bθ(a) =
2Q

a`b
(6.2)

The amount of electromagnetic energy loss in the ring at r = a with
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thickness 2δ is approximately equal to

∆U ≈ 1

8π

[(
Er
2

)2

+

(
Bθ
2

)2
]

[2πaδ`B] (6.3)

which for the “very short bunch” is

∆U =
Q2g1/2γ1/2

√
2a3/2

(6.4)

While for the “short bunch” regime

∆U =
Q2g1/2

√
2a`

1/2
b

(6.5)

The result for the “very short bunch” originally derived by Lawson

shows the
√
γ dependence on the energy loss. We, of course, are only

interested in the “short bunch,” so we will only consider Eq. (6.5).

We use the definitions for the voltage and current V = ∆U/Q and

I = Qc/`B to obtain the impedance at the frequency ω = c/`B given

by

Z ≈
√
gc

2ω

Z0

4πa
(6.6)

Again we must use causality with Z(ω) = Z∗(−ω). The value of the

term in Eq. (4.6) for a Gaussian bunch is given by

Z1 =
(1 + i)Z0

2a

√
cg

π3
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7. Summary

The main purpose of this paper is to give an introduction to the jar-
gon used in discussing wake fields excited by a short bunch of parti-
cles passing through a structure. Often, terms such as the inductive
or resistive part of the wake are used to describe the characteristics
of the field or voltage which acts on the particles in the bunch. We
have tried to illustrate how some of these terms relate to the com-
mon parallel circuit of a cavity. Many people will refer to a resistive
portion of the total wake voltage shown in Fig. (3.6) when a portion
of the wake voltage is in phase with the beam density profile. This
is because the wake voltage for a resistive impedance is in phase
with the beam density as shown in Fig. (3.2). Of course, we know
that this portion of the wake in Fig. (3.6) comes from the capacitive
part of the impedance. To the particles in the beam, however, this
portion of the impedance has a resistive effect, since it produces a
net energy loss. If, after reading this paper, the student has a more
physical feel for the wake field in different regimes and finds the
more advanced papers easier to read, then this paper has fulfilled its
purpose.
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