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ABSTRACT 

We derive the electric and magnetic form factors of the neutron in the frame- 

work of a relativistic constituent quark model. Our parameter free prediction agrees 

well with a recent, accurate measurement. The relativistic features of the model 

and the specific form of the wave function are essential for the result. Comparisons 

are made to other models based on VMD, PQCD and QCD sum rules. 
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A recent measurement [l] of th e neutron electromagnetic form factors, GEM and 

GM~( Q2), greatly increased the Q2 range of previous data [2] and has significantly smaller 

errors. For the first time it is therefore possible to distinguish theoretical models with respect 

to experimental data from the neutron form factors. In the low Q” region, vector meson 

dominance (VMD) models [3] are traditionally used to make predictions for the form factor. 

For sufficiently high momentum transfer perturbative QCD (PQCD) [4] predicts the Q” 

dependence of the form factors. To describe the behavior at intermediate values of Q” the 

parameterization of Ref. [5] uses the VMD form at low Q2, constrained by PQCD results at 

high Q2. There are additional models which predict the neutron form factors. Reference [6] 

describes a relativistic constituent quark model which is similar to our approach. QCD sum 

rules are used in Ref. [7] to fix the parameters of the soft quark functions for calculating 

the form factors., None of these theoretical models are in good agreements with the data for 

both form factors. 

We’rkcently investigated the predictive power of a relativistic constituent quark model 

formulated on the light-front [8,9]. It provides a simple model wherein we have overall an 

excellent and consistent picture of the magnetic moments and the semileptonic decays of 

the baryon octet. The parameters of the model have been fixed in Ref. [9] so that we have 

a parameter free prediction of the neutron electromagnetic form factors. 

The light-front dynamic is a convenient scheme for dealing with a relativistic system. If 

we introduce the light-front variables p ’ = p” f p3, the Einstein mass relation p,p@ = m2 

is linear in p- and linear in p+ , in contrast to the quadratic form in p” and ji in the usual 

dynamical scheme. A consequence is a single solution of the mass shell relation in terms of 

- p-, in contrast to two solutions for p”: 

..- p- = (pt + m2)/p+ , p” = *d$” + m2 . (1) - 

The quadratic relation of p- and pl - (p’,p”) in the above Equation resembles the non- 

relativistic scheme [lo], and the variable p+ plays the role of “mass” in this nonrelativistic 

analogy. It is therefore a good idea to introduce relative variables like the Jacobi momenta 
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when dealing with several particles. As in the nonrelativistic scheme such variables allow us 

to decouple the center of mass motion from the internal dynamics. The light-front scheme 

shows another attractive feature that it has in common with the infinite momentum tech- 

nique [ll]. In terms of the old fashioned perturbation theory, the diagrams with quarks 

created out of or annihilated into the vacuum do not contribute. The usual QQQ quark struc- 

ture is therefore conserved as in the nonrelativistic theory. It is, however, harder to get the 

hadron states to be eigenfunctions of the spin operator [12]. 

The light-front formalism is specified by the invariant hypersurface z+ = x0 + x3 = 

constant. The following notation is used: The four-vector is given by x = (x+,x-,x1), 

where x* = x0 f x3 and x1 = (x1, x2). Light-front vectors are denoted by an arrow 

5 = (x+,x1), and they are covariant under kinematic Lorentz transformations [13]. The 

three momenta p’; of the quarks can be transformed to the total and relative momenta to 

facilitate-the separation of the center of mass motion [14]: 

KI = (1 - q)(pu + p2*) - qp31. (2) 

Note that the four-vectors are not conserved, i.e., pl + p2 + p3 # P. In the light-front 

dynamics the Hamiltonian takes the form 

If= PT+M2 
2P+ ’ 

where A4 is the mass operator with the interaction term W 

..- - M = MO + w, 

M,2 = 
I(; 

rl(l - d 
J,f2= kf+m2 

3 tp -0’ 
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r. - 

with m  being the mass of the constituent quarks. To get a clearer picture of Mu we transform  

to ks and KS by 

t= El + k3 E12 + K3 

El + E2’ ‘= E12+E3’ 

El/2 = (k2 + m :,,) ‘12, E3 = (K2 + m i)‘12, 

El2 = (K2 + M ,2)“2, (5) 

where-k = (ICI, k2, k3), and K = (Kl,K2,K3). Th e expression for the mass operator is now 

simply 

M O  = E12 + E3, M3 = El + E2. (6) 

The diagrammatic approach to light-front theory is well known [15,16]. It provides in 

principal a framework for a systematic treatment of higher-order gluon exchange. In this 

work we lim it ourselves to the tree graph. Since we set Q+ = 0 we can preserve the correct ~. - 
QQQ structure of the vertex. All relevant matrix elements that we investigate are related to 

where the state 1~7) G ]p)/@ is normalized according to 

(~‘I~) = S(jT’ - J-q. 

The matrix element M+ can be written in terms of wave functions as [9]: 

x!P+(k’, K’)9(k, K), 

(8) 

(9) 

where I(: = I(1 + 7Q 1, and NC being the number of colors. 

The electromagnetic current matrix element for the transition n + n’y can be written 
..- 

in terms of t;o form  factors taking into account current and parity conservation: 

(n’, X’p’ IP[ 72, Xp) = 

UP($) F2(Q2) 
Fl(Q2)Y + 2Miop”Q, w(p) 

n 1 
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with momentum transfer Q = p’ - p, and the current Jfi = e@“q. In order to use Eq. (9) 

we express the form factors in terms of the + component of the current: 

Ji(Q2) = (n’, T IJ+I n, r> , 

Q&(Q2) = --2M, (n’, T lJ+l n, 1>. (11) 

For Q” = 0 the form factors Fr and F2 are respectively equal to the charge and the anomalous 

magnetic moment in units e and e/M N. The Sachs form factors are defined as GM = Fr + F2 

and GE = Fr - 7F2 with r = Q2/4Mz. 

Since the center of mass motion can be separated from the internal motion, the wave 

function 9 is a function of the relative momenta k and K. The product XD = @x$ with @ = 

flavor, x = spin, and $ = momentum distribution, is a symmetric function. The neutron 

wave function is. given by: 

: - 
Q = 1 (dduxx3 + permutation) 4, 

A 
(12) 

with 

(13) 

Since the wave function 9 must be an eigenfunction of j2 (j being the total spin of the 

neutron) and the longitudinal component j3, the spins T and 1 have to be rotated by the 

Melosh transform [12,6]. The S-state orbital function qS(Mo) is chosen to be 

+cMo) = (M; “: a2)?17 (14) 

with CY and n being phenomenological parameters and N being the normalization given by: 
..- - 

J 
d3kd31Q2 = 1. (15) 

The form factors are calculated by inserting Eq. (12) into Eq. (9). The result is rather 

lengthy and the explicit expressions are given in Ref. [8]. The exponent n is fitted to the 
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proton form factor Gmp giving n = 3.5. The constituent quark mass m and the length scale 

parameter (Y are fitted to the proton magnetic moment and the weak neutron decay, which 

results in m = 0.263 GeV and o = 0.607 GeV. 

Figures 1 and 2 show the magnetic and electric form factors of the neutron respectively. 

The figures give the deviation from the dipol fit Go = (1 + Q2/Ms)-2 with Mv = 0.84 GeV. 

Only experimental data from SLAC NE11 [l] are given since previous data do not distin- 

guish between the various theoretical predictions. The present calculation (solid curves) 

is in very good agreement for both form factors. There is only a slight deviation for the 

magnetic form factor around 2 GeV 2. To show that the specific form of the wave function 

in Eq. (14) is essential for the result we compare the result with the commonly used expo- 

nential wave function d( MO) = N exp (-M,2/2a2). We also fixed the parameters by fitting 

other electroweak nucleon properties [9], and get m = 0.267 GeV and LY = 0.56 GeV. The 

dashed.line shows a rapid decrease for G Mn at already 1 GeV2, which indicates that the 

exponential wave function is not useful at that energy range. In the nonrelativistic limit, 

a/m --f 0, the form factors fall far below the dipol fit for any reasonable value of (Y and m 

[17]. The relativistic treatment is therefore important, which is a fact also observed for the 

pion [18]. The VMD model (dash-dotted curves) from HShler [3] agrees with the GEM data, 

but overestimates GM~. The model from Gari and Kriimpelmann [5] (dash-double-dotted 

curves) predicts Fr, = 0. It is therefore in very poor agreement with GEM, and in addition 

underestimates GM~. The QCD sum rule predictions from Radyushkin [7] (dotted curves) 

agrees for GEM and underestimates GMn, approaching GM~ for high Q”. The QCD sum rule 

is not valid in the infrared region Q” < 1 GeV2 due to singular power corrections at Q = 0 

- [19]. It is possible that the use of the new SLAC NE11 data to adjust free parameters may 

improve the other models. 
..- 

Weconclude that the precise measurement of form factors at intermediate energies gives 

valuable constraints on theoretical models. We showed that a model, that is in excellent 

agreement with the electroweak properties of the baryon octet, gives a parameter free pre- 

diction of the nucleon form factors, which is in good agreement with recent experimental 
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data. The relativistic features of the model and the specific form of the wave function are 

essential for the good result. 

This work was supported in part by the Schweizerischer Nationalfonds and in part by 

the Department of Energy, contract DE-AC03-76SF00515. 
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FIGURES 

FIG. 1. The magnetic form factor of the neutron compared with the dipol fit, Gncin/pnGo. 

The experimental data are taken from Ref. [l] with statistical and systematical errors. Solid 

line, our calculation with pole type wave functions; dashed line, our calculation with a harmonic 

oscillator type wave function; dash-dotted line, VMD model from Hbhler [3]; dash-double-dotted 

line, Gari-Kriimpelmann model [5]; dotted line, QCD sum rule prediction by Radyushkin [7]. 

FIG. 2. The electric form factor of the neutron compared with the dipol fit, G&/G&. The 

data and curves are marked the same as in Fig. 1. 
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