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ABSTRACT 

A technique to find the longitudinal wake field at frequencies above or below the tube cut-off is 
described. The round tube is infinite in length, and has an arbitrary, smooth variation of radius 
over a finite interval. A system of integrealgebraic equations enforces the boundary conditions 
on the wall and the outgoing wave condition at infinity. The first step in an iterative solution of 
the system, valid for variations of tube radius with small derivative, yields a convenient formula 
for the impedance as a double integral. At low frequencies the formula gives Yokoya’s result 
plus corrections that can be large. For high frequencies in the case of several wall undulations 
it gives a sequence of finite-Q resonances. To avoid the limitations of the iterative method, a 
numerical solution of the system is carried out. 

DERIVATION OF THE EQUATION 

Other papers of this conference demonstrate the impressive utility of computer codes to 
determine electromagnetic fields in the presence of conducting walls of general form. Never- 
theless, codes designed for arbitrary problems are not likely to answer all questions of interest. 
One instance is the wake field of a short or irregular bunch, with high-frequency components 
requiring an extremely fine mesh. The method described here may be a useful complement to 
general purpose programs. It will handle some problems that would normally require an overly 
fine mesh, it gives analytic formulas valid for a wide class of mild wall perturbations, and allows 
tests of accuracy merely by checking of boundary conditions. The method will be described for 
the case of the longitudinal wake field in a tube with circular cross section and infinite conduc- 
tivity. It can be extended to treat transverse fields, wall resistance, and pipes of rectangular 
cross section. 

We take cylindrical coordinates (r,4, t) and suppose that the tube radius is given as R(z) = 
6-es(r), where the function S(L) is zero for 1.~1 > g, and not necessarily even in z. We assume that 
s has a continuous first derivative s’, normalized so that maxIs’ = 1; thus s’(fg) = 0. With 
this normalization, c measures the effective strength of the wall perturbation; a perturbative 
method may succeed if c is small compared to 1. 

We work in the frequency domain, with the time dependence exp(-iw2). Attention is 
restricted to positive values of w, which suffice to express the wake field, thanks to the reflection 
property of the impedance, Z(w) = Z(-w)‘. The source is assumed to be axisymmetric, a 
rigid bunch with total charge q and charge density p(r, 4, z, t) = (q/P*)X(z - @)f(r) where 
JX(z)dz = 1, Jf(r)rdr = 1. It follows that the only non-zero fields are (E, , E,, H#), all 
independent of 4. All fields may be expressed in terms of E,, which can be written as 

Ez(r, t,w) = 
J 

Uxr) dkeikza(k,w)- 
L(xb) 

+ ez(r, t,w) , 
r 

where x2 = Ic2 - (w/c)~, and Z, is the modified Bessel function of the first kind. The Fourier 
transform e^, of the source term e, is any particular solution of the inhomogeneous radial wave 
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equation for E,, regular at r = 0. A convenient choice is 

Ez(r, k,w) = (;x2c/2*k)Z,p~(w,c)6(w-kv) [I&r) ] uduK,(p)-IC,(xr) j uduL,(xu)] f(u) , 

b 0 

(2) 

where K, is the modified Bessel function of the second kind, and i is the Fourier transform of 
X. We work in m.k.s. units, with 2, = 120~ Sz. The Fourier amplitude of the radial field is 

Er(r,k,w) = -$‘Ez(~pk~w) . 

The function I,,(xb) has simple zeros in the k-plane at the points Ic = Gc,, s = 1,2, .. ., 
where k, = ((wb/c)2 - jzs)‘/2 is defined to be positive for Iwb/cI > j,, and positive imaginary 
for Iwb/cI < jos; the j,, are the positive zeros of the Bessel function J,. We define s, to be the 
number of real k,. At any frequency above the lowest cutoff (wb/c = jar), there are 2s, zeros 
on the real axis. To dodge the corresponding real poles of the integrand in (l), the contour I is 
indented slightly so as to go above the poles at k = -k, and below those at k = k,. This choice 
enforces the outgoing wave boundary condition. We have assumed that a(k, w) is analytic in k; 
our construction of solutions will in fact yield an entire function of k. 

The boundary condition on the wall is that E = (E,., E,) be perpendicular to the tangent 
- vector (dR, dr), or 

Ez(R(t), z,w) + R’(t)E,(R(z), 2,~) = 0 . (4) 

This condition leads to an equation for a(k, U) through the following steps: (i) write E, as in (l), 
and the corresponding expression for E, constructed from (3); (ii) take the Fourier transform of 
(4) with respect to z; (iii) subtract I,(xb) from I,(xR(t)) in th e integrand, and notice that the 
compensating addition gives 6(k - /). The result is 

~(1, w) = 
I 

dkM(1, k,w)a(k,w) + 2?(1, w) , (5) 
l- 

where 
9 

M(l,k,w) = & 
I 

dt $$ [Uxb) - Io(xR(r)) + ;W)I:(xR(z))] , (6) 
-9 

and L? is the Fourier transform of 
00 

S(t,w) = - I dkeikz [e,(R(z), z, w) - -$R’(z)$(R(z), t, w)] . (7) 
-co 

Henceforth we treat only the relativistic limit. In that limit the source term simplifies: (2) and 
(7) yield 

( S(r,w) = rJmjqz) 
G+‘(f) j\(,,,),iwt/e 

Below cutoff, (5) is an integral equation [l] for a(lc,w). Above cutoff it is an integro- 
algebraic equation, since the values a(k, w) at the poles on the real axis constitute a discrete set 
of unknowns to be determined along with the continuous, nonpolar part. These values determine 
the amplitudes of outgoing waves. 



By reversing the order of integrals we see that any solution of (5) may be written in the 
form 

9 
a(k, w) = $ 

I 
esiL*@(z, w)dz . (9) 

-9 

Since the integral is finite, a(k, w) is an entire function of 6, as promised. 

FORMULAS FOR THE IMPEDANCE, FROM THE LOWEST ITERATE 

An integration by parts on the first two terms of (6) puts the kernel in the form 

M(l, k, w) = L Icl - (wIc)2 

9 

27r x(k-l) J &ei(k-l)z~‘~r~ “j@;)) . 0 -9 (10) 

This shows that the kernel is formally U(E), and therefore suggests that the equation (5) might 
be solved by iteration when c is small. The first approximation is obtained by putting a = s 
under the integral in (5). Since the impedance is proportional to a(w/c,w), and s(w/c,w) = 0, 
the lowest order impedance is O(?). 

To evaluate the approximated integral of (5) at the synchronous point k = w/c we express 
8 in terms of its Fourier transform and reverse integration order to obtain 

9 

a(w/c,w) = $ 
J 

dze-iwt/c R’(t) 1 d.z’S(z’,w)K(z, z’, w) , 

where 
-9 -9 

IC(z, t’,w) = $.; 
I 

&&Z-Z’) I:(XR(‘)) 
xL(xb) ’ r 

(12) 

The integral (12) converges exponentially if R < b, but diverges for R > b. The divergence is an 
unwanted limitation since we wish to allow arbitrary R. By performing a contour distortion one 
can continue the integral analytically from R < b to R > b, and incidentally gain other benefits. 
Taking R < b we let the contour become an infinite semi-circle in the upper (lower) half-plane 
for z - z’ positive (negative). The result is 

Ii’(r,t’,w) = ; c O3 Jl(jorR(Z)/b)eit,(w~,*-~l, 
d=1 ks(w)bJl(L) (13) 

For .z # z’ the sums converge exponentially, regardless of the value of R. At z = z’ and R = b 
the sum diverges, but if the integral on z’ is performed first there will be an extra inverse power 
of k, and quadratic convergence, uniform in R. 

The formula (11) now involves powers of c higher than the second through the presence of 
R(z) in the denominator of (8) and in (13). To pick out just the c2 part we put R(r) = b in 
both locations. Invoking the usual definition of the impedance in terms of the wake potential, 
we find Z(w) = -2m(w/c,w)/(qi(w/c)). Then from (8), (ll), and (13) we have the impedance 
to lowest order in c as 

Z(w) = g$ 2 g & ] & ] dUSl(t)SI(21)eik~(W)~~-U~-~~(z-u)/C . (14 
-9 -9 

. , Below cutoff the k, are all positive imaginary, and the impedance is reactive as required; (the 
integral is real, since the integrand goes into its complex conjugate on z + u). 
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A closer look shows that the formula (14) is actually invalid for the frequency w in a small 
neighborhood of each traveling wave cutoff, where wb/c = j,,. The kernel I< has an inverse 
square-root singularity at such points, owing to the factor l/k, in (13). It is therefore not 
small near such frequencies, and the iterative method fails. The same singularity appears in the 
field expansion (l), from the residue of the pole as it strikes the real axis. It is cancelled by a 
corresponding zero of a(k, w) at k = &k,, so that the amplitude of the newly appearing outgoing 
wave is finite. We have verified that this mechanism operates in the numerical calculation of the 
following section, but it is a “nonperturbative” effect that cannot take place in a lowest order 
calculation. In plotting results from (14), we delete small neighborhoods of the bad points, and 
let the plotting program interpolate nearby values to fill in the gaps. This is justified by the 
smooth behavior of 2 found in the numerical solutions. 

As a first application of (14) we take the frequency below cutoff and perform a partial 
integration of the u-integral. For this we assume that s” is at least piecewise continuous. 
The integrated term yields an s-sum that can be evaluated (namely C, j;: = l/4), and the 
corresponding contribution to the impedance is the result obtained previously by Yokoya [2] 
through a much more involved method: 

Z(w) = -i&Z,e’ j dr[s’(t)]2 . (15) 

The term remaining after partial integration can be large, however, and is nonlinear in w. One 
expects some correction in any case, since the fields in general must depend on b/g, while there 
is no such dependence in (15). A s an example we take s(z) = d(1 + cos(Tz/g))/2, Irl < g, for 
which E = aldl/(2g). In the small w limit a full evaluation of (14) gives in this case 

II (nblg) 
(nblg)L(~blg) 

1 - e-2josglb 
jos(2, + (rb/s)2>2 

] 
. (16) 

The first term in the square bracket is the Yokoya term, the second term vanishes as (b/g)2 and 
the third as (b/g)3, when g + 03. The correction to the Yokoya term (mainly from the second 
term) is about 50% at 2g/b = 2, and approaches 100% as g -+ 0. Figure 1 shows the sum of the 
second and third terms as a function of 2g/b. 

As an example for arbitrary frequency, we generalize the previous example to allow many 
oscillations of the radius, taking s(f) = d(1 + cos(7rpr/g))/2, where p is an odd integer, thus 
e = v44/(2g)~ A n exact evaluation of (14) for this model yields 

Z(w) = $Zo; [-is [h(w) + Cw)] + ($)2 g j-$-q [f(ks(wb) + f(ks(w>, -4]] 1 

(17) 
where 

Il(O 

h(w) = <IO(t) ’ 
[ = r(T)‘+ 2q(9]“2 , f(k,w) = b~~(~~~~~;~--(~~~~?12 . 

(18) 
The first term is imaginary at all w, and so is the sum for s > s,. The sum for s 5 s, is 
complex, and of course present only above cutoff. Its real part is nonnegative as it should be, 
corresponding to energy lost by the bunch to outgoing waves. The term h(-w) has poles, but 
they are cancelled by corresponding poles in the sum on s. 

Figure 2 shows a plot of formula (17) for p = 1, b = lcm, g = 6cm, d = 0.3cm, thus 
c = 0.078. When the number of wall undulations is increased, a sequence of resonances of 
decreasing Q appears. Figures 3 and 4 show results for p = 5, b = lcm, g = 6cm, d = O.O6cm, 
thus the same c = 0.078. Since the impedance simply scales with d2, it retains its complicated 
form for arbitrarily small d, while decreasing in magnitude quadratically. 
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NUMERICAL SOLUTION 

For a numerical solution we formulate the integral equation in a different way. In (1) we 
translate the contour a finite distance cr into the upper (lower) half-plane for z > 0 (Z < 0), 
respectively. Thus we have two separate representations of E, for the two signs of z, as follows: 

Ez(r,z,w) - 
00 

-00 
(lg) 

The second term represents outgoing waves moving to the right (left), plus any evanescent 
waves with 0 < IIm k,l < Q. The integral decays exponentially as Irl -+ oo. Each traveling 
or evanescent wave in the second term of (19) automatically satisfies the boundary condition 
E,(b, Z, w) = 0 in the region 1~1 > g where the tube has constant radius b. Moreover, in some 
region IzI > h > g beyond the wall perturbation the decaying integral will be negligible if Q is 
sufficiently large. Thus to satisfy the wall boundary condition for the entire infinite tube we 
need only take steps to impose it on the finite region ltl < h. That can be done numerically by 
taking a discrete Fourier transform of the boundary condition over this region. 

Let us first derive the exact continuum equations, and later discretize. We substitute the 
composite representation (19) of E, and the corresponding form for E, in the boundary condition 
(4), subtract and add I,(xb) as we did before, then move the contour of the added term (which 
entails no poles) back to the real axis. Then take the Fourier transform on z, and get a free- 
standing a(/, w) on the left hand side. Finally continue the result analytically to 1 = u f ia and 
1 = fkl to obtain the following system of integro-algebraic equations: 

00 

a(u zt. icr) = 
I 

dv [A-+@ f icr, v + ;a)+ + ia) + I-C-(u f icx, v - ia)a(v - ia)] 
-03 

+ k[L+(u f icr, ks)a(k8) + L-(u ZL ia, -ks)a(-ks)] 
SZl 

+S(uztia) , ~E[--00,4 , 
cm (20) 

a(fkt) = 
J 

dv [K+(fkl, v + icx)a(v + ia) + K-(kkt, v - icr)a(v - ia)] 
-cc 

+ ~[~+(W,)a(k,) + L-(fkt, -k&(-k,)] 
a=1 

+@kt) , t = 1,2,...,n . 

We have suppressed all reference to w, and have defined the kernel functions as 

fs 

K*(l, k) =$-J / dzei(k-‘)” & [Io(xb) - L(xR(z)) + +)I:(xR(z))] , 
” 

fe 

L-+(1, kd) = f i 
J 

dze”(k*-‘)” k~b2~~~j,,) [-J&SR(dlb) + ~R’(n)J~(j,,R(o)/b)] . 
0 

In the numerical realization we first redefine the integration variable v by a translation 
so that its origin corresponds to the point k = w/c, since the source term is small outside a 

G 



neighborhood of that point. We then write each v-integral of (19) as a discrete Fourier transform 
on a finite interval [-V, V]. The inverse discrete transform to enforce the boundary condition is 
defined for t E [-h, h]. The choice of the parameters h, V, (Y requires a little experimentation, 
but is not very critical. The contour displacement (Y must be chosen so that the contour is not 
too close to an imaginary Ic,. In examples studied to date, values of ag in the range 3 to 10 have 
been satisfactory. All experimentation with solution control parameters is guided by checking 
satisfaction of the wall boundary condition. Since the fields we construct are automatically 
solutions of Maxwell’s equations, and satisfy the outgoing wave condition, this is a definitive 
test of accuracy of the solution. 

Since we do numerical Fourier analysis of functions with a factor s’(z), the method works 
best if s” is continuous. Accordingly, we give results for a model with such continuity, s(z) = 
(d/4)(1 + cos(rpz/g))2, ]r] < g, with p odd. 

Figure 5 shows the impedance computed for p = 1, 6 = lcm, g = 6cm, d = 0.3cm, up to a 
high enough frequency (134 GHz) to compute the wake field of a 1.2mm Gaussian bunch. Note 
the similarity to Figure 2, recalling that s(z) for Figure 2 is the square root of the present S(Z). 
The computation used 192 complex Fourier amplitudes to represent the two discretized integrals. 
The computation time was 4 to 5.5 seconds per frequency on the IBM 3090; the larger times 
occur when there are several outgoing waves. Figure 6 shows the corresponding wake voltage 
at a distance z from the center of the bunch, in units of bunch length cr = 1.2mm. Figure 7 
shows a test of accuracy for this solution, namely a plot of n = ]Et(R(r), z,w)/E,(R(~),z,w)] 
at wb/c = 4.8 where Et and E, are the tangential and normal components of E on the wall. 
The boundary condition is well satisfied at this frequency, with 7 < 10d6; the accuracy degrades 
somewhat at higher frequencies but overall 71 < lo- 4. Figure 8 derives from the field on axis; 
it is a plot of Re[E,(r = 0, z,w)exp(iwt/c)] at wb/c = 14.4. The oscillations at positive z 
correspond to the superposition of several outgoing waves with incommensurate wavelengths. 
The bunch and these waves move to the right; left-going waves are present but very weak, and 
become strong only in certain narrow frequency bands. Figure 9 shows part of the solution of 
the equations (20)., the continuum component Re[a(k,w)/l,(xb)] for Ic = v + ia on the upper 
contour, at wb/c = 14.4. Figure 10 shows an axial field plot like that of Figure 8 but for p = 5 
(with d reduced by a factor of 5 to give the same c), at wb/c = 4.8. 

CONCLUSION 

We have shown that formula (14) predicts a rich pattern of high frequency effects. A detailed 
study of this formula, which is easy to evaluate for many different forms of the wall perturbation, 
should lead to useful insights regarding parameter dependence of wake fields. We have shown 
that the numerical treatment of the integro-algebraic system can produce very accurate solutions 
of the boundary value problem. Comparison and parallel further development of the analytic 
and numerical approaches should be rewarding. 

I wish to thank Robert Gluckstern, Karl Bane, and J. Scott Berg for much good advice and 
technical help. 
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