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ABSTRACT

In order to obtain high luminosity and energy efficiency in future linear col-

liders, it is desirable to accelerate a train of closely spaced bunches on each rf

pulse of the machine. There can be severe multibunch beam break-up in such

a collider unless some means of strongly suppressing the transverse wakefield is

incorporated into the design of the accelerating structures. Two methods of wake-

field suppression will be discussed in this paper: (1) damping, i.e., lowering the

external Q’s of the unwanted higher-order modes induced by the beam in the cells

of the accelerating structures, and (2) detuning, i.e., varying the frequencies of the

higher-order modes (by varying the cell and iris radii along the structure) so that

the net induced wakefield rapidly decoheres. The design and simulation of damped

and detuned structures will be discussed. Beam dynamics simulations incorporat-

ing an accelerating structure design for the SLAC Next Linear Colider (NLC) are

presented.
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1. Introduction

1.1 Motivation for multibunching and wakefield suppression

Two critical requirements that must be met in the design of future e+e− linear

colliders are high luminosity and efficient use of the rf power available in the ac-

celerating structures. The luminosity required by high-energy physics experiments

at an e+e− collider with center-of-mass energy of about 0.5 to 1 TeV is in the

range 1033 to 1034 cm−2sec−1. There are at present several approaches to the de-

sign of such a next-generation linear collider [1-4] . Most of these designs utilize

multibunching, i.e., the acceleration of a train of bunches rather than just a sin-

gle bunch on each rf fill of the accelerating structures. The major motivation for

multibunching is to maximize the luminosity for a given average rf power.

Several of the designs for a future linear collider, including the Next Linear Col-

lider (NLC) design being pursued at Stanford Linear Accelerator Center (SLAC),

are based upon extensions of conventional rf technology to the X-band frequency

range, above 10 GHz. One reason for departing from the conventional S-band

(∼ 3 GHz) frequency is to reduce the power requirements. However, even at X-

band the power requirements are high, and it is desirable to extract as much of

the available rf energy as possible. Another reason for going to X-band is the pos-

sibility of obtaining higher accelerating gradients (50 to 100 MV per meter), thus

reducing the length and cost of the main linacs.

An essential problem that must be addressed in these smaller structures, how-

ever, is their relatively higher wakefields. The passage of rather intense, closely-

spaced bunches through an accelerating structure produces both transverse and

longitudinal wakefields that influence the orbits and energies of subsequent bunches.

In a conventional disk-loaded structure, these wakefields would ring for many mul-

tiples of the required bunch separation. If the transverse wake is not suppressed,

the cumulative beam break-up instability is extremely severe, leading to emittance

blow-up and eventual loss of the beam. Thus, the main problem is to obtain ad-

equate suppression of the transverse wakefield, which is the subject of this paper.

3



   

The electric field pattern of the most damaging transverse dipole mode is shown

in Fig. 1.

Although it is not the subject of this paper, the longitudinal wake, responsible

for beam-loading in the accelerating structures, must also be dealt with. Sig-

nificant beam-loading at the accelerating frequency is unavoidable, but may be

compensated by various means. One method, well-suited to short bunch trains,

is to introduce the bunch train before a given accelerating structure is completely

filled, thus allowing the additional filling of the structure during the time between

successive bunches to approximately compensate for the energy extracted by each

bunch [5]. For the longer bunch trains (of order a filling time in length) presently

under consideration for the NLC, shaping of the input rf pulse is a useful strategy

[6,7,8]. However, one must also make sure that beam-loading in the higher-order

modes of the longitudinal wake is sufficiently suppressed that it does not upset the

energy compensation produced by such schemes. Preliminary work indicates that

our methods of suppressing the transverse wake will also sufficiently suppress the

higher-order longitudinal modes.

1.2 Methods of wakefield suppression

Two general methods of suppressing the transverse wake fields have been stud-

ied. The first is to damp the unwanted higher-order modes (HOMs), i.e., to lower

their external Qs. The second is to detune the modes, i.e., to design an rf acceler-

ating structure in which the frequencies of corresponding HOMs differ sufficiently

from cell to cell that the wake decoheres rapidly.

Wake field suppression for the 10 to 20 bunch design initially proposed for the

NLC could in principle be achieved either by strong damping alone or by detuning

alone. However, the present NLC design calls for a longer bunch train. This choice

is a result of optimizing the design to maximize luminosity, minimize backgrounds,

and ease certain other technical considerations. For example, the requirement

on the bunch aspect ratio (Refs. 1–4). If detuning is used as the main method of
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suppressing the wake, one must ensure that the wake does not recohere significantly

during the passage of the longer bunch train. Thus it may be necessary to take

additional measures to control the long-range wake.

One possibility is to combine the two cures mentioned so far [9], that is, to use

detuning to produce a rapid initial roll-off of the wakefield, and use a moderate

amount of damping to suppress it at longer distances. It is, however, probably

necessary to moderately damp many cells in the structure, which may not be

significantly easier than strongly damping all cells.

Another possible means of suppressing the longer-range wake is to vary the

distribution of HOM frequencies from structure to structure (instead of, or in

addition to, varying them within the structures). Such section-to-section frequency

variation has been proposed as the main method of wakefield suppression in some

S-band linear collider designs [10]. We have proposed a particular form of section-

to-section variation as a possible adjunct to intrasection detuning in the NLC X-

band design [11]. In this scheme, the set of frequencies in several different structure

types are interleaved so that, in effect, one has a smoother and denser distribution

of frequencies than with just one structure type. This leads to much-improved

suppression of the longer-range wake behavior.

1.3 Historical perspective

The ideas of damping and detuning unwanted HOMs both have roots prior

to the era of linear colliders. Damping antennas incorporating ferrites to absorb

HOMs in standing-wave accelerating cavities have been in use for a number of years.

Damping of HOMs by coupling the power out of the cavity through appropriately

designed waveguides was first suggested by Palmer [12], and will be discussed

further in the next section.

Detuning in linacs has a somewhat more involved history. Detuning is present

in the existing SLAC linac because of the constant-gradient design of the structure.

5



    

It was not originally introduced for the purpose of suppressing the transverse wake-

field. When the SLAC linac was turned on in 1966, a new multibunch transverse

instability was discovered [13]. It was quickly realized that this instability was due

to the excitation of transverse dipole deflecting fields by a beam with transverse

offsets in a series of accelerating structures [14]. In effect, the linear accelerator

acted as an amplifier for the transverse noise modulation of the beam at frequencies

in the neighborhood of 4.14 GHz.

A similar effect involving the same dipole modes had previously been seen in

single-section accelerators running at high peak currents (∼ 1A), in which the ac-

celerator behaved as a backward wave oscillator excited by transverse noise on the

beam. The SLAC linac ran at currents well below the threshold for this single-

section instability, known as regenerative beam break-up. The new instability,

which came to be denoted cumulative beam break-up, arose because a small am-

plification in each successive section of the SLAC linac (consisting of about 960

nominally identical sections) created a large total amplification (∼ 106 or 107).

The amplification would have been disastrously higher were it not for the fact

that the sections of the SLAC linac were designed to be “constant-gradient”, i.e,

the accelerating structure is tapered to maintain a constant accelerating electric

field even though the power flowing through the structure is attenuated between

the input and the output ends. This was accomplished [15] by decreasing the size of

the coupling irises between cells in order to decrease the group velocity linearly with

distance along each section. The diameter of each cell was adjusted in the design

to keep the phase velocity equal to the velocity of light. An unplanned benefit was

that the dipole modes of the SLAC structure were detuned. This occurred because

reducing the iris size lowered the frequency of the accelerator mode (TM01) of

each cell, but raised the frequency of the dipole modes (TM11 and TE11 hybrids).

Adjusting the cell diameter to keep the frequency of the accelerating mode constant

detuned the dipole modes even further. In the SLAC structures this produced a

total frequency spread of the dangerous dipole modes of about 5%. The net effect

of this detuning was that the dipole modes acted coherently only over a length of
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about 30 cm at the beginning of the structure, reducing the effective dipole mode

impedance by an order of magnitude.

Without this unintentional detuning, the beam break-up (BBU) threshold at

SLAC (the current at which the beam gets scraped at the end of the 1.6 µs pulse)

would have been 1 or 2 mA instead of 15 mA. In order to raise the BBU threshold

beyond the design current of 50 mA, two corrective measures were taken [16]:

1. The strength of the focusing was roughly tripled by redistributing the quadru-

poles, which were originally placed in triplets at 100 meter spacing. At full

machine energy, the new arrangement had a betatron wavelength λβ ≈ 150 m

in the first 600 meters of the linac, λβ ≈ 400 m for the next 1800 meters,

and constant quadrupole strength for the remainder of the machine. This

program approximately doubled the BBU threshold.

2. The highest impedance dipole modes, which were trapped at the input end of

the structure, were detuned. The 960 accelerator sections were divided into

three equal groups. The detuning was done by dimpling the 2nd, 3rd and 4th

cells of the structures to be detuned, so as to change the resonant frequency

of the dipole mode by 2 MHz in 1/3 of the structures, and by 4 MHz in 1/3

of the structures, with 1/3 remaining as built. The detuning was done in

situ, cost less than 1% in beam energy, and gained another factor of 2.5 in

beam current.

A number of multisection high duty factor electron linear accelerators have

since incorporated detuning to suppress cumulative beam breakup [17]. In these

accelerators a much more aggressive detuning was possible since it was part of the

initial design.
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1.4 Application of detuning to future linear colliders

Given the experience with the original SLAC linac, it was natural to consider

exploiting detuning in the design of the NLC. At first, a small amount of detuning

(2–4%), with a uniform distribution of frequencies, was investigated as a possible

adjunct to damping [18,19] but this small spread was not enough to have a very

significant effect. Another idea, the beating of two or more different HOM fre-

quencies with dipole frequency spread about 10% in order to produce beat minima

near which NLC bunches could be placed was also investigated at around the same

time [20].

Detuning in the NLC became more promising when it was realized that con-

siderably larger detuning spreads might be feasible and that shaping the density

profile of the distribution was another factor that could be used to advantage [21].

With the structure parameters chosen at SLAC for the NLC, a constant-gradient

structure design would spread the dipole mode frequencies by about 10%. The first

calculation was done for a uniform distribution of wakefield resonances with a full

spread of 10%; for this case, the envelope of the wakefield amplitude in time is

a sinx/x distribution. This suggested that a Gaussian density distribution of the

dipole resonances might be close to ideal. With 200 cells in a (truncated) Gaussian

frequency density distribution, the wakefield drops after about 20 cycles to a level

somewhat less than that of a single cell and stays at that level for several hundred

cycles. The more cells included in the Gaussian density distribution, the longer

the integrated amplitude remains small. This improvement of the suppression is

limited by the fabrication tolerances and by the fact that when the length of a

structure (or series of structures) is comparable to the Twiss parameter β of the

focusing lattice, it is no longer valid to simply add the wakefields from all the cells.

Detailed tracking calculations must be made, including kicks from both the dipole

wakefield modes and the focusing lattice, at their proper locations.

This method of detuning was soon examined in more detail by several authors

[9,22,23]. The main focus has been on suppressing the effect of the lowest frequency
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transverse HOM, since its kick factor is greater than those of the higher transverse

HOMs by about an order of magnitude. Furthermore, the sum of the higher fre-

quency HOMs will tend to decohere more rapidly and become even less important

at long distances. Nevertheless, it is necessary to ensure that all the HOMs, both

transverse and longitudinal, are sufficiently well suppressed to meet the stringent

beam energy and emittance tolerances. An approach to decohering these other

higher frequency modes by varying the iris thicknesses along the detuned structure

is being pursued at SLAC [24], and preliminary results indicate that the HOM’s

can indeed be controlled in this fashion.

1.5 NLC parameters

Table 1: Parameters for NLC main linacs

rf frequency 11.424 GHz

Initial average beta function 4.0 m

Initial linac energy 18 GeV

Final linac energy 250 GeV

500 GeV (upgrade)

Linac active length 6000 m

Particles per bunch 1× 1010

Bunch spacing 1.4 nsec

The NLC design parameters used in this paper are shown in Table 1. The

value of about 1.4 nsec (16 rf wavelengths) for the bunch spacing is the minimum

being considered.

Note that with the given initial energy, final energy, and active length (total

length of rf structures) per linac, the average loaded accelerating gradient is a little

less than 40 MeV/m. The gradient for a possible high-energy upgrade would be
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about twice as much, but for the present examples we shall use the lower energy

since this leads to greater blowup of the beam from the wakefield kicks. The

value of the bunch charge in an optimized design may be somewhat less than the

conservative value of 1× 1010 used here.

The average beta function is 4.0 m at the beginning of the linac, and it will be

assumed to increase approximately as the square root of the energy:

β ≈
(
γ

γ0

)1/2

β0 , (1.1)

where γ = E/m0c
2, and E and m0 are the electron total energy and rest mass,

respectively.

The length of the bunch train is still under consideration. One case that has

been under study for some time is a “short pulse” design, having about 10 bunches

per train and extracting around 25% of the available rf energy. More recently, the

train length under consideration has gone up to 90 or more bunches, which gives

a train length greater than the filling time (∼ 100 ns); in this case the efficiency

of extraction of rf energy can be higher, provided that rf pulses of suitable length

and shape can be produced.

1.6 Scope of paper

In the remainder of this paper we discuss the calculation of wakefields in

damped and detuned structures, and we discuss the simulation of the effect of these

wakefields on the beam. Considerable effort has gone into accurately calculating

the Qs of the most important wake field modes in various configurations of damped

cavities. Some of this work has already been documented in the literature; a brief

summary and update are given in the next section. Next we discuss the simulation

of wake fields in detuned structures. In this case, we have developed and applied

suitable equivalent circuit models, since direct calculations using programs such as

TBCI [25] are impractical from the standpoint of meshing and CPU requirements.
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Finally, beam dynamics calculations, including simulations illustrating the control

of beam break-up achieved in an NLC design, are presented.

2. Design and simulation of damped structures

As discussed in the introduction, one way to suppress the long range wakefield

is to heavily damp the HOMs of the accelerator cavities. In order for such an

approach to be of practical interest, the damping must be done in such a way

as to minimize the degradation of the accelerating mode shunt impedance r, the

r/Q, and the symmetry of the rf field pattern. A general approach to achieving

this was proposed in Ref. 12, the basic idea being to strongly couple unwanted

modes of the accelerator cavity cells to matched load-terminated waveguides. To

damp the HOMs without damping the accelerating mode, one can either choose a

geometry in which the waveguides are cut off at the accelerating mode frequency

but not at the frequencies of the HOMs to be damped [26], or a geometry in

which the accelerating mode is decoupled from the waveguide even though the

cutoff frequency of the waveguide is below that of the accelerating mode [27]. Two

generic coupling schemes were proposed:

1. A configuration in which rectangular TE10 mode waveguides are coupled to

radial slots in the loading disks. This will be referred to as “radial-slot”

coupling.

2. A configuration in which rectangular TE10 mode waveguides (polarized or-

thogonally to those proposed for the “radial-slot” case) are coupled through

circumferential slots to the side walls of the accelerator cavity cells. This will

be referred to as “circumferential-slot” coupling,

An example of the radial-slot configuration is shown in Fig. 2. An example of

the circumferential-slot configuration, a “crossed waveguide” structure, is shown

in Fig. 3. Preliminary measurements reported in Ref. 12 indicate that it is likely

that at least the radial-slot configuration can produce adequate damping. Var-
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ious implementations of the circumferential-slot configuration were subsequently

investigated as well and were also found capable of producing strong damping.

2.1 Radial-slot configuration

Because the preliminary measurements suggested that radial-slot damping was

the more effective method, initial experimental investigation was directed at this

configuration. A four-fold symmetry was suggested in Ref. 12. Such a configuration

preserves accelerating mode symmetry reasonably well and provides damping for

both dipole mode orientations. In order to also provide some damping for both

quadrupole mode orientations, it was proposed to rotate the symmetry axes by 45

degrees from cell to cell. This expedient was also suggested by a potential problem

with waveguide overlap between successive cavities. Properly designed ridge wave-

guides, which couple naturally to the radial slots, could, however, also solve the

overlap problem. Experiments were performed to investigate fabrication problems;

to determine how the quadrant slots affect the fundamental and HOM frequencies,

field patterns, and rf voltage breakdown limits; and to investigate the damping of

the HOMs [21,28,29].

The experimental work was supplemented by MAFIA [30] calculations and a

new approach which provides both an experimental and a MAFIA-based method

of determining the Qs of the HOMs [27,31]. The method is closely related to

a method proposed by Slater [32] and is based upon a study of the modes of

the coupled cavity system formed by shorting the damping waveguides at various

lengths. Calculations (Ref. 27) were carried out for a model (see Fig. 2) consisting

of two coupled accelerator half-cavities damped by ridge waveguides coupled to

each of two radial slots in the iris between the two cavities. The ridge thickness

is the same as the loading disk thickness, and the ridge gap is same as the width

of the slot in the loading disk. A value of 8.7 was found for the Qext of the dipole

π-mode, while the dipole zero-mode and the monopole modes were undamped

(neglecting wall losses). Although the cutoff frequency of the ridge waveguide is

well below the frequencies of the monopole modes, these modes are undamped
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because of a polarization mismatch of the fields. A similar remark applies to the

undamped dipole zero-mode. The behavior of the two dipole modes shows that

the dipole mode damping obtained with this scheme depends upon the cell-to-cell

phase advance, but as the frequency is such that synchronous velocity implies a

phase advance close to π, adequate damping can be expected. Low frequency

slot modes, the bulk of whose energy resides in the slots in the irises, were also

found, but these were even more heavily damped. While coupling to other higher

dipole modes has not been investigated in any systematic quantitative way, it is

considered to be likely, perhaps with some dimensional modifications, that these

can be satisfactorily damped as well. Cold test results (Ref. 29) on models similar

to the model analyzed in Ref. 27 lead to the same conclusion. These two-slot models

of course damp only one of the two dipole mode orientations, but it is expected,

as mentioned above, that four slots would damp them both. We note, however,

that the work of Conciauro and Arcioni [33] implies that a three slot configuration

would also damp both dipole mode orientations. In this configuration, dipole and

quadrupole modes are mixed and are all damped without resorting to cell-to-cell

rotations of the slots and waveguides. Because of this advantage it is likely that a

three-slot configuration would be used in any practical application.

2.2 Circumferential-slot configuration

Although the radial-slot configuration appears to provide satisfactory damping,

fabrication problems were anticipated. It was therefore deemed prudent to inves-

tigate the circumferential-slot alternative. Initial configurations studied consisted

of accelerator cavities coupled to two or four rectangular waveguides connected

directly to the cavity side walls, sometimes with an intervening iris. Ridge wave-

guides were also studied. It is necessary to choose waveguide dimensions so that

the cutoff frequency of the TE10 mode is above the frequency of the accelerating

mode but below the frequency of any mode one wishes to damp. Because pene-

tration of the fields of the accelerating mode into the waveguides degrades both

the Q0 and the shunt impedance, it is undesirable to have the cutoff frequency
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close to the accelerating frequency. The separation of the accelerating and dipole

mode frequencies is typically rather small and was found to be made even smaller

by the waveguide loading. Indeed a dipole mode which is above the cutoff before

the cavity is coupled to the waveguide can fall below cutoff after coupling, thus

becoming an undamped mode. Furthermore, even those modes which are above

cutoff are poorly damped when too close to cutoff. Thus the choice of parameters

is quite constrained. Nevertheless, when all constraints were satisfied, very strong

damping was observed for the principal dipole mode in structures with fourfold

symmetry, as discussed later in this paper.

In attempting to apply computer simulations to these structures, the damping

was found to be so strong that it was difficult, employing the methods of Refs. 27

and 31, to determine Qext and to separate cavity resonances from waveguide reso-

nances. An improvement in the method was therefore developed. The information

obtained from the previously described MAFIA computations can be used to plot

the phase of the reflection coefficient from the cavity as a continuous function of

frequency [34]. Because cavity resonances are associated with phase changes of

∼ π, the phase versus frequency plots provide a useful way of distinguishing cavity

resonances from waveguide resonances and also a way of recognizing the presence of

broad overlapping resonances. Methods were developed for determining the param-

eters of overlapping resonances as well. This approach was applied to the analysis

of a waveguide-damped accelerator structure with threefold symmetry [35], and

extremely low values were found for Qext (< 3 for the lowest dipole mode).

As in the case of the radial-slot type of coupling, a systematic study of all

potentially threatening higher-order modes was not carried out. As pointed out

in Ref. 33, if the waveguides are placed symmetrically between the accelerating

irises, the TM011 mode is undamped. This is because it does not couple to the

TE10 waveguide mode and probably always has a frequency below the cutoff of

the waveguide modes to which it does couple. A similar problem can occur for

other higher-order axial modes such as TM01n. This problem can be dealt with by

introducing some axial asymmetry, for instance by introducing an asymmetric iris
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or placing the waveguide asymmetrically. Preliminary investigations have indicated

that the latter alternative is more satisfactory. A computer simulation of a modified

form of the crossed waveguide structure was carried out — the crossed waveguide

structure of Fig. 3 was modified by shifting one of the waveguide walls such that

the waveguide height was reduced by 36%. The simulation yielded a Qext of 74 for

the TM011 mode without significantly compromising the excellent damping of the

dipole mode.

Conciauro and Arcioni (Ref. 33) found for a similar configuration a 10% reduc-

tion in r/Q and a 10% reduction in the Q of the accelerating mode, results which

we believe to be typical of circumferential-slot damping. The degradation of these

quantities is expected to be significantly smaller for the radial-slot configuration.

2.3 Some general considerations in damped structures

If wall losses due to finite conductivity are neglected, the decay at large values of

time cannot be completely described in terms of exponentially damped modes [36].

This is because energy deposited in an accelerator cavity at or near a waveguide

cutoff frequency propagates through the waveguide at zero or small group velocity,

leading to persistent wakefields which decay as inverse powers of time t rather than

exponentially (the dependence of the leading term for the transverse wakefield is

t−3/2). While it is obvious that this is the dominant effect at sufficiently large

values of t, the question of practical interest is whether it is dominant at times of

the order of the duration of a pulse train. Reference 36 discusses wakefields for

two structures which are generically similar to the crossed waveguide structure. In

both cases the persistent wake dominates at times greater than a typical interval

between individual bunches, so that the damped cavity modes are actually less

important than the persistent wake for these examples. Irises which reduce the

damping also appear to decrease the amplitude of the persistent wake. For a given

bunch separation it is likely that there is some optimum level of waveguide damping

which minimizes the total wakefield for the relevant time interval. On the basis of

the examples studied so far it seems very likely that this minimized level is well
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below that which would cause beam instability for the NLC bunch charge and

bunch spacing.

The above discussions are based on the assumption that the damping wave-

guides are terminated by matched loads. The problem of how these loads are to be

provided has not been satisfactorily solved at this point and is one of the reasons

for our decision to pursue detuning more intensively. One issue is that of absorbing

the power coupled out of the central cavity in a very limited radial space, since

cost and other considerations make it desirable to minimize the diameter of the

complete structure.

3. Design and simulation of detuned structures

Recent work at SLAC has been focused on the exploration of detuning as a

means of wakefield suppression. We turn now to a discussion of the theoretical

work we have done on this subject.

Intuitive understanding of the effects of detuning is most easily obtained by

viewing the structure as consisting of a collection of uncoupled oscillators corre-

sponding to the synchronous modes of the periodic structures one could construct

from each of the cells in the structure. The quantitative results of this simple

approximation, which we shall refer to as the “uncoupled model”, turn out to be

quite good, and it will be the first model presented. Then we shall discuss the pro-

cedures by which the structure dimensions are obtained from the desired uncoupled

frequency distribution, and we evaluate various rf parameters.

A more complete treatment should include the effects of the small couplings

between the oscillators; we do this via equivalent-circuit models. A brief summary

of two such models (a single-passband model and a model which takes into account

the mixing of the two lowest dipole passbands) is given. We then discuss the

effects of structure-to-structure variations, where the differences may be introduced

deliberately or may be due to finite fabrication tolerances. Finally, we discuss

briefly the mechanical design of the detuned structure.
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3.1 Uncoupled model for cell-to-cell detuning

As a simple initial model for detuning, let us consider a single transverse de-

flecting mode. Let the mode have frequency f1 so that before detuning it gives a

wake function

W (t) = W1 sin(ω1t) exp(−ω1t/2Q1) , (3.1)

where ω1 = 2πf1. The wake function W (t) is defined such that, given a charge q

travelling at the speed of light and with transverse offset x with respect to the axis

of the structure, the average transverse force experienced by a test charge following

a time t afterwards is F⊥ = eW (t)qx. The wake function in Eq. (3.1) is that for

a particular synchronous (v = c) mode in a periodic travelling wave structure.

The coefficient W1 has units V/C/m2 and is equal to twice the transverse kick

factor [37] K of the dipole mode in question:

K =
c(dE⊥/dr)2

r=0

4ωUp
. (3.2)

Here r is directed radially away from the structure axis, U is the stored energy per

unit length, p the structure period, a the iris radius, ω the mode frequency, and c

the speed of light.

Of course, a real structure consists of only a finite number of cells, and in

a detuned structure the cells are not identical. For a structure consisting of N

cells, we should really calculate the N modes of a structure consisting of a coupled

array of N unlike cells. Such a “coupled model” of the wakefields will be presented

later. In general, the frequencies and kick factors of these coupled modes will differ

from those of the synchronous modes in periodic structures made from each of the

N cells. However, as a first approximation we may take the wakefield to be the

superposition of the set of synchronous modes in the N corresponding periodic
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structures:

W (t) =
1

N

N∑
m=1

W1,m sin(ω1,mt) exp

(−ω1,mt

2Q1,m

)
. (3.3)

This “uncoupled model” is a good approximation for sufficiently short times. It

turns out that this time is longer than one might expect from a naive estimate

based on the time it takes energy to propagate between cells.

Next we choose a distribution of the synchronous frequency components. Sup-

pose we consider a structure whose iris radius a and cell radius b are to vary

monotonically along the structure and whose end-cell dimensions are to be fixed.

Then in general we have the freedom to shape the distribution of the dominant

HEM11 dipole mode frequency f1 between its two end-cell values, while keeping

the frequency frf of the accelerating mode fixed (see next section).

Let the full-spread be ∆ftot, so that these frequencies run from (f̄1 − ∆ftot
2 ) to

(f̄1 + ∆ftot
2 ). One possibility (essentially the usual “constant-gradient” structure) is

a uniform distribution, that is, a constant spacing between adjacent components:

δfi = f1,i − f1,i−1 =
∆ftot

(N − 1)
. (3.4)

Another possibility is a truncated-Gaussian distribution, of given standard de-

viation σf , whose density of frequency components near frequency f is proportional

to exp[−(f−f1)2/ 2σ2
f ]. This means that the spacing between adjacent components

is given implicitly by

erf

(
f1,i − f̄1√

2σf

)
= erf

(
f1,i−1 − f̄1√

2σf

)
+ A , (3.5)

where A is a constant, given by

A ≡
2 erf( nσ

2
√

2
)

N − 1
. (3.6)
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Here

nσ ≡
∆ftot
σf

(3.7)

is the full width of the truncated distribution in units of σf , and erf(x) is the usual

error function:

erf(x) ≡ 2√
π

x∫
0

e−u
2

du . (3.8)

In the core of the distribution, the fractional spacing between adjacent components

is approximately

δf

f̄1
≈
√

2π

N − 1

σf

f̄1
erf

(
nσ

2
√

2

)
. (3.9)

We focus on the truncated-Gaussian distribution because it gives a strong initial

roll-off of the wake, with less partial-recoherence of the wake within the length of

a bunch train than in the case of the uniform distribution.

3.2 Design of detuned structures

In this section we give a summary of our design procedure for detuned struc-

tures, by means of which the structure dimensions may be related to the uncoupled

frequency distribution and certain desired rf parameters. It is also of interest to

compare the rf parameters of the detuned structure with those of conventional

constant-gradient and constant-impedance structures. We choose a 2π/3 phase

advance per cell, so the structure period is fixed at one-third of the rf wavelength.

3.2.1 Design of simplified detuned structure [38]

We begin by discussing a simplified situation in which the only dimensions

that vary with cell number are the iris radius a and the cell radius b, as shown in

Fig. 4(a). The corners of the disks are assumed to be square, rather than rounded

as they will be in reality. The disk thickness t is assumed to be fixed, although as

we shall discuss later, it will actually also be varied along the structure.
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Using the computer codes TRANSVRS [39] and URMEL [40], one can show

that increasing the cavity diameter 2b causes both the accelerating mode frequency

frf and the first dipole mode frequency f1 to decrease, while increasing the iris

diameter 2a leads to an increased accelerating mode frequency and a decreased first

dipole mode frequency. This behavior can be summarized in the three dimensional

plot shown in Fig. 5. Keeping the frequency of the accelerating mode constant

(here, frf = 11.424 GHz) yields a unique relation between a and b. Each of

these a, b pairs corresponds to a different dipole mode frequency. If a certain

detuning range of the dipole modes is given, clearly the two end pairs of a, b for

the accelerator section can be found. It is always possible to find a unique a, b

pair which lets the dipole mode frequency be any value between the frequencies

of the first and last cavities and also keeps the frequency of the accelerating mode

constant. The following is a summary of the design steps for this simplified case:

1. For a given operating frequency (frf=11.424 GHz) and phase shift per cell

(φ = 2π/3) of the accelerating mode, the a, b pairs can be found by using a

computer code, e.g. SUPERFISH [41]. The result is shown in Fig. 6.

2. By using the code TRANSVRS, the synchronous frequency of the dipole

mode f1 for a distinct a, b pair can be calculated. The relation between a

and f1 is plotted in Fig. 7 (the corresponding cavity radii b are of course

fixed from Step 1).

3. Given the desired structure length L, quality factor Q, and attenuation con-

stant τ , the group velocities vg of the accelerating mode for the first and last

cavities are calculated according to the constant gradient approximation

vg(s) =
ωrf
Q

[
L

1− e−2τ
− s
]

. (3.10)

These velocities uniquely determine the a, b pairs at the ends of the structure,

and thereby the overall dipole mode frequency spread ∆ftot and the mean

dipole frequency f̄1.

20



   

4. Using Eqs. (3.5)–(3.7) for a truncated Gaussian distribution, with a chosen

N and σf , the frequency of the dipole mode for each cavity in the structure

can be calculated.

3.2.2 Evaluation of rf parameters [38]

For a given set of structure dimensions, the rf parameters can be calculated

using SUPERFISH. Although this code only calculates rf parameters for uniform

structures with constant a, b, p and t, the calculations are valid locally for our

detuned structure with slowly changing a and b. The calculated quality factor

Q of the accelerating mode, as a function of longitudinal coordinate s along the

structure, is shown in Fig. 8. In Fig. 9 we show the calculated group velocity vg/c

along the structure, for the accelerating mode.

The power flow in the accelerator section can be expressed as

P (s) = Pine
−2τ(s) , (3.11)

where Pin is the input power, and τ(s) is the attenuation along the section, given

by

τ(s) = ωrf

s∫
0

ds′

2Q(s′)vg(s′)
. (3.12)

The shunt impedance r(s) calculated using SUPERFISH is shown in Fig. 10. Then

the accelerating electric field Ez(s) can be calculated:

Ez(s) =

√
r(s)

dP (s)

ds
, (3.13)

where r(s) is the shunt impedance per unit length. In Fig. 11, Ez(s) is shown for

an input power of 100 MW. For comparison, Ez(s) for a conventional constant-

gradient section and for a constant-impedance section, with the same input power

and attenuation as the detuned structure, are also plotted in Fig. 11. Finally, by
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integrating the electric field Ez(s), we can calculate the energy gain U(s) along the

detuned structure, which is shown in Fig. 12. The behaviors of the detuned and

the constant-gradient structure are similar; the detuned structure may be regarded

as a “quasi-constant-gradient” structure. We note from Fig. 11 that the detuned

structure has a slightly higher energy gain than the conventional constant-gradient

structure.

The dispersion curves for accelerating and dipole modes are displayed in Fig. 13

and Fig. 14 respectively. For the accelerating mode, all curves cross at the fre-

quency frf=11.424 GHz with a phase advance of φ = 2π/3. The slopes of these

curves are the group velocities, which were already shown in Fig. 9 at the acceler-

ating mode frequency. The dispersion curves for the dipole modes are very shallow,

with positive group velocities in the front end of the section and negative ones at

the back end (see Fig. 15).

3.2.3 Design of first NLC test structure

Next we discuss the design of the actual 1.8-m NLC-type structure that is

being built for testing purposes at SLAC. In this structure, the disk thicknesses

are varied along the structure, and the edge of the iris in each disk is rounded

into a full semi-circle. The relevant cell dimensions are shown in Fig. 4(b). We

have already shown how one can take care of the lowest frequency, most dangerous

dipole mode in our discussion of the simplified detuned structure. However, the

effect of the higher dipole modes, while smaller, is nonnegligible. We have found

that varying the disk thickness t is an effective method of detuning the remaining

significant modes (Ref. 24); specifically, this method can be used to detune modes

of the form HEMnm1. For the first test structure design, we have settled upon a

variation of t going from 1 to 2 mm from the first to the last cell, in a truncated

Gaussian pattern with σt = 0.25 mm. Preliminary results indicate that this will

sufficiently detune not only the higher dipole HOMs, but also the longitudinal

HOMs. The variation of t has little effect on frf and f1.
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The basic design procedure for the actual structure is then as follows:

1. Using the computer code YAP [42], the relationship among a, b, and t, given

the fixed accelerating frequency and phase advance per cell, may be found

for the structure, taking into account the effect of the rounded corners.

2. Again using YAP, the relationship among the synchronous dipole mode fre-

quency f1, a, b, and t may be found (where b is fixed by Step 1).

3. The desired relative spacings of the dipole mode frequencies, {f1,i − f1,i−1},
and the distribution of disk thicknesses, {ti}, are specified. As already noted,

both of these are chosen to be truncated Gaussian distributions.

4. Given a value a1 for the iris radius of the first cell, the central frequency f̄1

and all of the ais and bis are uniquely determined by the above constraints.

We adjust a1 to obtain the desired filling time Tf .

The resulting structure parameters are summarized in Table 2. When a pa-

rameter varies along the structure, the range of values from the first to the last cell

is given. Figure 16 shows Ez(s) for the actual detuned structure. We also show

Ez(s) for conventional constant-gradient and constant-impedance sections, with

the same input power and attenuation as the detuned structure. We note that the

field at the end of the structure is higher relative to its value at the input than

it is in the simplified structure of the preceding section, because of the additional

slowing of group velocity due to the thickening of the irises along the structure.

The envelope of the wake function for the lowest passband, using parameters

from Table 2 and obtained using the uncoupled model, is shown in Fig. 17. There

is an initial sharp roll-off due to the Gaussian distribution of frequencies. The

range of z = ct shown, from 0 to 40 meters, is a little more than the length of a

90-bunch train. The envelope is calculated according to

Ŵ (z) =
√
S2
N + C2

N , (3.14)
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Table 2: Parameters for an NLC structure

Accelerating frequency 11.424 GHz

Phase advance per cell 2π/3

Structure length 1.8 m

Number of cells 204 + 2 couplers

Iris radius, a 0.572 to 0.39 cm

Cell radius, b 1.144 to 1.068 cm

Iris thickness, t 1 to 2 mm

Frequency of lowest dipole mode, f1 14.312 to 15.834 GHz

Mean dipole mode frequency, f̄1 15.073 GHz

σf
f̄1

2.5%

Total fractional spread, ∆ftot
f̄1

10.1%

Group velocity, vg/c 0.12 to 0.03

Filling time, Tf 100 nsec

Attenuation parameter, τ 0.517

Elastance, s ≡ ω r
Q 653 to 946 V/pC/m

Q of lowest dipole mode ≈ 6500

where

CN ≡
N∑
m=1

W1,me
−k1,mz/2Q1,m cos(δkmz) (3.15)

and

SN ≡
N∑
m=1

W1,me
−k1,mz/2Q1,m sin(δkmz) . (3.16)
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Here k1,m = ω1,m/c, and δkm ≡ k1,m − k̄1. One can show that

W (z) = CN sin(k̄1z) + SN cos(k̄1z)

= Ŵ (z) sin(k̄1z + φ) ,
(3.17)

where tanφ = SN/CN .

We shall see that this uncoupled model represents the general character of the

wake quite well, and is quantitatively very good for the shorter range (first several

meters) of the wake. However, to more accurately represent the longer range wake,

we must include the effects of coupling.

3.3 Coupled model for cell-to-cell detuning

In this section, we describe an approach (Ref. 37) to calculating the coupled

modes of the structure, starting from a distribution of uncoupled synchronous fre-

quencies obtained as discussed in the preceding sections. We present equivalent

circuit models which are reasonable representations of the tapered iris-loaded accel-

erating structure. Our model builds upon previous work that represents accelerat-

ing structures by equivalent circuit models [43,44]; a new feature of our approach

is a more correct treatment of the situation in which the coupling changes sign

in the structure. In order to derive these models, we imagine that each cell is

excited in some combination of cell modes and that the coupling holes determine

the relation between the coefficients of these modes in two adjacent cells. Since

the longitudinal electric field vanishes on the axis, we expect the coupling to be

magnetic in character.

Here we shall concentrate on the simplified structure shown in Fig. 4(a). The

method has, however, been extended to the case of varying disk thicknesses t

(Ref. 24).
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3.3.1 Single-band equivalent-circuit model

Let us start with a single circuit chain in which each circuit corresponds to a

single cell mode and the circuits are coupled magnetically. The equations for the

amplitude am of excitation in cell m, which is coupled to cells (m−1) and (m+1),

is

(xm − λ) am +
κm+ 1

2

2
am+1 +

κm− 1
2

2
am−1 = 0 . (3.18)

Here xm = f−2
m where fm is the resonant frequency of cell m, λ = f−2 where

f is the coupled-mode frequency, and κm± 1
2

represents the equivalent coupling

coefficient between cell m and cell (m±1). If the structure is periodic with N cells

(m = 1, 2, . . . , N) and fm = f̃ , we find the solution

am = a cosmφ` , (3.19)

with φ` = `π/N , and ` = 0, 1, 2 . . . N . The corresponding eigenfrequencies satisfy

the equation

1

f2
=

1

f̃2
+ κ cosφ . (3.20)

If we choose the boundary conditions

a0 = a1 , aN+1 = aN , κ 1
2

= κ1 , κN+ 1
2

= κN , (3.21)

(where κ1 is the coupling coefficient between cells in a periodic structure made of

cell type 1, and similarly for κN ), then we find our solutions are limited to phase

advance

φ` =
(`− 1)π

N
, ` = 1, 2 . . . N . (3.22)

Since we do not have a reliable procedure to calculate f̃ and κ directly from

the geometry, we reconstruct f̃ and κ from values of the zero-mode and π-mode in

an infinite periodic structure, as obtained from TRANSVRS. We now repeat this
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procedure for periodic structures corresponding to the geometry of cells at various

places in the tapered structure. We then obtain via interpolation the values of

fm and κm± 1
2

needed for Eq. (3.18). By treating Eq. (3.18) and its appropriate

boundary conditions as an N × N matrix equation, we obtain the frequency (f`)

and mode pattern (a
(`)
m ) for each mode `. From the a

(`)
m we obtain the kick factors

K`.

The results using parameters for the 206-cell NLC structure (see Table 2)

are shown in Figs. 18 and 19. Figure 18 displays the mode spectrum, the kick

factor, the mode density dn/df , and the product of kick factor times mode density.

Note that dn/df is normalized so that its integral over frequency is one; thus,

dn/df ≈ 1
(N−1)δfi

, where δfi is the spacing between adjacent modes near mode i.

The results of the uncoupled model are shown also, as dashed lines in this figure.

The resulting wake function is shown in Fig. 19.

An important feature of the NLC structure is that the values of the coupling

coefficients κm change from positive (forward wave) to negative (backward wave)

as one moves from the beginning to the end of the structure. As a result, the

mode pattern is localized to the interior of the structure for most of the modes

(see Ref. 37). It is only these localized modes that significantly interact with the

beam. Those modes that do extend to an end of the structure (the lowest and

highest frequency modes) have greatly depressed kick factors. A consequence of

this is that the boundary conditions have little effect on the wakefield.

As we shall see later, the wake function at the locations of the bunches needs to

be kept to about 1% or less of its peak value, i.e., less than about 1 V/pC/mm/m.

From Fig. 19, we see that the wakefield envelope Ŵ (z) for bunches 1–25 (assuming

the NLC bunch spacing of 42 cm) satisfies this criterion. This was also true for the

uncoupled model (see Fig. 17). The two models agree well in this range because

the cell-to-cell coupling is weak. Other authors have reached similar conclusions

via direct time-domain integration of the coupled-circuit equations [45]. Over the

longer range, the wake function grows unacceptably. However, it is possible to
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counter this growth by using several interleaved structure types, as will be discussed

later.

3.3.2 Double-band equivalent-circuit model

We seek to obtain a better fit to the dispersion curves for the lower two bands.

To do this we have derived a two-band circuit model corresponding to the excitation

of both TM110 and TE111 modes in each cell (Ref. 37). As a result, we obtain the

coupled difference equations

(xm−λ)am−
κm+ 1

2

2
am+1−

κm− 1
2

2
am−1 = −

√
κm+ 1

2
κ̂m+ 1

2

2
âm+1+

√
κm− 1

2
κ̂m− 1

2

2
âm−1

(3.23)

(x̂m−λ)âm+
κ̂m+ 1

2

2
âm+1+

κ̂m− 1
2

2
âm−1 =

√
κm+ 1

2
κ̂m+ 1

2

2
am+1−

√
κm− 1

2
κ̂m− 1

2

2
am−1 .

(3.24)

We now have a 2N-dimensional eigenvalue problem, with eigenvalues λ = 1/f−2

and eigenfunctions (a, â). Note that am and âm represent the amplitudes of the

components of the TM110 and TE111 modes, respectively. The parameters x, x̂, κ

and κ̂ are obtained as discussed below.

The dispersion curves for the lower two bands are readily obtained from the

above difference equations for a periodic structure, and correspond to the equation

cosφ =
κκ̂− (x− λ)(x̂− λ)

(x− λ)κ̂− (x̂− λ)κ
. (3.25)

This equation represent a hyperbola when λ is plotted against cosφ. The four

unspecified parameters, x, x̂, κ and κ̂ are chosen to match the ends of the lower two

dispersion bands calculated from TRANSVRS, for geometries at different locations

in the structure, and the predicted and calculated curves shown in Fig. 20 are in

excellent agreement. We note that the parameters κ and κ̂ do not change sign when

we go from the beginning to the end of a structure. In this case the change from
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forward-wave to backward-wave that was seen in the single band model corresponds

to the relative sizes of the TM110 and TE111 components along the structure, since

the signs of κ and κ̂ on the left sides of Eqs. (3.23) and (3.24) are opposite for the

TM110 and TE111 modes.

The above difference equations, supplemented by the appropriate boundary

conditions in the first and last cells, are solved by matrix inversion, and the kick

factor and wakefield are calculated as before. In the expression for the kick factor

(see Ref. 37), only the TM110 (am) coefficients enter into the numerator, although

both am and âm enter into the stored energy in the denominator. Once again

most of the modes are localized in the structure in the lowest band (Ref. 37). The

results are shown in Figs. 21 and 22 for the double-band model. Note that the

modes of the second band (roughly, those above 17 GHz) have low kick factors and

therefore do not contribute significantly to the wakefield. There is some difference

between the results of the one- and two-band models, showing up mainly in the

longer range behavior of the wake. The double-band model, which is expected to

give a more accurate representation of the longer-range wake field, in fact shows

somewhat more suppression of the longer-range wake, as can be seen by comparing

Figs. 19 and 22.

3.4 Supplementing detuning with structure-to-structure variation

Suppose we are using a truncated Gaussian distribution of frequencies, as given

by Eq. (3.5), for the fundamental dipole mode. If there is just one type of X-band

structure of length about 1.8 m, then in Eq. (3.5), N ≈ 200.

The initial value of the average betatron function β in the NLC main linac

design is about 4 m, and it increases as the square root of the energy as one

goes down the linac. Thus, the betatron wavelength 2πβ is much greater than

the structure length everywhere in the linac, even near the beginning. Suppose

now that instead of just one structure type we build n different structure types;

we thus increase the total number of frequencies N by a factor n, to obtain the
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overall distribution of frequencies. One might then “interleave” the frequencies

from the overall distribution in the different structure types; e.g., if n = 3, the

lowest frequency would be in structure type 1, the next lowest in type 2, the next

lowest in type 3, the next lowest in type 1, and so on, cycling repeatedly through

the structure types. Suppose also that the linac is built by repeatedly cycling

through the n structure types along its length.

Dynamically, we expect the effect to be much the same as if the wake function

were a sum of n times the number of modes in a single structure. This expectation

is borne out by our simulations, in which we cycle through a set of structure types

with interleaved frequencies as discussed above. The greater density of lines in the

distribution leads to greater suppression of the effective wake at longer distances.

Provided that n is not too large, one expects the dynamics to be almost the same

as if the wake function W (t) were an average of the wake function over the n

structures. [If n times the structure length is comparable to or greater than half

a betatron wavelength, this averaging is no longer valid. Also, the ordering of the

structure types within one cycle begins to matter more.]

3.5 Effect of errors

So far, we have neglected the effects of small random variations in the frequen-

cies, due, for example, to fabrication errors. There are two extreme cases, namely,

the case in which the error in each frequency in the design distribution is the same

in all sections (we denote this “systematic”), and the case in which the error in

each frequency is totally random from section to section. Note that our definition

of “systematic” means that the errors are the same in corresponding cells of a given

structure type, but they are still random from cell to cell in each structure type.

Systematic errors can lead to considerable worsening of the long-range wakefield

behavior. The totally random errors are generally less harmful, and in fact can

actually lead to some additional suppression of the long range wakefield behavior,

since the effective wake function is then a sum of an even denser distribution of

frequencies.

30



   

Another type of error is transverse misalignments of the cells in a structure.

As we shall see later, the effect on the blow-up of the beam depends somewhat on

the correlation length of the misalignments, but the tolerance is fairly tight on all

scales.

3.6 Mechanical design of detuned structure

A sketch of the actual accelerator section being built at SLAC for use in the

NLC Test Accelerator facility [46,47] is shown in Fig. 23. A schematic of the

individual cells of the structure is shown in Fig. 24. Each cell of a section will

have different cavity diameter, iris diameter, and iris wall thickness, calculated as

discussed in preceding sections to give the required dispersion characteristics for

the fundamental mode and for the higher-order dipole modes.

Six cells (one close to each end, and four evenly distributed between them)

will have radial pumping holes connecting the central (beam) cavity to two outer

vacuum manifolds. These manifolds will each be connected to two 8-liter/s vacuum

pumps in the middle of the section. The manifolds will increase the pumping speed

through the small beam apertures by an order of magnitude. This improvement

may be necessary to handle the increased gas load resulting from high peak power

rf propagating through the structure.

Four water-cooling tubes will be brazed along the outside of each section, as

shown in Fig. 23. The outer surface of each cell can be used for precise support

and alignment since it is concentric to the iris diameter to within 5–10µm. Two

tuning stubs will be brazed into each cell wall to permit fine tuning of the phase

advance per cell of a completed section. Symmetrical double-input couplers will be

used at the ends of each section to minimize the phase and amplitude asymmetries

in the coupler fields.

Each accelerator section will be mounted on an aluminum strongback. Sup-

ports from the strongback to the section will be positioned under the pumping

cells, as shown in Fig. 23. The support at the input-coupler end will be rigidly
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attached to the strongback. All other supports will be flexible to allow for longi-

tudinal differential expansion. Each support will permit vertical fine adjustment

so that the section can be held straight to within 5 µm.

4. Beam dynamics simulations

Since our ultimate goal is to control the projected emittance of a multibunch

beam, we turn now to the dynamics of such a beam as it passes through the

wakefield-suppressed structures. Each bunch is represented as a single macropar-

ticle (i.e., internal bunch structure is ignored). The equation of motion for the

transverse offset xn of the nth bunch in a train is

γ(s)x′′n + γ′(s)x′n + γ(s)K2(s)xn = Fn(s) , (4.1)

where the driving term due to the wakefields of the preceding bunches is

Fn(s) ≡ Npe
2

mc2

n−1∑
j=1

W ((n− j)`/c) xj(s) . (4.2)

Here Np is the number of particles per bunch, E the energy of the particles in a

bunch, ` the spacing between adjacent bunches, m the rest mass of the electron,

and γ the usual Lorentz factor E/mc2. Primes denote derivatives with respect to

longitudinal position s. The acceleration is assumed to be linear: γ = γ0 + Gs,

with G a constant. The sum over modes in Eq. (4.2) may be a sum over uncoupled

or coupled modes, as calculated in the preceding sections.

The focusing function K(s) in the NLC is to vary approximately as the inverse

square root of the energy, and unless otherwise noted we have simply used the

smooth approximation

K(s) =

(
γ0

γ(s)

)1/2

K0 . (4.3)

We have used the programs LTRACK [48] and MBLINAC [49] for our simu-

lations. In these codes, the focusing elements and the accelerating structures (or
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pieces thereof) are modelled by discrete kicks. Both codes allow one to simulate

situations in which the wakefield varies from structure to structure, as occurs when

using interleaved structures or in the presence of random frequency errors.

4.1 Moments of the wakefield kicks

One way to obtain some insight into the effect of the wakefield on the bunch

trajectories within a structure is via the “moments” of the wakefield kicks. This

approach readily follows from a treatment of the multi-bunch problem for linac

FODO arrays where the bunch trajectories are essentially straight lines through the

structures. Such trajectories simplify the integration of the wakefield kicks along

the structure. Assuming exact linear trajectories for the purpose of computing the

driving terms in the equations of motion is generally a good approximation since

the trajectory deviations due to intra-bunch transverse wakefields, acceleration,

and beam loading are usually small relative to the unperturbed betatron motion.

To formulate this approach, we first consider the simple case of only two

bunches traversing a single unpowered structure of half-length Lh. In the ap-

proximation in which the first bunch follows a straight line trajectory, its net effect

on the trajectory of the second bunch can be written

(
∆x

∆θ

)
=

2LhNpe
2

E

(
−M1Lh −M2Lh

2

M0 M1Lh

)(
x

θ

)
, (4.4)

where ∆x and ∆θ are respectively the effective change in the transverse position

and angle of the second bunch at the center of the structure, and x and θ are the

position and angle of the first bunch at this same location. The position and angle

are of course relative to the axis of the structure. The Mis are the moments of the
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wakefield kicks and are defined in the uncoupled model as

M0 =
1

N

N∑
m=1

W1 sin(ω1,m`/c),

M1 =
1

N

N∑
m=1

(
sm
Lh

)
W1 sin(ω1,m`/c),

M2 =
1

N

N∑
m=1

(
sm
Lh

)2

W1 sin(ω1,m`/c) ,

(4.5)

where sm is the longitudinal position of cell m relative to the center of the structure,

and ` is the bunch separation. For simplicity, we ignore the effect of the Qs of the

modes and assume that the wakefield strength W1 is the same for all cells. With

these assumptions, M0 equals W (t = `/c) in Eq. (3.3), which is the function

one tries to minimize by detuning the cells. The additional moments, M1 and

M2, result from the distribution of the wakefield kicks over a finite length. This

distribution can change the trajectory of the second bunch even if the first bunch

has an average offset of zero through the structure.

Having specified the bunch-to-bunch coupling, the next step is to compute

its effect on betatron motion. For the two-bunch example, we are interested in

the size of the betatron amplitude induced in the second bunch from its coupling

to betatron motion of the first bunch. For the simple linac configuration of a

constant-energy FODO array with a single structure between each quadrupole,

the calculation yields an expression for the induced amplitude that is independent

of M1 if the bunches travel an integral number of FODO cells in which the net

betatron phase advance is an integral multiple of π. The cancellation of the contri-

bution from M1 is related to the symmetry of the FODO cells and also occurs to a

large degree if the bunches are accelerated. Thus for linacs with many FODO cells,

this moment of the wakefield kicks can generally be ignored. In contrast, the M2

contribution from groups of cells having π phase advance is additive in a constant-

energy linac, and so it increases linearly with distance as does the contribution

from M0.
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As a specific example of induced motion, we consider the case of a linac in

which the bunch energy increases linearly with distance, and the beta function

and spacing between quadrupoles increase as the square root of the bunch energy.

We also assume that the same type of structure is used throughout the linac and

that the structures fill the entire space between quadrupoles. This requires the

approximation of fractional structures since the quadrupole spacing is generally

not an integral number of structure lengths. For this configuration, the induced

amplitude A of the second bunch at the end of the linac per unit amplitude of the

first bunch is to a good approximation,

A =
Nqβ0Npe

2

E0
M0Lh

[
1 +

g

3
+ g

(
M2

M0
− 1

3

)√
E0

Ef

]
, (4.6)

where

g ≡ sin2(φ/2)

1 + cos2(φ/2)
. (4.7)

Here φ is the phase advance per FODO cell. The number of quadrupoles Nq is

given by

Nq =
E0(
√
Ef/E0 − 1)

EzLh
, (4.8)

where 2Lh = structure length = initial quadrupole spacing. Also, β0 is the initial

beta function at the midpoint between quadrupoles, E0 is the initial linac energy,

Ez is the accelerating gradient, and Ef is the final linac energy.

The expression for A shows that with the increase in energy, the relative con-

tribution M2 scales as
√
E0/Ef . This is due to the increase of the betatron wave-

length relative to the structure length as the energy increases. The relative sizes

of M2 and M0 depend on the detuning parameters and the bunch separation. For

the parameter ranges being considered for the NLC, the M2/M0 amplitude ratio,

ignoring the wakefield phase, is generally near unity for distances of many bunch

spacings, but can be as large as 20 at the first bunch location. This increase at

short distance occurs since M2 decoheres slower with ` than does M0. Thus it is

important to also consider the size of M2 when choosing the detuning parameters.
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5. Control of beam break-up

We discuss in this section the required level of suppression of the transverse

wakefield in the NLC, and we examine how well the various schemes of wakefield

suppression can be expected to meet these criteria.

5.1 Use of damping alone

Using damping alone, we are generally in a regime in which, if we have lowered

the Q to the point at which the wake at one bunch spacing produces acceptably

small blow-up in the “short pulse” design, then the blow-up of bunches in longer

bunch trains will also be acceptably small. In this case, the exponentially-damped

wake is essentially negligible beyond one or a very few bunch spacings. This “daisy-

chain” regime has been discussed extensively elsewhere (see Refs. 19 and 50). The

required Qs are about 10.

The use of damping seems very natural for long bunch trains, since, if one can

obtain such low Qs, the wake quickly becomes negligible beyond a short distance.

However, for the reasons discussed previously, assuring that all the harmful modes

are coupled out of the structure and absorbed may not be easy.

5.2 Suppression of wake via detuning

Let us consider the coupled wakefield (without errors) shown in Fig. 22. In

Fig. 25(a), we show the value of the wake function W (z) at multiples of the spacing

between bunches. What actually matters is the sum of all the wakefield kicks from

the bunches preceding a given bunch; this sum depends on both the wake function

at each bunch spacing and on the betatron phases of the bunches. Figure 25(b)

shows the sum of the wake functions at each bunch n, i.e.,

n−1∑
j=1

W (j · `) . (5.1)

If we assume that the bunches start out at the same betatron phase, this sum

correlates strongly with the blow-up of the betatron oscillation of each bunch. In

36



   

Fig. 25(c), the blow-up factor x/x0 is shown for each of the bunches, as calculated

using the linac parameters given in Table 1 and a structure which has the averaged

wakefield shown in Fig. 22.

Here we have assumed that all the bunches in the train start out with the same

offset at the beginning of the linac. The blow-up factor x/x0 is the ratio of the the

maximum amplitude reached anywhere in the linac to the initial amplitude, with

adiabatic damping factored out.

The kick factor of the fundamental transverse HOM is about 40 V/pC/mm/m

for the NLC structures. Thus the amplitude of the envelope of the wake function

W (z) at its maximum, occurring for small z, is about 80 V/pC/mm/m, as can be

seen in Fig. 22. We see from Fig. 25 that once the wake exceeds about 1% of this

peak value, there starts to be significant blow-up of bunches that are far enough

back in the train to see wakes from bunches this distance ahead. Thus, if the

envelope of the wake is kept below 1% of this peak value, at the locations of the

bunches, the wakefield suppression will generally be adequate. This assumes that

the actual values of the wake at the various bunch spacings will be less than the

envelope values, since the bunch spacings will fall at varying phases of the wake

function. Assuming such a varying distribution of phases, an approximate rule

of thumb for our linac parameters is that the wake function envelope needs to be

suppressed by a factor of about 100 below its short range maximum, throughout

an interval equal to the desired length of the bunch train.

With a 10% frequency spread of the detuned wakefield modes and a 1.4 ns

bunch spacing, there is at least one resonance between the bunch frequency and

the wakefield mode frequencies. At such a resonance, the bunches are exactly

at the zero-crossings of the wakefield, but slightly off this resonance, the wakes

from successive bunches add up with the same sign (assuming the bunches are at

essentially the same betatron phase) and can produce a strong effect. If the modes

are densely spaced over the region of the resonance, then the integrated effect of the

resonant wake distribution will be essentially zero. However, for a large number of
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bunches, which leads to a narrow resonance, this integral may not be so small, and

hence there can be fairly strong residual kicks from the resonant growth. Errors in

the frequencies will exacerbate this problem, and so care must be taken to avoid

this type of growth. [51]

Using single-section detuning alone, one may obtain an acceptably small wake-

field during the interval needed for a short pulse design, but unfortunately it will

not remain small enough over longer bunch trains. In fact, there will generally

be significant recoherence of the wake at a time comparable to the reciprocal of

the core frequency spacing [see Eq. (3.9)]. Furthermore, errors in the frequency

distribution can lead to even larger values of the wake function within the bunch

train. We see that single-section detuning, even without including the effects of

errors, still leads to considerable transverse blow-up in the longer bunch trains.

5.3 Multiple detuned structure types with interleaved frequency

distributions

One possible solution to the problem of controlling the wake at longer distances

is to use several structure types with interleaved frequency distributions, as dis-

cussed earlier. This solution works, provided the effects of systematic errors in the

frequency distribution can be kept small enough. About four interleaved structure

types are needed; similar conclusions have been reached by other groups. [52] In

Fig. 26, we show the envelope of the wake function averaged over four interleaved

structure types, calculated using the double-band, coupled model for each struc-

ture type. The overall uncoupled frequency distribution is a truncated Gaussian

with σf = 2.5% and a total spread of 4σf . No errors in the frequency distribution

have been included here. In Fig. 27(a), we show the value of the wake function

W (z), averaged over the four structure types, at multiples of the spacing between

bunches. In Fig. 27(b), we show the sum of these averaged wake functions from

preceding bunches at each bunch n. In Fig. 27(c), the blow-up factor x/x0 is

shown. In the simulation of the beam blow-up, we cycle repeatedly through the

four structure types in going down the linac.
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5.4 Frequency errors

The results in the preceding section suggest that cycling through four struc-

tures types having interleaved frequency distributions can suppress the wakefield

long enough to make it feasible to use bunch trains of length a filling time or so.

However, we have not yet taken into account the fact that there will be unavoidable

systematic and/or random deviations from the calculated frequency distributions.

The core spacing, i.e., the spacing of the frequencies in the center of the Gaus-

sian, is given by Eq. (3.9) for the uncoupled model. (This spacing is increased

somewhat according to the coupled models, in particular by a factor of about 1.4

in the double-band model—see Figs. 18(c) and 21(c).) For our single section type,

the fractional core spacing δf/f̄1 given by Eq. (3.9) is 3× 10−4, while for the case

of four interleaved section types, it is four times smaller, 7.5× 10−5.

The expected size of the errors due to machining tolerances is comparable to

these values. The problem is rather complex, since the errors are neither “totally

random” nor purely “systematic” in the senses defined earlier. In reality the errors

are not a simple superposition of these “systematic” and “totally random” errors,

but for a first estimate, we shall treat them as such. We remind the reader that

our definition of “systematic” means that the errors are the same in corresponding

cells in all instances of a given structure type; they are still random from cell

to cell within each structure type. Purely systematic errors of this sort would

be a pessimistic extreme case. However, there will generally be some average

error over all the cells of a given type, and this may be roughly approximated

by the systematic component as defined here. Superimposed on this systematic

distribution is the “totally random” component of the errors.

As one might expect, the result for the beam blow-up remains quite similar

to that shown in Fig. 27(c), provided that the fractional errors in the frequency

distribution are kept small compared to the core spacing, that is, not more than

about 10−5 or so. However, from the size of the fabrication tolerances we expect

random errors with fractional rms about 1 × 10−4 or so. With care taken to
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randomize the production of various cell types, it should be possible to keep the

systematic components of the errors significantly smaller than this, perhaps by

nearly an order of magnitude.

As a simple model, we shall assume that each of the two types of errors is

randomly distributed, each with given rms. Denote the fractional rms of the sys-

tematic errors by σe,sys and the fractional rms of the random errors by σe,ran.

These distributions are Gaussian, but assumed to be truncated at three sigmas.

When the coupled modes are calculated using the double-band equivalent circuit

model, it is found that the size of the rms of the coupled-mode errors is about a

factor of two smaller than the rms of the errors in the uncoupled modes which are

input to the calculation. Both the σe,sys and the σe,ran that we quote correspond to

those of the random errors in the uncoupled modes input to the equivalent circuit

calculation.

We give examples showing the effect of frequency errors on the blow-up due to

an injection offset, assuming σe,ran = 1× 10−4 and σe,sys = 3× 10−5. The result is

of course somewhat dependent on the particular seeds used to generate the random

and systematic errors. In Fig. 28, we show a typical result for a single section type

with errors of this magnitude — there is considerable blow-up of the bunches in

the last two-thirds of the train. In Fig. 29, we show the result for four section types

with interleaved frequency distributions and the same values of σe,ran and σe,sys.

The worst result out of 16 pairs of seeds for the random and systematic errors is

shown. The blow-up of x/x0 is kept below 22% for all bunches. Even for an initial

transverse offset equal to the rms beam size, the bunch train’s projected-emittance

blow-up at the end of the linac is only a few percent.
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5.5 Misalignments

One of the most severe tolerances is that on misalignments of the accelerating

structures. We consider not only misaligments of a structure as a whole, but

also misalignments of pieces of the structure with respect to each other due to

manufacturing errors. As a simple model, we assume that each misaligned piece

of structure contains im cells, (where im may vary from 1 to the number of cells

in a whole structure), the misalignment within each such piece is uniform, and

the misalignments are random with rms size σm. Figure 30 shows the tolerance

t25% on σm to produce a 25% emittance blow-up as a function of im, assuming

four interleaved structure types. Here we have assumed a FODO-type lattice, with

beam size in the initial focusing quad equal to 3.6 µm (comparable results are

obtained using smooth focusing).

From Fig. 30, we see that the tolerance is fairly insensitive to im, although

it is tightest when im is around 20. The loosest tolerance is for misalignment of

entire structures, since the coherence of the detuned frequency distribution within

a section is preserved.

More detailed studies of tolerances are in progress. It appears likely that the

blow-up in long bunch trains can be controlled via detuning alone, provided that

several structure types with interleaved frequency distributions are used. The

most difficult tolerance appears to be the misalignment tolerance of a few microns

for assembly of pieces of structures during the manufacturing process. However

this tolerance can probably be loosened by using appropriate trajectory correction

algorithms, and this avenue is also being pursued.

5.6 Combining detuning and damping

Strictly speaking, one never uses detuning alone — there will always be at

least a minor amount of damping due to the resistivity of the structure. For our

long bunch trains, even this small amount of damping (Q ≈ 6500) has a non-

negligible effect on the result (and was included in the above examples). However,
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one may consider deliberately introducing both damping and detuning. Instead of

using interleaved structures, one could introduce sufficient damping to control the

partial recoherence of the wake at long distances (Ref. 9). However, it is probably

necessary to damp many of the cells in the structures, and this may not be that

much easier than damping all the cells so strongly that detuning would not really be

necessary (although the near-constant gradient of the detuned structure is desirable

for other reasons). However, detuning is very good for producing an initial strong

roll-off of the wake between adjacent bunches, while moderate damping is a natural

way to avoid a resurgence of the very long range wake, so the two methods are

complementary. The disadvantage of using both is the additional complication in

fabricating the structures.

It is also possible that appropriate design of the vacuum manifold could produce

some degree of damping; this possibility is presently under investigation.

6. Summary and conclusions

We have concentrated our efforts on two methods of suppressing the transverse

dipole wakefield, which would otherwise produce severe multibunch beam break-up

in future linear colliders. Our theoretical and simulation work so far indicates that

either of the two methods, damping or detuning, may be capable of suppressing the

wakefields to the required degree. The choice of method will depend to some extent

on practical considerations. A practical and inexpensive means of absorbing the

power channelled out of the radial waveguides is needed, if damping is to be used

as the major means of wakefield suppression. Keeping the misalignments and the

deviations from the desired frequency distribution sufficiently small is important

if detuning alone is to be used. At this time, we are pursuing the detuning option

most intensively, as it appears to be possible to achieve the required suppression

by using four interleaved structure types.

Much more work remains to be done and is currently in progress. Improved

methods for modelling damped and detuned structures (for example, a scattering-
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theory formalism for calculating the wakes in detuned structures [53]) are being

developed at SLAC and elsewhere. Measurements of the wakefields in single test

structures will be an important focus in the near future. If the detuning option

is chosen, it will be necessary to demonstrate the feasibility of building structures

to sufficiently tight tolerances, in order to prevent partial recoherence of the long

range wake due to errors.

In this paper, we have concentrated most of our discussion on controlling the

fundamental transverse mode, since it is by far the most detrimental. While our

work to date indicates that the other transverse HOMs and the longitudinal HOMs

can be sufficiently well controlled via either of the two methods, further study of

this question is continuing.

The choice of the best method is also of course dependent on the length of

the bunch train. Here we have assumed that we will want to run a future linear

collider with rather long bunch trains (of order a filling time in length). This places

stricter requirements on the suppression of the long-range wakefields. However, the

benefits of increased luminosity and greater energy efficiency are substantial.
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FIGURE CAPTIONS

1) Field patterns of HEM mode: (a) electric field lines in longitudinal cross-

section of three cells in a disk-loaded structure, (b) magnetic field lines in

transverse cross-section through center of a cell.

2) Example of structure with radial slots in iris.

3) Example of structure with circumferential-slot coupling: crossed-waveguide

structure, with two half-cells and one full cell.

4) Schematic cross section of cells, (a) in simplified structure (square corners

and fixed disk thickness), (b) in actual structure.

5) Three dimensional plot of the accelerating (TM01) and dipole (TM11) mode

frequencies with dependence on iris diameter 2a and cavity diameter 2b, for

simplified detuned structure of Fig. 4(a).

6) a, b pairs with the accelerating mode frequency frf = 11.424 GHz and phase

advance φ = 2π/3, for simplified detuned structure of Fig. 4(a).

7) Dipole mode frequency dependence on iris radius a, for simplified detuned

structure of Fig. 4(a).

8) Quality factor Q along the simplified detuned structure.

9) Group velocity vg/c for the accelerating mode along the simplified detuned

structure.

10) Shunt impedance r(s) of the simplified detuned structure.

11) Accelerating electric field Ez(s) along the axis of the simplified detuned

structure. Conventional constant-impedance and constant-gradient struc-

tures with the same input power and attenuation are also shown.

12) Energy gain U(s) due to accelerating voltage on the axis of the simplified

detuned structure.

13) Dispersion curves of TM01 modes, for the simplified detuned structure.

14) Dispersion curves of dipole modes, for the simplified detuned structure.
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15) Group velocity vg/c of the first dipole mode along the simplified detuned

structure.

16) Accelerating electric field Ez(s) along the axis of the actual NLC test struc-

ture (which has varying disk thickness and rounded iris corners). The field for

conventional constant-impedance and constant-gradient structures with the

same input power and attenuation as the detuned structure are also shown.

17) The envelope Ŵ of the wake function as a function of z = ct, calculated

using the uncoupled model.

18) Results of single-band coupled model: (a) the mode spectrum, (b) the kick

factor, (c) the mode density (normalized so that the integral of dn/df is one),

and (d) the product of kick factor and mode density. Dashed lines show the

results of the uncoupled model for comparison.

19) The envelope of the wake function calculated using the single-band, coupled

model.

20) The double-band circuit solutions for a structure with six identical cells (lo-

cated by the plotting symbols). Results are given for seven cell geometries.

The solid circles represent modes belonging to the first band, the open circles

represent those of the second band. For comparison, the dispersion curves

obtained from TRANSVRS are also shown. The dots give the speed of light

line.

21) Results of double-band coupled model: (a) the mode spectrum, (b) the kick

factor, (c) the mode density (normalized so that the integral of dn/df over

the first half of the modes is one), and (d) the product of kick factor and

mode density. Dashed lines show the results of the uncoupled model for

comparison.

22) The envelope of the wake function calculated using the double-band, coupled

model.

23) Mechanical design of 1.8-meter detuned structure.
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24) Mechanical design of cells of accelerating structure.

25) (a) Value of the wake function W (z) at multiples of the bunch spacing (16 rf

wavelengths ≈ 42 cm), (b) the sum of the wake functions from the preceding

n− 1 bunches, at each bunch n, and (c) the resulting maximum beam blow-

up factor x/x0 (normalized to remove the adiabatic damping factor). The

coupled wakefield of Fig. 22 is assumed.

26) The envelope of the wake function averaged over four detuned section types

having interleaved frequency distributions (no frequency errors included).

The coupled, double-band model was used.

27) (a) Value of the averaged (over four structure types) wake function W (z) at

multiples of the bunch spacing (16 rf wavelengths ≈ 42 cm), (b) the sum of

the wake functions from the preceding n− 1 bunches, at each bunch n, and

(c) the resulting maximum beam blow-up factor x/x0 (normalized to remove

the adiabatic damping factor). The four interleaved structure types used to

generate Fig. 26 have been cycled through in this simulation.

28) Beam blow-up factor x/x0 for case of single detuned section type, including

random errors with σe,ran = 1 × 10−4 and systematic errors with σe,sys =

3× 10−5.

29) Beam blow-up factor x/x0 for case of four detuned section types with inter-

leaved frequency distributions, including random errors with σe,ran = 1×10−4

and systematic errors with σe,sys = 3× 10−5.

30) Tolerance (in µm) of rms misalignments for 25% emittance growth (w.r.t.

beam centroid) of the multibunch beam as a function of number of cells

im per uniformly misaligned piece of structure. One hundred seventy four

different random distributions were calculated at each value of im. The

error bars show the rms on each side of the mean (circles). The squares

and triangles show the points for which 10% and 5%, respectively, of the

distributions give a tighter tolerance.
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