SLAC-PUB-6025 December 1992 (T/E)

BEYOND THE TAU: OTHER DIRECTIONS IN TAU PHYSICS*

`. +...

MARTIN L. PERL Stanford Linear Accelerator Center Stanford University, Stanford, California 94309

ABSTRACT

This paper calls attention to four topics in tau lepton physics which are outside our present areas of tau physics research: $\tau^+\tau^-$ atoms, τ^- nucleus atoms, photoproduction of τ 's, and heavy ion production of τ 's.

Paper presented at the Second Workshop on Tau Lepton Physics The Ohio State University, Columbus, Ohio September 8 – 11, 1992

 \star This work was supported by the Department of Energy, contract DE-AC03-76SF00515.

A. Introduction

This paper is based on a talk delivered at the Second Workshop on Tau Lepton Physics held at The Ohio State University, September 8–11, 1992. In that talk I called attention to four out-of-the-way topics in tau physics: $\tau^+\tau^-$ atoms, τ^- – nucleus atoms, photoproduction of τ 's, and heavy ion production of τ 's; and these are the areas covered in this paper. Two other topics from that talk will not be discussed in this paper: future searches for heavy leptons and speculations on missing modes in tau decay (Perl 1992).

B. The $\tau^-\tau^+$ Atom

B.1 Introduction

`. +-...

In the early years of the discovery of the τ there was some discussion of the physics of an atom that would consist of the Coulombic bound state of a τ^+ and a τ^- (Moffat 1975, Avilez *et al.* 1978, Avilez *et al.* 1979), an entity analogous to the e^+e^- atom positronium (Rich 1978). The $\tau^+\tau^-$ atom can be made in e^+e^- annihilation just below τ pair threshold.

$$e^+ + e^- \to \tau^+ \tau^- \text{ atom }, \tag{1}$$

hence the tau-charm factory offers the best route for making these atoms as discussed in Sec. B.5.

B.2 Static Properties

The energy levels of the $\tau^+\tau^-$ atom are shown in Fig. 1 where the atomic spectroscopy notation

$$n^{2S+1}L_{I}$$

is used. Here n is the principle quantum number; S is the total spin quantum number and is 0 or 1, L is the orbital angular momentum quantum number with L = S, P, D...for L = 0, 1, 2 ..., and J is the total angular momentum quantum number. Ignoring fine structure, the energy levels are given by

$$E_n = -\frac{m_\tau c^2 \alpha^2}{4n^2} = -\frac{23.7 \text{ keV}}{n^2}$$
(2)

The 4 in the denominator comes from the usual 2 in the denominator and and $m_{reduced}(\tau^+\tau^- \text{ atom}) = m_{\tau}/2$ in the numerator. I use $m_{\tau} = 1777 \text{ MeV/c}^2$.

Figure 1

The Bohr radius is given by

$$a_0 = \frac{2\hbar^2}{m_\tau e^2} = 3.04 \times 10^{-12} \text{ cm} ,$$
 (3)

which is three orders of magnitude smaller than the Bohr radius for hydrogen of 5.29×10^{-9} cm.

The n = 1, 2 wave functions are given by

$$\psi_{n\ell} = R_{n\ell}(r) Y_{\ell m} \left(\theta, \phi\right) \tag{4a}$$

where $Y_{\ell m}$ is a normalized spherical harmonic and

$$R_{10} = \frac{1}{a_0^{3/2}} 2 e^{-r/a_0}$$

$$R_{20} = \frac{1}{a_0^{3/2}} \frac{1}{\sqrt{2}} \left(1 - \frac{r}{2a_0}\right) e^{-r/2a_0}$$

$$R_{21} = \frac{1}{a_0^{3/2}} \frac{1}{\sqrt{6}} \frac{r}{2a_0} e^{-r/2a_0}$$
(4b)

B.3 Charge Conjugation Rules for Production and Decay

Charge conjugation, C, imposes selection rules on the production and decay of the $\tau^+\tau^-$ atom

$$C\psi(\tau^{+}\tau^{-} \text{ atom}, n, S, L) = (-1)^{S+L}\psi(\tau^{+}\tau^{-} \text{ atom}, n, S, L)$$
 (5)

and for a state of N photons

$$C \ \psi(N \text{ photons}) = (-1)^N \ \psi(N \text{ photons})$$
 (6)

Therefore in production

$$e^+ + e^- \to \gamma_{virtual} \to \tau^+ \tau^- \text{ atom}$$
 (7a)

the atom must be produced in a state with

$$S + L = \text{ odd number}$$
 (7b)

The decay

 $\tau^+ \tau^- \operatorname{atom} \to \gamma + \gamma$ (8a)

requires

$$S + L =$$
 even number (8b)

and the decay

$$\tau^+ \tau^- \operatorname{atom} \to \gamma + \gamma + \gamma$$
 (9a)

requires

$$S + L = \text{ odd number}$$
 (9b)

B.4 Decay channels of the $\tau^+\tau^-$ atom

Next I discuss the decay of the $\tau^+\tau^-$ atom. There are two classes of decay channel. In the first class the τ^+ or τ^- decay through the weak interaction in the normal way and the atomic state disappears. The decay width is

$$\Gamma(\text{atom}, \ \tau \ \text{decay}) = 2\hbar/\tau_{lifetime} = 4.4 \times 10^{-3} \text{ eV}$$
(10a)

where the 2 occurs because the decay of either τ breaks up the atomic state. I have used the τ lifetime (Trischuk 1992) of

$$T_{\tau} = (2.96 \pm 0.03) \times 10^{-13} \text{ s}$$
 (10b)

In the second class of decay channels the τ^+ and τ^- annihilate. The annihilation

requires that the atomic wave function $\psi(\mathbf{r})$ be unequal to 0 at $\mathbf{r} = 0$

 $\psi(0) \neq 0$

Here r is the distance between the τ^+ and τ^- . Therefore in lowest order annihilation only occurs in L = 0 states, that is, S states. This is illustrated in Eq. 4b. There are five annihilation channels:

$$\tau^+ \tau^- \operatorname{atom} \to \gamma + \gamma$$
 (11*a*)

$$\tau^+ \tau^- \text{atom} \to \gamma + \gamma + \gamma$$
 (11b)

$$\tau^+ \tau^- \text{atom} \to e^+ + e^-$$
 (11c)

- $\tau^+ \tau^- \text{atom} \to \mu^+ + \mu^-$ (11d)
- $\tau^+ \tau^- \text{atom} \to \text{hadrons}$ (11e)

The annihilation channel

$$\tau^+ \tau^- \operatorname{atom} \to \gamma + \gamma$$
 (12a)

is even under charge conjugation, therefore

$$atomic state = n^{-1}S_0 \tag{12b}$$

The decay width is

$$\Gamma(\text{atom} \to 2\gamma) = \frac{\alpha^5 m_\tau c^2}{2n^3}$$
$$= \frac{1.8 \times 10^{-2} \text{ eV}}{n^3}$$
(12c)

The four other annihilation channels have odd charge conjugation, therefore

$$atomic state = n \,{}^{3}S_{1} \tag{13}$$

 $\mathbf{5}$

The channel

$$\tau^+ \tau^- \operatorname{atom} \to \gamma + \gamma + \gamma$$
 (14*a*)

has the width

$$\Gamma (\text{atom} \to 3\gamma) = \frac{2(\pi^2 - 9)\alpha^6 m_\tau c^2}{9\pi n^3} = \frac{1.7 \times 10^{-5} \text{ eV}}{n^3}$$
(14b)

The two channels, Fig. 2,

$$\tau^+ \tau^- \operatorname{atom} \to e^+ + e^-$$
 (15a)

$$\tau^+ \tau^- \operatorname{atom} \to \mu^+ + \mu^-$$
 (15b)

have the same width

$$\Gamma(\text{atom} \to e^+ e^-) = \Gamma(\text{atom} \to \mu^+ \mu^-) = \frac{\alpha^5 m_\tau c^2}{6n^3}$$

= $\frac{6.1 \times 10^{-3} \text{ eV}}{n^3}$ (15c)

when we neglect the masses of the e and μ . Finally there is the channel, Fig. 2,

$$\tau^+ \tau^- \text{ atom } \to \text{ hadrons}$$
 (16a)

The width cannot be calculated from first principles, however from colliding beams e^+e^- annihilation data at $E_{tot} \sim 2 m_{\tau}$ we know

$$\sigma(e^+ + e^- \to \text{hadrons}) \approx 2\sigma(e^+ + e^- \to \mu^+ + \mu^-)$$
(16b)

Therefore

$$\Gamma(\text{atom} \to \text{hadrons}) \approx 2 \Gamma_{\mu\mu}$$
 (16c)

Collecting all this together, for $n \ ^1S_0$ states

$$\Gamma_{tot}(n \ ^1S_0) = \Gamma(\text{atom}, \ \tau \ \text{decay}) + \Gamma(\text{atom} \to 2\gamma)$$
$$= \left(4.4 \times 10^{-3} + \frac{3.7 \times 10^{-2}}{n^3}\right) \text{eV}$$
(17)

For the $n \ ^3S_1$ states we can neglect $\Gamma(\text{atom} \rightarrow 3\gamma)$, Eq. 14b, and set

$$\Gamma_{tot}(n \ {}^{3}S_{1}) \approx \Gamma(\operatorname{atom}, \tau \ \operatorname{dccay}) + 4\Gamma(\operatorname{atom} \to e^{+}e^{-})$$
$$\approx \left(4.4 \times 10^{-3} + \frac{2.44 \times 10^{-2}}{n^{3}}\right) \ \mathrm{eV}$$
(18)

Table I gives the widths and lifetimes for various S states.

Table I	. Wi	dths	and I	lifetim	es of	3S_1 sta	tes of the
$\tau^+\tau^-$	atom	due t	to $ au$	decay	and	$\tau^+\tau^-$	annihila-
tions							

n	Width (eV)	Lifetimes (s)
1	29×10^{-3}	2.3×10^{-14}
2	$7.5 imes 10^{-3}$	$8.8 imes 10^{-14}$
3	5.3×10^{-3}	12×10^{-14}
4	4.8×10^{-3}	14×10^{-14}

I remind the reader that in addition to the decays which destroy the $\tau^+\tau^-$ atom there are electromagnetic decays within the atom from an upper level to a lower level (Sec. B6)

$$\psi(\tau^+\tau^- \text{ atom}, n') \to \psi(\tau^+\tau^- \text{ atom}, n) + \gamma \quad , \quad n' > n \tag{19}$$

B.5 Production of the $\tau^+\tau^-$ Atom

As noted in Sec. B.1 the production process

$$e^+ + e^- \to \gamma_{virtual} \to \tau^+ \tau^- \text{ atom}$$
 (20)

requires S + L = odd number. Furthermore, the produced state must have $\psi(0) \neq 0$ and hence L = 0. Therefore, S = 1 and the produced state must be $n^{3}S_{1}$.

The production cross section for the process in Eq. 20 is

$$\sigma(e^+e^- \to \tau^+\tau^- \text{ atom}) = \frac{3\pi(\hbar c)^2}{4m_\tau^2} \frac{\Gamma_{ee} \Gamma_{tot}}{(E_{tot} - 2m_\tau)^2 + \Gamma_{tot}^2/4}$$
(21)

Here Γ_{ee} means $\Gamma(\text{atom} \to e^+e^-)$ and is given by Eq. 15c. Γ_{tot} is given by Eq. 18. Thus the production cross section is given by the Breit-Wigner equation with full width at half-height of Γ_{tot} and peak cross section

$$\sigma(e^+e^- \to \tau^+\tau^- \text{ atom, peak}) = \frac{3\pi(\hbar c)^2}{m_\tau^2} \frac{\Gamma_{ee}}{\Gamma_{tot}}$$
(22)

As an example consider $\tau^+\tau^-$ atom production into the ground state 1 3S_1 . Then

$$\Gamma_{ee} = 6.1 \times 10^{-3} \text{ eV} \tag{23a}$$

$$\Gamma_{tot} \approx 2.9 \times 10^{-2} \text{ eV} \tag{23b}$$

$$\Gamma_{ee}/\Gamma_{tot} = 0.21\tag{23c}$$

$$\sigma(e^+e^- \to \tau^+\tau^- \text{ atom, peak}) \approx 2.4 \times 10^{-28} \text{ cm}^2$$
(24)

This is a large cross section, <u>but</u> the energy spread of the e^+ and e^- beams, ΔE , is much larger than Γ_{tot} . Thus in a tau-charm factory we expect

$$\Delta E \sim 1 \text{ MeV} \tag{F.25}$$

and the effective cross section is

$$\sigma(e^+e^- \to \tau^+\tau^- \text{ atom, effective}) \sim 2.4 \times 10^{-28} \text{ cm} \times \frac{2.9 \times 10^{-2}}{10^6} \sim 10^{-35} \text{ cm}^2$$
(26)

Therefore for a tau-charm factory luminosity of 10^{33} cm⁻² s⁻¹ we expect

$$\tau^+ \tau^-$$
 atoms produced per sec. $\sim 10^{-2}$ (27)

B.6 Detecting $\tau^+\tau^-$ Atoms?

Equation 27 shows that $\tau^+\tau^-$ atoms can be produced at a reasonable rate at a tau-charm factory. However, we don't know how to detect $\tau^+\tau^-$ atoms in the ground state. One difficulty, Table I, is the small width, 2.9×10^{-2} eV, compared to the 1 MeV energy spread of the beams. The other difficulty is the short lifetime, 2.3×10^{-14} s.

Another approach discussed by Moffat (1975) and Avilez *et al.* (1979) is to look for atoms produced in an excited state and look for photons produced in the transition to the ground state. First, suppose $\tau^+\tau^-$ atoms are produced in the 2 ${}^{3}S_{1}$ state. This is a metastable state and will decay by annihilation

 $\tau^+\tau^- \text{ atom } \to e^+ + e^-, \ \mu^+ + \mu^-, \text{ hadrons}$ (28)

(29)

before it decays to an n = 1, S state of the atom. The next possibility is to produce the $\tau^+\tau^-$ atom in the 3^3S_1 state (Avilez *et al.* 1979) and look for the x-ray photon emitted in the transition

 $3 {}^{3}S_{1} \rightarrow 2 {}^{3}P_{J} + \gamma$, $E_{\gamma} = 3.3 \text{ kev}$

where J = 0, 1, 2. E_{γ} is the energy of the x-ray.

The width for $\tau^+\tau^-$ atom decay from the atomic state a to the atomic state b is

$$\Gamma_{ab} = \frac{4e^2 w^2 \hbar}{m_\tau \ c^3} f_{ab} \tag{30}$$

1

where

 $E_{\gamma} = \hbar w$

and f_{ab} is the oscillator strength, a number of order 0.1 or less. For our purpose it is useful to rewrite Eq. 30 as

$$\Gamma_{ab} = \frac{4\alpha E_{\gamma}^2}{m_{\tau} c^2} f_{ab} \tag{31}$$

and to use Eq. 2 to obtain

$$\Gamma_{ab} = \frac{\alpha^5 m_\tau c^2}{4} \left[\frac{1}{n_b^2} - \frac{1}{n_a^2} \right]^2 f_{ab}$$
(32)

If a is an $n^{3}S_{1}$ state, then comparing Eq. 32 with Eq. 15c and then Eq. 18

$$\Gamma_{ab} < \Gamma_{tot}(n^{-3}S_1) \tag{33}$$

Hence in $\tau^+\tau^-$ atoms an $n \, {}^3S_1$ state is more likely to decay by annihilation than make an x-ray transition to a lower atomic state.

For example, in the specific case of Eq. 29

$$f_{ab} = 0.42 \tag{34}$$

from Table 45 of Condon and Shortley (1959). Hence from Eq. 32

$$\Gamma(3 \ {}^{3}S_{1} \to 2 \ {}^{3}P_{J}) = 7.4 \times 10^{-6} \text{ eV}$$
(35)

and from Table 1

 $\Gamma_{tot}(3\ ^3S_1) = 5.3 \times 10^{-3} \tag{36}$

Dividing Eq. 35 by Eq. 36

$$\frac{\text{Probability } (3 \ {}^{3}S_{1} \rightarrow 2 \ {}^{3}P_{J})}{\text{Probability } (3 \ {}^{3}S_{1} \text{ annihilation})} = 1.4 \times 10^{-3}$$
(37)

Therefore, if we made $\tau^+\tau^-$ atoms in the 3 ${}^{3}S_{1}$ state only 1.4×10^{-3} of them will make an x-ray transition before decaying. Furthermore, the production rate in Eq. 27

is reduced because for the $3 \ ^3S_1$ state

 $\sigma(e^+e^- \to \tau^+\tau^- \text{ atom, effective}) \sim 3 \times 10^{-37}$ (38)

For a luminosity of 10^{33} cm⁻² s⁻¹, there will be about 4×10^{-7} transitions per second of the form

$$3 {}^3S_1 \rightarrow 2 {}^3P_J + \gamma \quad ,$$

a rate much too small to detect.

Finally, as pointed out by Avilez et al. (1979) the transition

$$2 {}^{3}P_{J} \rightarrow 1 {}^{3}S_{1} + \gamma , E_{\gamma} = 17.8 \text{ keV}$$
 (39)

1

has the much more favorable ratio

$$\frac{\text{Probability} (2 \ {}^{3}P_{J} \rightarrow 1 \ {}^{3}S_{1})}{\text{Probability} (2 \ {}^{3}P_{J} \text{ annihilation})} = 0.16$$

$$\tag{40}$$

But 2 ${}^{3}P_{J}$ states cannot be produced directly by

 $e^+ + e^- \rightarrow \tau^+ \tau^-$ atom

as discussed in Sec. B5.

Summarizing, with a tau-charm factory we can make $\tau^+\tau^-$ atoms but we don't know how to detect their production. Beyond that problem, is the yet deeper question of what physics we can do with $\tau^+\tau^-$ atoms.

C. The τ^- -Nucleus Atom

C.1 Static Properties

The τ^- -Nucleus atom in analogy to the μ^- -Nucleus atom consists of a τ^- and $Z-1~e^-$'s around a nucleus of charge Z and atomic number A. In the $\tau - N$ atom the reduced mass of the τ is

$$m = \frac{m_{\tau}m_N}{m_{\tau} + m_N} \tag{41}$$

and ignoring the fine structure and effects of the non-zero nuclear radius, the n^{th} energy level is

$$E_n = -\frac{m_\tau c^2 \alpha^2 Z^2}{2n^2} \left(\frac{m_N}{m_\tau + m_N}\right)$$
$$= -\frac{47.4Z^2}{n^2} \left(\frac{m_N}{m_\tau + m_N}\right) \text{ keV}$$
(42)

The Bohr radius is given by

L

$$a_{0} = \frac{\hbar^{2}}{m_{\tau}e^{2}} \left(\frac{m_{\tau} + m_{N}}{m_{N}}\right)$$

= 1.52 × 10⁻¹² $\left(\frac{m_{\tau} + m_{N}}{m_{N}}\right)$ (43)

The average value of the radius of the τ^- orbit is

$$\bar{r} = \frac{a_0}{2Z} \left[3n^2 - \ell(\ell+1) \right]$$
(44)

ignoring the effect of the non-zero nuclear radius. Thus for $Z \gtrsim 4$ and small n, \bar{r} is of the order of 10^{-13} cm or less. Then particularly for S states, the τ^- is inside the nucleus part of the time. This effect reduces the magnitude of E_n . This is illustrated in Table II taken from Strobel and Wills (1983) who limit their calculations to $Z \leq 12$.

Table II. Energy levels of the 1S and 2P states of a τ^- nucleus atom in keV. E_p is for a point nucleus and E_{ex} is for an extended size nucleus. The proton is always taken as a point. These calculations are from Strobel and Wills (1983) and are corrected for the τ mass of 1777 MeV/c².

Nucleus	1S		2P		
	E_p	E_{ex}	E_p	E_{ex}	
$^{1}_{1}\mathrm{H}$	-16.3	-16.3	-4.1	-4.1	
$^{4}_{2}\mathrm{He}$	-128	-118	-32	-32	
$^{9}_{4}\mathrm{Be}$	-625	-474	-156	-155	
$^{24}_{12}\mathrm{Mg}$	-6310	-2940	-1580	-1460	

C.2 Atomic Transitions

Table III, also from Strobel and Wills (1983) gives the energy of the emitted x-ray and the lifetime for the transition

$$2P \to 1S + \gamma$$
 (45)

We see that the lifetime of the 2P-1S transition is much shorter than the τ lifetime of 3.0×10^{-13} s, Eq. 10b. Therefore, once the τ^- is in the 2P state, the τ^- will make the transition to the 1S state before it decays. Of course, the experimental question is how to get the τ^- into that state or other low lying states.

Nucleus	$E(2P \rightarrow 1S) \text{ keV}$	Lifetime $(2P \rightarrow 1S)$ s
$^{1}_{1}\mathrm{H}$	12.2	5.0×10^{-14}
4_2 He	86	2.1×10^{-15}
$^{9}_{4}\mathrm{Be}$	319	2.3×10^{-16}
$^{24}_{12}\mathrm{Mg}$	1480	2.6×10^{-17}

Table III. Transition energy and lifetime for $2P \rightarrow 1S$ in a τ^- -nucleus atom. From Strobel and Wills (1983) corrected for τ mass of 1777 MeV/c².

C.3 τ^- Capture in the Nucleus

L ++_

An interesting result of the τ^- orbit passing through the nucleus is that the τ^- can interact with the protons in the nucleus

$$\tau^- + p \to \nu_\tau + n \tag{46}$$

in analogy to e^- and μ^- capture. Ching and Oset (1991) have studied the process for heavy nuclei where the capture rate is greatest. They find for $^{208}_{82}Pb$ the following captive rates

$$\Gamma(\tau \text{ capture from 1S}) = 2.5 \times 10^9 \text{ s}^{-1}$$

$$\Gamma(\tau \text{ capture from 2S}) = 2.3 \times 10^9 \text{ s}^{-1}$$

$$\Gamma(\tau \text{ capture from 2P}) = 5.2 \times 10^9 \text{ s}^{-1}$$
(47)

However from Eq. 10b

$$\Gamma(\tau \text{ decay}) = 1/T_{\tau} = 3.4 \times 10^{12} \ s^{-1}$$

Therefore, even in the best case in Eq. 47 there is only a 10^{-3} chance that a τ will be captured with $\tau^- + p \rightarrow \nu_{\tau} + n$ compared to the chance that the τ^- decays.

Morley (1992) has given an interesting discussion of the $\tau^- - U$ atom. He discusses in some detail the process of the τ^- slowing down in solid uranium, the τ^- being captured in a high atomic orbit, and then cascading down to a low orbit.

D. Photoproduction of τ 's

 τ pairs can be produced by photoproduction Tsai (1979)

$$\gamma + N \to \tau^+ + \tau^- + N' \tag{48}$$

as shown in Fig. 3a and by electroproduction (virtual photoproduction)

$$e^{-} + N \to e^{-} + \tau^{+} + \tau^{-} + N'$$
 (49)

as shown in Fig. 3b. Here N is a target proton or nucleus and N' is the final hadronic state. The cross section, $\sigma_{\tau, photo}$, for a proton target is given in Fig. 4 as a function of energy.

As an example, suppose that at SLAC one photoproduces τ pairs with a photon beam of maximum energy 40 GeV and intensity $10^{12} \gamma/s$. Then in a 1 radiation length hydrogen target using an average cross section of 3×10^{-36} cm⁻², the τ pair production rate would be

$$\tau \text{ pairs}/s \sim 100$$
 (50)

Thus in a one month run of effective length 10^6 s one could produce $10^8 \tau$ pairs.

There has been very little discussion of the physics that might be done with photoproduced τ pairs. Tsai (1992) has suggested that a ν_{τ} , $\bar{\nu}_{\tau}$ beam could be made this way.

It is useful to remember that in τ pair photoproduction the basic process is

$$\gamma + \gamma_{virtual} \to \tau^+ + \tau^- \tag{51}$$

in contrast to production by e^+e^- annihilation where the basic process is

$$\gamma_{virtual} \to \tau^+ + \tau^- \tag{52}$$

In the next section on the proposal for production of τ pairs in heavy ion collisions the basic process is

$$\gamma_{virtual} + \gamma_{virtual} \to \tau^+ + \tau^- \tag{53}$$

Therefore some of the goals of heavy ion tau physics may be applicable to photoproduction τ physics. Returning to the first topic in this paper, $\tau^+\tau^-$ atoms, consider

$$\gamma + N \to \tau^+ \tau^- \operatorname{atom} + N' \tag{54}$$

Olsen (1986) has discussed the relativistic production of positronium

$$\gamma + N \to e^+ e^- \operatorname{atom} + N' \tag{55}$$

He shows that at high energy there is the crude relationship

2. -

$$- \qquad \sigma(\gamma + N \to \ell^+ \ell^- \operatorname{atom} + N') \sim \alpha^3 \ \sigma(\gamma + N \to \ell^+ + \ell^- + N') \tag{56}$$

The α^3 comes from a_0^{-3} (Eq. 3) involved in the phase space factor for the atom relative to the phase space factor for the unbound pair. Applying Eq. 56 to the unbound τ pair cross section in Fig. 4 we see that the cross section for photoproduction of a $\tau^+\tau^-$ atom is in the range of 10^{-39} to 10^{-41} cm², much too small to use.

E. τ Pair Production in Heavy Ion Collisions

There have been a number of papers on the production of μ pairs and τ pairs in relativistic collisions of heavy ions (Bottcher and Strayer 1990, del Aquila *et al.* 1991, Almeida *et al.* 1991, Amaglobeli *et al.* 1991). The overall process is

 $\operatorname{ion} + \operatorname{ion} \to \tau^+ + \tau^- + \operatorname{ion} + \operatorname{ion} \tag{57}$

as shown in Fig. 5. And the basic process is given in Eq. 53.

At sufficiently high energies the cross section will be of the order of

$$\sigma_0(\text{coherent}) = \frac{\alpha^4 (\hbar c)^2 Z^4}{m_\tau^2 c^4}$$
(58)

The charge Ze at each ion $-\gamma$ -ion vertex entering the amplitude as Ze. At lower energies the momentum transfer to the ions becomes large and the process has an incoherent cross section of the order of

$$\sigma_0(\text{incoherent}) = \frac{\alpha^4 (\hbar c)^2 Z^2}{m_{\perp}^2 c^2}$$
(59)

Bottcher and Strayer (1990) have studied the production cross section when the ion is ${}^{197}_{79}A_u$. First consider Au + Au at the LHC with 7.5 TeV per proton which is 3.0 TeV per nucleon. Extrapolating the Bottcher and Strayer calculation

$$\sigma(3.0 \text{ TeV/nucleon}) \approx 40\sigma(\text{coherent}) \approx 0.5 \text{ mb}$$
 (60)

On the other hand, at a RHIC energy of 0.25 TeV per proton which is 0.1 TeV per nucleon, they obtain

$$\sigma(0.1 \text{ TeV/nucleon}) \approx 0.2\sigma_0 \text{ (coherent}$$

 $\approx 2.8 \times 10^{-3} \text{ mb}$ (61)

This is still larger than

L +---

$$\sigma_0(\text{incoherent}) = 2.0 \times 10^{-5} \text{ mb}$$
(62)

hence there is still some coherence at 0.1 TeV/nucleon. As another example del Aguila *et al.* (1991), consider the ${}^{20}_{82}P_b$ ion. For the LHC they find a cross section of 1 mb, similar to Eq. 60.

If we take the proposed LHC heavy ion luminosity as 10^{28} cm⁻² s⁻¹, a 1 mb cross section for 10^7 s/year gives a yield of $10^8 \tau$ pairs per year, comparable to a tau-charm factory. Can these pairs be used to do τ physics? This has been partially discussed by del Aguila *et al.* (1991). They point out that most of the τ pair events will be clean with the ions themselves proceeding along the beam pipe and no additional particles produced. But I think there is a problem in non $-\tau$ events contaminating the data sample, since the cross section for non $-\tau$ events is so much larger. It may be that the only clean samples are the old faithful

$$\tau^+ + \tau^- \to e^{\pm} + \mu^{\mp} + \text{missing energy}$$
 (63)

events.

There have been two suggestions for the tau physics that might be done with τ pairs produced in heavy ion collisions. The suggestion of del Aguila *et al.* (1991) is that one can measure the anomalous magnetic moment of the τ .

$$\mu_{\tau}(\text{anom}) = a_{\tau} \; \frac{e\hbar}{2m_{\tau}c} \tag{64a}$$

$$a_{\tau} = \frac{\alpha}{2\pi} + \sum_{n>1} c_n \alpha^n \tag{64b}$$

to about 1%. And one can also look for unconventional behavior of the $\tau - \gamma - \tau$ vertex such as an electric dipole moment.

2.00-

Amaglobeli *et al.* (1991) have suggested using high rate τ production to look for the unconventional decay

$$\tau^- \to \mu^- + \mu^+ + \mu^- \tag{65}$$

A τ pair event with one such decay would stand out in the data sample. It would have 4 or 6 charged particles, with 3 of the particles being μ 's whose invariant mass is the τ mass.

F. Acknowledgement

This paper is based on the work of those authors given in the references. I am very grateful to them for this work.

References

Almeida L D et al. 1991 Phys. Rev. D44 118

Amaglobeli N S et al. 1991 Massive Neutrinos, Tests of Fundamental Symmetries (Editions Frontiéres, Gif-sur-Yvette) ed J Tran Thanh Van p 335

Avilez C et al. 1978 Lett. Nuovo Cimento 21 301

Avilez C et al. 1979 Phys. Rev. D19 2214

Bottcher C and Strayer M R 1990 J. Phys. G: Nucl. Part. Phys. 16 975

Ching C H and Oset E 1991 Phys. Lett. B 259 239

Condon E V and Shortley G H 1959 The Theory of Atomic Spectra (Cambridge Univ. Press, Cambridge) p 136

del Aguila F et al. 1991 Phys. Lett. B271 256

Moffat J W 1975 Phys. Rev. Lett. 35 1605

Morley P D 1992 Univ. of Texas-Austin Preprint-92-0080

Olsen H A 1986 Phys. Rev. D33 2033

Perl M L 1992 Proc. Trieste Workshop on Search for New Elementary Particles: Status and Prospects (World Scientific) eds L Beers, G Herten, M L Perl, to be published

Rich A 1981 Rev. Mod. Phys. 53 127

Strobel G L and Wills E L 1983 Phys. Rev. D28 2191

Trischuk W 1992 Proc. Second Workshop on Tau Lepton Physics (The Ohio State Univ., Columbus) ed K K Gan, to be published, and CERN PPE 92-190

Tsai Y S 1979 SLAC-PUB-2356

Tsai Y S 1992 private communication