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Abstract

We studied the high energy elastic scattering of quark anti-quark with an

exchange of a mesonic state in the t channel with −t/Λ2 � 1. Both the

normalization factor and the Regge trajectory can be calculated in PQCD in

cases of fixed (non-running) and running coupling constant. The dependence

of the Regge trajectory on the coupling constant is highly non-linear and the

trajectory is of order of 0.2 in the interesting physical range.
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1 Introduction

With the advances of LHC and SSC, it is possible to study experimentally the Regge

behavior in the parton level where the momentum transfer squared −t � Λ2 but is

still smaller than the center of mass energy squared s of the partons. The Regge

limit of the parton scattering amplitudes corresponds to the small x limit of parton

distribution, while the presence of a “large” scale −t justifies the use of perturbative

QCD.

The sea-quark and gluon distribution for small x is related to the Balitsky-Fadin-

Kuraev-Lipatov (BFKL) Pomeron [1]. The distributions of sea-quarks and gluons

grow like x−αP at small x. where αP is the trajectory of the BFKL Pomeron. The

behavior of the valence-quark distributions is controlled by the mesonic Reggeons [1].

It grows as x−ωR with ωR the trajectories of the mesonic Reggeons. However, great

care is necessary to separate the perturbative behavior from the non-perturbative soft

physics.

Several hard partonic processes to measure the behavior of the BFKL Pomeron

[2-7] have been discussed in the literature. In Ref [7], A.H. Mueller and the author

proposed a process of high energy, fixed t parton-parton scattering through the ex-

change of a BFKL Pomeron. It is natural to extend this idea to the process whereby a

mesonic Reggeon is exchanged. It is the objective of this paper to set up the necessary

machinery to investigate the process of the mesonic Reggeon exchange and to study
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the possibilty of measuring such behavior. The scattering amplitudes are calculated,

while the normalization factor and the trajectory can be obtained explicitly.

In this paper, we study the quark anti-quark scattering amplitudes [Fig.1] with

flavor exchange in the t channel. In the kinematic region,

s '| u |� −t ' µ2 � Λ2, (1)

where the auxiliary parameter µ is the infrared cutoff of the transverse component of

the momenta (with respect to the initial momenta p1 and p2) of virtual particles in the

Feynman integrals where the terms ∼ α(µ2)[(α(µ2)/π) ln2(s/µ2)]n are summed, and

α(µ2) is the strong coupling constant at the scale µ2. This is the double logarithmic

(DL) approximation. The method of separating the softest virtual particle [8] allows

one to calculate the partial wave amplitudes in the double logarithmic approximation.

In Ref [9], R. Kirschner and L.N. Lipatov give equations for the partial wave of the

amplitudes for both the color singlet and the octet exchange in the t channel. The

octet exchange is suppressed, because it has a strong tendency to radiate gluons in

the rapidity interval defined by the colliding quark anti-quark. This phenomenon is

reflected by the negative intercept of the Regge trajectories of the octet exchange. In

what follows, we restrict ourselves to the consideration of the color singlet exchange.

Based on the partial wave results in Ref [9], we study in detail the scattering am-

plitudes for cases of both fixed (non-running) and running coupling constants, using

analytic methods as far as possible.
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The outline of the paper is as follows: In Sec. 2, we review the results of the

partial wave amplitudes for the color singlet exchange. Scattering amplitudes for the

fixed coupling case are presented in Sec. 3 for both positive and negative signature

cases. In Sec. 4, both approximate and numerical methods are employed to study the

effect of the inclusion of a running constant in the positive signature. Finally, Sec. 5

summarizes our conclusion.

2 Review of the partial wave amplitudes

We consider the amplitudes of annihilation (qq → QQ) with the exchange of a meson-

like state in the t channel. With respect to the color group SU(N), the amplitudes

can be decomposed into a singlet [M0(s)] and an octet [Mv(s)]. In double-logarithmic

approximation, the spinor structure of the Born term is preserved in higher order, so

we can write the amplitudes as b0M(s, t) where b0 = γ⊥µ ⊗γ⊥µ /s is the Born amplitude

but without the coupling constant g2. M0 and Mv are

M0 |Born=
N2 − 1

2N
g2 , Mv |Born= −

1

2N
g2, (2)

after using the color projectors P0 (singlet) and Pv (octet)

P a′b′

o ab =
1

N
δaa′δbb′ , P a′b′

v ab = δabδa′b′ −
1

N
δaa′δbb′ (3)

and the decomposition

Ma′b′
ab = P a′b′

0 ab M0 + P a′b′

v ab Mv (4)
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where a, b and a′, b′ label the color states of the initial and final quarks.

The asymptotics of the scattering amplitudes at large s and fixed t are determined

by the singularities of the partial wave fj(t) in the crossed channel. In order to express

the amplitude in terms of partial wave, we need to divide the amplitude M0,v into

parts that are symmetrical and anti-symmetrical with respect to the transformation

s↔ u ' −s :

M+(s) =
1

2
[M(s)+M(−s)]. (5)

In double-logarithmic approximation, the Sommerfeld-Watson transformation reduces

to the Mellin transformation, and the even (odd) part of the amplitude is related to

the positive (negative signature) partial wave

Mp(s/µ2) =
∫ a+i∞

a−i∞

dω

2πi
ξp(ω)fp(ω)(

s

µ2
)ω, (6)

with fp(ω) includes the factor (sinπω)−1 usually written explicity in the Sommerfeld-

Watson integral. The signature factor is given by

ξp(ω) = 1
2
(e−iπω + p) '


1 p = +1

−1
2
iπω p = −1

. (7)

Using the method of isolating the softest virtual particle with the lowest transverse

momentum k2
⊥ in the Feynman diagrams, R. Kirschner and L.N. Lipatov were able

to give equations for the partial wave amplitudes. The positive signature amplitudes
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are

f+
0 (ω) =

aog2

ω
+

1

8π2ω
(f+

0 (ω))2, and

f+
v (ω) =

avg2

ω
+

bvg2

8π2ω

d

dω
f+
v (ω) +

1

8π2ω
(f+
v (ω))2, (8)

while the negative signature amplitude is more complicated,

f−0 (ω) =
a0g2

ω
− (N2 − 1)g2

4π2Nω
f+
v (ω) +

1

8π2ω
(f−0 (ω))2 (9)

with

a0 =
N2 − 1

2N
, av = − 1

2N
, bv = N (10)

and boundary conditions

f+
i |ω→∞ =

aig2

ω
(i = 0, v). (11)

Here we list the partial wave amplitudes that are relevant to the color singlet

exchange. The first terms in the above equations are the contribution from the Born

terms which have pole singularity at ω = 0.

The equations of color singlet exchange are purely algebraic, so that the solutions

can be written in explicit form:

f+
0 (ω) = 4π2ω [ 1−

√
1− (ω

+

ω
)2 ]

f−0 (ω) = 4π2ω [ 1−
√

1− (ω
+

ω
)2(1− 1

2π2ω
f+
v ) ] (12)
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which shows that f+
0 (ω) has a square-root branch point at (Fig.2)

ω = ω+ = (
g2(N2 − 1)

4π2N
)1/2 = (

αs(N2 − 1)

πN
)1/2, (13)

while f−0 (ω) has singularity to the right of ω+ so that it becomes dominant when

energy is large. The equation for f+
v (ω) is of Riccatti type. It can be solved easily

and leads to the following result:

f+
v (ω) = Ng2 d

dω
ln[exp(

1

4
(
ω

ωv
)2)Dpv( ωωv )]

ω2
v =

g2

8π2
N, pv =

av
bv

= − 1

2N2
, (14)

where Dν(z) is the parabolic-cylinder function [11].

In deriving fi(ω), the coupling constant was taken to be fixed. But as the trans-

verse momentum k2
⊥ covers the large range from µ2 to s [9], contribution from the

running coupling is important and cannot be neglected. As demonstrated later, the

inclusion of the running coupling constant changes the singularity of the partial wave

amplitude from square root singularity to pole singularity.

Taking into account the effect of running coupling, the positive-signature singlet

channel partial wave amplitude F (ω, µ2) satisfies

µ2 ∂

∂µ2
F (ω, µ2)− ωF (ω, µ2) +

1

8π2
(F (ω, µ2))2 + a0g

2(µ2) = 0 (15)

with the boundary conditions

(
µ2

0

µ2
)ωF (ω, µ2) |µ2→∞ → 0
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F (ω, µ2) |ω→∞ → a0g2(µ2)

ω
. (16)

The solution to the above equation is given by

F (ω, µ2) = 8π2µ2 ∂

∂µ2
ln[Ψ(− a0

8π2bω
, 0;

ω

bg2(µ2)
)] (17)

where b = (11
3
N−2/3Nf )/16π2, the coefficient of the first term of β function. Ψ(a, c; z)

is a confluent hypergeometric function [10] defined by

Ψ(a, c, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)c−a−1dt. (18)

3 Fixed coupling

For the positive signature channel,

M+
0 (s) =

∫ a+i∞

a−i∞

dω

2πi
(
−s
t

)ωf+
0 (ω) (19)

where we have set µ2 = −t. Substituting f+
0 (ω) from eq. (12), we have

M+
0 (s) =

∫ a+i∞

a−i∞

dω

2πi
(
−s
t

)ω4π2ω [1−
√

1− (ω
+

ω
)2], (20)

where the contour of integration is shown in Fig.2. We take the branch cut from −ω+

to +ω+, so the contour of integration can be deformed to encircle the branch cut.

The positive signature amplitude becomes

M+
0 (s) =

∫ −ω+

ω+

dω

2πi
(
−s
t

)ω 4π2ω Dis [1−
√

1− (ω
+

ω
)2] . (21)

8



With Dis [1−
√

1− (ω
+

ω
)2] = 2i |ω

+ 2−ω2|1/2
ω

and modified Bessel function Iν defined

by

Iν(z) =
(z/2)ν

Γ(ν + 1/2)Γ(1/2)

∫ 1

−1
(1− t2)ν−1/2e+ztdt. (22)

M+
0 (s) is evaluated as

M+
0 (s) =

(2π)2ω+

y
I1(ω

+y) (23)

where y = ln(s/− t), the rapidity interval between the quark anti-quark pair. If y is

large, i.e. in the asymptotic region,

I1(ω
+y) ' eω

+y

√
2πω+y

and

M+
asy(s) =

(2π)3/2ω+ 2

(ω+y)3/2
eω

+y (24)

which shows the Regge limit behavior.

As mentioned before, the negative signature channel dominates asymptotically, so

an explicit solution is desired. However, because f+
v depends on the parabolic-cylinder

function, it is not possible to have a convenient solution. In view of that, we take

lim N →∞. The limit is not just an academic exercise but has its own significance,

because the relevant parameter in this problem is pv = −1/2N2 = −1/18 which can

be taken to be zero without introducing much error. With [11]

d

dz
(ez

2/4Dν(z)) = νez
2/4Dν−1(z),

9



f+
v (ω) can be rewritten as

f+
v (ω) = − 1

2N

g2

ωv

Dpv−1( ω
ωv

)

Dpv( ω
ωv

)
. (25)

In the limit, pv = −1/2N2 → 0 while

ω+ 2 =
αs(N2 − 1)

πN
→ αsN

π
= 2ω2

v . (26)

With the help of [11],

D0(z) = e−z
2/4, and

D−1(z) =

√
π

2
ez

2/4 Erfc( z√
2
), (27)

where Erfc(z) is the complementary error function. f+
v (ω) can be simplified as

f+
v (ω) = −2π2ω+

N2
e(ω

+

ω
)2

Erfc(ω
+

ω
). (28)

Define u = ω+

ω
, and drop the first term of the negative partial wave amplitude

in eq.( 12) as it has no singularity and hence contributes nothing to the amplitudes

after performing the Mellin transformation. f−0 (ω) then reduces to

f−0 (ω) = −(2π)2ω+

u

√
u[u3 − u− π1/2

N2
eu2Erfc(u)]. (29)

Expression (29) is corrected up to the order 1/N2 and clearly the correction term

comes from f+
v (ω). The zeros of the expression u3 − u − π1/2

N2 eu
2

Erfc(u) evaluated

numerically are found to be u+ = 1.0388 and u− = −0.4668. As u+ > 1, the square
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root singularity of the negative channel lies to the right of that of the positive signature

channel. But u+ − 1 = .0388 is not large. This indicates that both channels have

similar behavior phenomenologically. The expression u3 − u − π1/2

N2 e
u2

Erfc(u) can be

approximated by (u− u+)(u− u−)2 within the region u− ≤ u ≤ u+ which is chosen

to be the branch cut. With this approximation,

f−0 (ω) = −(2π)2ω+

u
(u− u−)

√
u(u− u+). (30)

Performing the Mellin tranformation by deforming the contour of integration to

enclose the branch cut from u = 0 to u = u+ (Fig. 3) leads to

M−0 (s) = π2(ω+)3
∫ u+

0
du (
−s
t

)ω
+u (u− u−) Dis

√
u(u− u+)

= 2iπ2(ω+)3
∫ u+

0
du (
−s
t

)ω
+u (u− u−) | u(u− u+) |1/2 . (31)

Change variable u′ to u − u+/2, and the integral can be expressed in terms of the

modified Bessel function Iν,

M−0 (s) = i
π3ω+ 2

y
eu+ω+y/2 [(

u+

2
− u− −

2

ω+y
)I1(u+ω

+y/2)

+
u+

2
I0(u+ω

+y/2)]. (32)

In the asymptotic region where y is large, the amplitude reduces to

M−asy(s) =
i
√

2

4
π(u+− u−) ω+ e(u+−1)ω+y M+

asy(s) (33)

with M+
asy(s) given by eq. (24). In the range of SSC energies where y ∼ 8 and
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ω+ ∼ 0.5,

√
2

4
π(u+ − u−) ω+ e(u+−1)ω+y ∼ 1, (34)

which suggests that the positive and negative signature amplitudes are of the same

order and cannot be distinguished in the interesting energies range. Actually, y needs

to be about 50 before the negative signature channel is appreciatively different from

the positive signature channel. The difference between
√

2ωv and ω+ in eq. (26)

enhances the negative signature channel a little bit. Effectively, it changes u+ − 1 =

0.0388 to 0.1, but its effect is still small at SSC energies.

The two amplitudes have a phase difference of ∼ π/2, because M+
asy(s) is purely

real while M−asy(s) is purely imaginary, and they have nearly the same magnitude.

Both give a non-linear quark anti-quark Regge trajectory ω(t) ∼
√
αs(−t).

4 Running Coupling

As we have already mentioned, there is reason to believe that the inclusion of running

coupling effects will greatly change the behavior of the amplitudes. In this section, we

would like to restrict ourselves to the study of the positive signature singlet channel.

It is plausible to suggest that the inclusion of the running coupling effect would not

change the similarity between the positive and negative signature amplitudes greatly

for the following reasons: the only difference between the positive and negative chan-
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nels stems from the contribution of the double logarithmic soft gluon; the soft gluon

contributes to the negative signature singlet channel but not the positive signature

singlet channel [9]. However, as seen in the previous section, the soft gluon does

not change the amplitude appreciatively. The inclusion of the running coupling will

decrease the importance of the soft gluon contribution as the coupling between quark

and gluon is smaller than in the fixed coupling case. Therefore, for practical purposes,

we can take positive and negative singlet amplitudes to be equal in magnitude but

with phase difference π/2.

In the following subsections, we will study the effect of the running coupling in

the positive signature channel using two different methods. In the first method, we

take lim b → 0, where b is the coefficient of the first term in the β function. In

this approximation, we will recover the previous f+
0 (ω) result with a correction term

which is liner in b. However, as we will show later, the correction term enhances

the amplitude by (ln y)3/2 relative to the f+
0 (ω) term, so that the correction term

dominates asymptotically and the approximation breaks down. The breakdown of

b expansion in the asymptotic region closely relates to the fact that the transverse

momentum in the loop integral extends to the order of s. It illustrates that in the

asymptotic region, the running coupling effect is not a small perturbation to the fixed

coupling, but rather, it changes the behavior of the amplitudes dramaically.

In the second method, we take the approximation λ = a0/(8π2bω)→∞. It gives
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a fairly accurate result with ∼ 10% error compared to the numerical calculation, even

though the value of λ lies between 1 and 2 when the running coupling constant is in

the interesting physical range.

Let us define

λ =
a0

8π2bω
, ν =

ω

g2(µ2)b
. (35)

Both λ and ν are positive if ω > 0. In the color singlet channel, the trajectories lie

to the right of the origin of the complex ω plane, because the higher order diagrams

enhance the amplitudes. This is in contrast to the case of the color octet exchange

which suppresses the amplitude. It is safe to assume that both λ and ν are positive.

As Ψ’s dependence on µ2 is through the running coupling constant g2(µ2), it is better

to write

∂

∂µ2
= µ2 ∂g

2

∂µ2
= ω

∂

∂ν
(36)

where µ2 ∂g2

∂µ2 = −bg4. In terms of λ and ν, the partial wave amplitude F (ω, µ2) is

F (ω, µ2) = 8π2ω
∂

∂ν
ln[Ψ(−λ, 0; ν)]. (37)

4.1 b expansion

In the limit b→ 0, λ, ν →∞ ; Ψ can be approximated by [10]

Ψ(−λ, 0; ν) = λλν1/4(ν − 4λ)−1/4

exp(−λ+
ν

2
− 1

2
ν1/2(ν − 4λ)1/2 + λ ln [ (ν1/2+(ν−4λ)1/2)2

4λ
]) (38)
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which leads to

∂

∂ν
ln[Ψ(−λ, 0; ν)] =

1

2
[1− (1− 4λ

ν
)1/2 − 2λ

ν(ν − 4λ)
]. (39)

The second term in the above expression turns out to be independent of b and with

the first term, it recovers f+
0 (ω). The third term, which is the correction term, is

found to be

2λ

ν(ν − 4λ)
=

2πbαsω+ 2

ω(ω2 − ω+ 2)
. (40)

It is linear in b and has a pole singularity at ω = ω+ in contrast to the square root

singuarity of the first term. Putting eqs. (37), (39), and (40) together, we get

F (ω) = f+
0 (ω) − (2π)3bαsω+ 2

ω2 − ω+ 2
. (41)

The negative sign of the correction terms indicates that the running coupling reduces

the overall amplitude. This behavior is also found in the Pomeron exchange [4]. The

contribution of the correction term to the positive signature amplitude is

∆M+
0 (s) = −(2π)3

2
bαsω

+ eω
+y (42)

which leads, in the asymptotic region, to

M+
run = M+

0 + ∆M+
0

= [1− (2π)1/2πbαsω
+y3/2]M+

asy (43)

15



where the correction term has y3/2 dependence relative to the first order term. The

approximation is valid only when

(2π)1/2πbαsω
+y3/2 � 1.

With ω+ ∼ 0.4, αs ∼ 0.20 and b = 0.053 (four flavors), the above inequality implies

y � 9.7 which is the boundary of the asymptotic region.

4.2 λ→∞ approximation

Before taking any approximation, let us study the nature of the singularity of the

partial wave amplitude F (ω, µ2), given by eq. (37). Both λ and ν are positive pro-

vided that ω, the Regge trajectory, is positive. Using the differential property of the

confluent hypergeometric function [10],

∂

∂ν
Ψ(a, c, ; ν) = −aΨ(a, c+ 1; ν) (44)

F (ω, µ2) becomes

F (ω, µ2) = 8π2ω
λΨ(1− λ, 1; ν)

Ψ(−λ, 0; ν)
(45)

Ψ(a, c; ν) is a many-valued function of ν, and we usually take its principal branch in

the plane cut along the negative real axis. Therefore, Ψ(a, c; ν) is analytic for ν > 0.

For ν > 0, the singularity of F (ω, µ2) must be the zeros of Ψ(−λ, 0; ν). Ψ(a, c; ν)

cannot have positive zeros if a > 0 or 1+a− c > 0 [10]. This implies that 1 < λ must
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be true for Ψ(−λ, 0; ν) to have positive zeros. From the definition of λ, λ ∼ 1/ω,

where ωmax corresponds to λ = 1, and Ψ has one zero. Actually, according to Ref [10],

the range 1 ≤ λ < 2, Ψ(−λ, 0; ν) has one zero. This can be seen by noting that [10]

Ψ(−n, c; ν) = n!(−1)nLc−1
n (ν) (46)

where Lµn(ν) is the generalized Laguerre polynomial [11]. Therefore

Ψ(−1, 0; ν) = (−1)L−1
1 (ν)

= ν (47)

as L−nn (ν) = (−ν)n/n!. The zero of Ψ(−1, 0; ν) is at ν = 0 which in turn gives

αs →∞ as ω = ωmax = a0/(8π2b) = 0.32 is fixed by λ = 1. For λ = 2, which means

ω = ωmax/2 = 0.16,

Ψ(−2, 0; ν) = −ν(2− ν) (48)

where L−1
2 (ν) = −ν(2 − ν)/2 is used. Both ν = 0 and ν = 2 are the zeros of

Ψ(−2, 0; ν), ν = 2 corresponding to αs = ωmax/(16πb) = 0.12. The ν = 0 solution

is the subleading trajectory and so we do not consider here. Hence, from λ = 1 to

λ = 2, αs ranges from 0.12 to∞ which covers a large range of the interesting physical

region.

From the above discussion, we see that interesting physics already lies inside the

range 1 ≤ λ ≤ 2. λ is of order 1, so it is not very large. Neverthless, let us take a
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large λ limit and compare the ω(αs) obtained with the exact results at αs =∞ and

αs = 0.12.

When λ→∞, Ψ(−λ, 0; ν) can be approximated as [10]

Ψ(−λ, 0; ν) ' 21/2λλ−1/4ν−1/4 eν/2−λ cos(λπ − 2(λν)1/2 − π

4
), (49)

which in turn gives

F (ω, µ2) = 8π2ω[− 1

4ν
+

1

2
+ (

λ

ν
)1/2 tan(λπ − 2(λν)1/2 − 1

4
)]. (50)

The first two terms can be dropped as they contribute nothing to the scattering

amplitude after performing the Mellin transformation. From Eq. (50), we see that

F (ω, µ2) has pole singularities at

λπ − 2(λν)1/2 − 1

4
π =

n

2
π, (51)

where the leading trajectory corresponds to n = 1,

ωrun(αs) =
ωmax

[ 3
4

+ 2
π
( ωmax

4πbαs
)1/2]

=
ω+

[ 4
π

+ 6π2b
a0
ω+]

. (52)

When αs = ∞, ωrun = 4ωmax/3 which is 33% larger than the exact value. For

α = ωmax/(16πb) = 0.12, ωrun = 0.99ωmax/2, which is only 1% off. The above analysis

indicates that the ωrun obtained from the large λ approximation is accurate in the

region where the running coupling is small. Equation (52) shows that the trajectory of
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the mesonic Reggeon is highly non-linear in αs, and one can see that ωrun(αs) is always

less than ω+(αs). The singularity of the partial wave amplitude in running coupling

moves to the left of that of fixed coupling. For αs = 0.20, a typical value, ωrun =

0.19 which is less than half of ω+ = 0.40. The smallness of the mesonic Reggeon

trajectory imposes a serious problem of observing the mesonic exchange in the parton

level experimentally, especially given that the mesonic exchange amplitude is already

suppressed by a factor of s relative to the Pomeron exchange which constitutes a

strong background.

The amplitude can be obtained by the Mellin transforming Eq. (50),

M+
run(s) = 64π3ω2

runb(
αs

2πa0
)1/2 eωruny. (53)

There is no justification for the correctness of the above expression in large λ ap-

proximation, although the trajectory does give fairly accurate results. Therefore, it is

natural to consider the numerical evaluation of the amplitude and to compare it with

the approximated result obtained in this section. To our surprise, the formula (53) is

accurate to within 10%, as will be shown in the next section.
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4.3 Numerical Calculation

Let us begin the numerical calculation by performing the Mellin transformation on

F (ω, µ2) using the expression (45). This leads to

M+
run =

∫ dω

2πi
(
−s
t

)ω 8π2ω
λΨ(1− λ, 1; ν)

Ψ(−λ, 0; ν)

= 8π2ω (
−s
t

)ω n(αs) |ω=ωR (54)

with

n(αs) =
g2b

1 + g2b
ωΨ(1−λ,1;ν)

dΨ(λ,0;ν)
d(−λ)

|ω=ωR

(55)

where ωR, the leading trajectory, is the root of Ψ(−λ, 0; ν). We are interested in the

range 1 ≤ λ ≤ 2. The roots ωR(αs) in this range are shown in Fig. 4. The large λ

approximation suggests that we use the following parameterization to fit the data in

Fig.4, where α and β are constants:

ωR(αs) =
ωmax

α+ βα−1/2
s

(56)

Numerical fitting gives

α = 1.14× 3

4
, and β = 0.90× 2

π
(
ωmax
4πb

)1/2 (57)

when we use the data from 1.5 ≤ λ ≤ 2 corresponding to 0.121 ≤ αs ≤ 0.382.

Compared with α = 3/4 and β = 2
π
(ωmax

4πb
)1/2 in large λ approximation, it once again

confirms that it is a good approximation for the trajectory ωR.
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For the normalization n(αs), the results for αs = 0.121 to 0.382 are shown in

Fig. 5. They can be summarized by the following formula:

n(αs) = 0.8958πbωR(
αs

2πa0
)1/2, (58)

where ωR(αs) is given by Eq. (56). Therefore,

M+
run(s) = 0.895× 64π3b ω2

R(
αs

2πa0

)1/2eωRy (59)

is our final result for the positive signature mesonic singlet exchange in the t channel.

The factor 0.895 indicates that the large λ approximation has a 10% error in the

normalization n(αs).

5 Conclusion

In this paper we analyze the scattering amplitudes of quarks and anti-quarks through

flavour exchange in the Regge limit. Both the normalization factors and the mesonic

Reggeon trajectory are obtained.

The negative and positive signatures of the fixed coupling constant case give nearly

the same energy behavior at the SSC energies. The Regge trajectories are porpor-

tional to
√
αs(−t) which are non-linear in strong coupling constant.

The inclusion of the effect of the running coupling constant reduces the magntiude

of the amplitudes dramatically. The failure of small b expansion indicates that the
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running coupling effect is not a small perturbation relative to the fixed coupling case.

The change of the nature of singularty, from a square root branch cut to a simple pole,

reflects the importance of the effect of the running coupling constant. Moreover, the

position of the singularity shifts to the left and is a lot smaller than that of the fixed

coupling case. Its smallness imposes a serious challange to observing experimentally

the mesonic exchange in the parton level.

Although in this paper we study just the positive signature in the running cou-

pling case, as explained in Sec. 4, we do expect that positive and negative signature

amplitudes have approximated normalization factors and trajectories. This enables

us to make an estimation on the possibility of observing mesonic exchange in the

parton level.
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Figure Captions

Fig. 1: Elastic quark anti-Quark annihilation.

Fig. 2: The square-root branch cut of f+
0 . C is the contour of the Mellin transfor-

mation which lies to the right of the singularities.

Fig. 3: The square-root branch cut of f−0 .

Fig. 4: Numerical solution (dot) of the Regge trajectory ωR as function of strong

coupling constant αs. The solid line is the numerical fitting given by eqs. (56,

57).

Fig. 5: Normalization factor n(αs) from αs = 0.121 to 0.382
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