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ABSTRACT 
Both self-acceleration and laser-acoustic acceleration in crystals are considered. 

The conduction electrons in the crystal are treated as a plasma and are the medium 
through which the acceleration takes place. Self-acceleration is the possible accel- 
eration of part of a bunch due to plasma oscillations driven by the leading part. 
Laser-acoustic acceleration uses a laser in quasi-resonance with an acoustic wave to 
pump up the plasma oscillation to accelerate a beam. Self-driven schemes though 
experimentally simple seem problematic. because single bunch densities must be 
large. 

INTRODUCTION 

For making dramatically higher gradients in future generations of high energy 
particle accelerators and for making low energy accelerators more accessible, it would 
be useful to have a solid state accelerator “*” capable of sustaining very high accelerat- 
ing gradients. The conduction electrons in the solid already make a convenient source 
of plasma, hence one can invoke all the concepts concerning plasma acceleration and 
focusing!’ Al so c anneling in crystalline solids, the confinement of positively charged h 
particles between planes of atoms (planar channeling), leads to transverse confine- 
ment of the beam and preservation of the beam size. These properties encourage the 
investigation of using crystalline solids as accelerators. 

Solid state accelerators were discussed previously by Chen and Noble”’ especially 
from the point of view of emittance preservation and possible external mechanisms 
for driving the plasma oscillation. They take as their model that the crystal is just a 
bag of plasma and it is the plasma interactions, appropriately modified by the crystal 
structure, that determine focusing and acceleration of a traversing charged particle 
beam. 

* Work supported by the Department of Energy, contract DE-AC03-76SF00515. 

Presented at the Advanced Accelerator Concepts Workshop, 
Port Jefferson, New York, June 14-20,1992 



One reason for the excitement over both plasma and solid state acceleration is 
that in the cold wave-breaking limit of the plasma-fluid equations, the largest electric 
fields that can occur are the order of fi V/cm when the plasma density no is given in 
particles per cm 3. So for a metal with conduction electron density around 1022/cm3, 
one might expect 100 GeV/cm accelerating gradient. Though practical concerns and 
instabilities will yield an actual gradient far below this limit. 

There are issues that arise about how the crystal structure modifies the physical 
properties of the free conduction band electrons in the solid when it performs plasma 
oscillations. One is whether the effective mass or the usual mass of the electron is 
relevant. For this paper, the plasma oscillations do not carry out such bulk motion 
that the lattice will modify the behavior of the electron significantly. So, currently it 
seems appropriate to use the free space rest mass of the electron for the remainder of 
this paper. 

In the following, the self-focusing and self-acceleration of a relativistic beam in a 
plasma are reviewed, the laser-acoustic accelerator is discussed, and issues concerning 
radiation in solids are briefly mentioned. Finally, some conclusions as to the best 

- possible approach for testing the ideas of solid-state acceleration are given. 

BEAM SELF-ACCELERATION 

As a bunched beam enters a plasma, whether the source of that plasma is a solid 
or not, it very quickly sets up plasma oscillations which in turn can act back on 
the beam. The principle of self-focusing- of a ‘relativistic beam in a plasma is one 

“I such consequence. For the discussion presented here, the plasma begins with an 
unperturbed plasma density of no. 

In Ref. 4 the focusing fields for a parabolic shaped bunch are calculated. Since 
this is done in the language of wake fields, it is quite straight forward to use the 
Panofsky-Wenzel theorem (or Greens theorem) to find the longitudinal fields. The 
bunch distribution that generates the wake fields is parabolic, 

1 _ K -t- bj2 
b2 , 

with Pb = 3N/(2 ra2b) where N is the bunch population. The longitudinal coordinate 
C is the usual co-moving coordinate z - ct; the head of the bunch is at (’ = 0 and the 
tail is at C = -2b. Using this distribution and the linearized cold fluid equations for 
a plasma perturbation, the cylindrically symmetric wake fields are 

eW1 = F [ll(kr)K2(ka) - &] x 

[( 1 _ cc + v2 
b2 

) -tj$sinkCt (2) 
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kb= 10 

- Figure 1. The longitudinal dependence of the longitudinal wake 
field for kb = 10. The middle of the bunch is at kc = -10. 

for the tranverse field on a test particle, and 

eWll = 161::pb [lo(kr)Kz(ka) t $(l - r”/a”) - &] x 

[ 
cos k(’ - (F) t &sink[] , (3) 

for the longitudinal field on a test particle. The wave number for the plasma oscillation 
has been used and is k2 = w 2 /c 2 = 47rnore, where re is the classical electron radius. 

For ease of notation and since we are usually considering either the longitudinal 
or the transverse dependence of the wake fields, the following notation is introduced: 
eWL = 16xe2pbF’~(r)G’~([)/k and eWll = 167re2pb.F’~l(r)GI,(C)/k2b. So, the F_L and 
the Pll are the expressions in the first set of [...I in (2) and (3), and the G’s are the 
terms in the second set of brackets with the left over coefficients. 

In Figure 1, Gil is plotted for kb = 10 and as a function of the dimensionless 
parameter kc. Notice the rising trend toward the bunch tail ((’ = -2b), this is the 
accelerating part of the wake field. From the definition of Gil, the maximum value it 
can attain at the tail for kb > 1 is about 2. 

To estimate the maximum gradient in the tail, the r dependence must also be 
considered. In Figure 2, the Fll and F_L are plotted for ka = 0.5. Notice that 
the Fll is relatively flat over the bunch cross-section, at least when ka < 1 which 
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- Figure 2. The radial dependence of the longitudinal and the 
radial wake fields for ka = 0.5. 

seems to be a desirable regime. Note also the linearly rising F_L which gives the 
linear focusing of a plasma lens. To estimate realistic gradients, the FII is treated 
as flat and approximately constant, and -it is. replaced with its value at the origin 
q,(O) M K2(ka) + l/2 - 2/(ka)2 . 

For the SLAC Final Focus Test Beam”’ (FFTB) the positron bunches are com- 
pletely determined except for the transverse size. The FFTB has the advantage of a 
very dense positron beam to excite the plasma oscillations for self-acceleration. This 
can always be blown up slightly from the values given in Table 1. Replacing Pb in (3) 
and gathering terms, the accelerating gradient can be put in the form 

eWl[ = 24N$mc2 (4) 

The coefficient of the [. . .] t erm is about 3.5 MeV/cm and tuning parameters to opti- 
mize the [. . .] term yields a total eW,l z 5.3 MeV/cm. The maximum occurs around 
kb = 6 and ka = l/1000; the calculated plasma density is 8 x 1014/cm3, corresponding 
to Si. The relationships for a cylindrically symmetric parabolic distribution were used 
to relate RMS values and total lengths: b = &a, and a = &rZ (assumes oZ = ay). 
Compare the above gradient of 5.3 MeV/cm to the naive estimate 6 V/cm, or 28 
MeV/cm. 

At 50 GeV the positrons might traverse 5-10 cm of Si from the point of view 
of channeling, hence the tail could optimistically gain approximately 50 MeV. Since 
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Table 1. SLAC Final Focus Test Beam round beam parameters. 

energy 50 GeV 

coupled emit tance 76 3 x 10s5 m 

P,* 3 cm 

bunch length ut 0.5 mm 

momentum spread Ap/p f0.3% 

bunch population 2 x 10’0 

the bunch spread of f150 MeV is not coherent while the energy gain is, there is a 
possibility of detecting the energy increase. However, the radiative energy loss has so 
far been ignored. 

- LASER-ACOUSTIC COUPLING 

Besides self-acceleration, it is natural to consider externally driven plasma os- 
cillations as a means for accelerating particles. One such scheme is to couple a 
side-injected laser to an acoustic mode in the plasma!] For the pure plasma case, 
a standing acoustic wave is set up in the plasma putting a density variation in both 
the ions and the plasma electrons. A polarized laser is shone on the plasma from the 
side, with its electric field polarized along the direction of the witness beam and the 
acoustic wave; see Fig. 3. The electric field of the laser drives a plasma oscillation 
in the electrons relative to the ions, which are nearly stationary. The time varying 
charge density gives rise to the electric field along the witness beam. 

There are mechanical differences between acoustic waves in solids and gases. In 
the solid, one naively expects the acoustic wave to be carried predominantly by the 
ions and couple very little to the conduction electrons. If this is indeed the case, then 
other techniques for setting up a standing wave in the conduction electron density 
might have to be investigated, like using a standing wave electric field along the beam 
direction. 

For appropriate parameters, there is an approximate resonance between the acous- 
tic wave and the shaking of the plasma electrons. This leads to growth and then 
saturation of the amplitude of the plasma oscillations. The dispersion relations and 
condition for quasi-resonance puts restrictions on the acoustic wave and the laser. 
That is, the laser is chosen with a frequency just above the plasma frequency, which 
is the cut-off frequency for propagation of the laser in the plasma. Thus, the wave- 
length of the laser in the crystal is quite long. To be more definitive, let the frequency 
of the laser be wg, and the wavevector outside the plasma be ko and inside be kb. 
The 4-momentum of the acoustic wave is (w,, PZ 0, k;), and of the plasma wave is 
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- Figure 3. Side-injected laser with electric field polarized in the 
direction of the witness beam propagation and the acoustic wave. 
Figure adapted from Ref. 6. 

-(up, kp). The quasi-resonance conditions are 

wo fwac =:w* , 
k; f k, M  k, . (5) 

For quasi-resonance then (5) must be satisfied, as well as the dispersion relation for the 

laser inside and outside the plasma, ckh = Jwwz-q, wo/ko = c, and the dispersion 

relation for the acoustic wave wac/kr = vus, where o, is the speed of sound in the 
medium. For a gas v9 cz 330m/s and for a crystal around 5000 m /s. 

For a laser that is just above the cut-off frequency of the plasma, the phase 
velocity for the plasma oscillation is 

wofwac wg 
“‘= ~kofk,~ “Ic, - (6) 

Eqn. (6) can be parameterized as vPh/c z X,/X0, where A, is the wavelength of the 
acoustic wave, and X0 is the wavelength of the laser in free space. From this, it is 
seen that the acoustic wave length must be just less than the free space wavelength 
of the laser. 



Solving the linearized cold fluid equations for the density perturbation to the 
electrons, Katsouleas et. al. in Ref. 6 calculate the accelerating electric field to be 
E* x 4renl/k,, where the electron plasma density is n = no + 6n sin k,z + nl(zc,t), 
and the velocity is v, = vg+q(cc,t) where vg = (-eEo/mwo)coswo = -vo,coswgt is 
due to the ponderomotive force of the laser. Using these parameters, the accelerating 
electric field can be written 

E* 
(7) 

The amplitude E = nr /no is found from the solution of the wave equation derived from 
the cold fluid equations, and 6n is the density fluctuation due to the acoustic wave. 
Ref. 6 gives several theoretical estimates on the saturation of the plasma oscillation 
growth due to: the wave breaking limit (an effect of the plasma thermal velocity), 

- the detuning from the difference in the laser frequency and the plasma frequency, and 
the relativistic shift of the plasma frequency. Their simulations show that c grows 
linearly with wpt and saturates with a value E N 0.10, in their cases. 

Consider for example the Brookhaven Accelerator Test Facility (ATF) RF gun”’ 
and accompanying CO2 laser. For this laser operating near the damage limit for ma- 
terial, 1Or3 W/cm2, and using the laser electric field found from Pl,,,, = E,2/(12007r) 
for SI units, the E Z 0.0016 assuming an acoustic wave with &z/n N 0.1. Since the 
laser frequency is approximately equal to the plasma frequency, the plasma density is 
about 10rg/cm3, corresponding to As. This gives an acceleration gradient according 
to Eqn. (7) of 5.0 MeV/ cm. At the upgraded ATF, the electron beam can be either 50 
or 10 MeV and would have an energy spread about 3~0.4%~ or f0.2 MeV and 3~0.04 
MeV respectively. To measure a net energy gain, it must be greater than the energy 
spread and the energy loss traversing the solid: at 5 MeV/cm this means effective 
acceleration over more than 0.4 mm or 80 pm, respectively. 

RADIATION LOSSES 

Relativistic charged particles passing through matter will radiate away some of 
their energy. For any acceleration scheme to be useful the particle must gain more 
energy than it radiates. For particles that are not trapped in between crystal planes, 
this is dominated by bremsstrahlung. For those particles that are confined between 
crystallographic planes, the radiation is synchrotron-like and is referred to as classical 
channeling radiation (for ultra-relativistic energies). 



BREMSSTRAHLUNG 

An estimate of the energy 
in the Particle Data Book.[s’ 
given by the radiation length, 

x(-J = 

loss of a positron due to bremsstrahlung can be found 
For ultrarelativistic positrons the energy loss scale is 

716.4 A 

Z(Z + 1) ln(287/&?) :s - 
(8) 

For Si this is 9.4 cm; a 50 GeV positron loses about 5.3 GeV/cm initially. The solid 
with the least energy loss is graphite with a radiation length of 18.8 cm giving losses 
of 2.7 GeV/cm. 

For the 50 MeV beam case considered above, it was estimated that the peak 
gradient from a laser-acoustic accelerator was 5 MeV/cm. For Si, the peak energy 
loss is about 5.3 MeV/cm, while for graphite it is about 2.7 MeV/cm. This being 
the case, to overcome the inherent energy spread takes twice the distance than when 
radiation was ignored, or the 50 MeV beam must be accelerated for a distance of 

- about 0.85 mm not 0.4 mm. 

However, at such low energies ionization effects become non-negligible. An esti- 
mate of the energy at which radiation loss from ionization and bremsstrahlung are 
comparable is EC = SOO/(Z + 1.2) MeV. For graphite this is about 110 MeV. So, the 
ionization effects may even dominate the problem of energy loss. 

CLASSICAL CHANNELING RADIATION OF POSITRONS 

A positron that impinges on a crystallographic direction with a slight enough 
angle, the critical or channeling angle, will be confined between planes or between 
strings of atoms. Here we consider the situation when the particle is confined between 
planes of atoms, so-called planar channeling!’ The planar channeling angle, or critical 
angle, below which channeling can occur is given byt’o’lll 

h=[ 
2rZe2nd I/%.XTF i 

; ] 7 (9) 

where n is the atomic density, dp is the distance between planes, and UTF is the 
Thomas-Fermi screening distance. See Table 2 for some estimated channeling angles. 

The transverse confining potential for planar channeling defines a quantum system 
with the number of states IlO1 

’ = nP d 0.3yZ2/3ndi , (10) 

for a positron of energy ymc2 and a crystal with planar separation dp and atomic 
density n. For an electron there are about l/3 as many states as for a positron. For 
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Table 2. Some properties of crystals. 

crystal ns(cm-3) XP = l/k & @ 50 GeV tip @ 50 MeV 

Ge 3 x 1013 0.97 mm 

Si 8 x lo’* 0.19 mm (110) 39 prad 0.92 mrad 

Bi 3 X 10” 9.7 pm 

Graphite 3 x 1Or8 3.1 pm 

Ni (110) 47 prad 1.5 mrad 

cu 8.5 x 1O22 18 nm 

Al 1.7 x 1O23 13 nm 

W (100) 49 prad 1.5 mrad 

the Si (110) plane, with 2 = 14, n = 0.050 atoms/A3, and dP = 1.92& the number of 
states is approximately rzp+ = 0.33fi. For a positron with 50 GeV in Si, nz = 100, 
and for 50 MeV there are about 3 states; for an electron with 50 GeV there are about 
33 states, and for 50 MeV there is one. For channeling a positron at high energy, the 
classical regime is relevant, while for energies around 50 MeV it is clearly a quantum 
problem. 

Kheifets and Knight”‘] calculate the classical channeling radiation for electrons 
and positrons. The radiation intensity averaged over several periods of the orbit is 
I = I&(xm), where 

IO = ~y2r;m2(zndp) . 

Fb is a universal function of the factor b = 2&qF/dp, where CZTF is the Thomas- 
Fermi screening of the atomic potential, and a function of the maximum excursion of 
the trajectory normalized so that xm = 1 is the edge of the channel, and xm = 0 is 
the channel center. The factors in (. . .) in Eqn. (11) are properties of the crystal only. 
Eqn. (11) is within a factor of 6 or so of what one would calculate assuming the Lenard 
radiation formula and a parabolic potential, instead of the much better approximation 
of the channeling potential due to Lindhard’13] that Kheifets and Knight use. 

In Table 3, the classical channeling radiation rate is estimated for 4 crystals. 
Notice the exceptionally high radiation loss rate, at least compared to the above 
estimate of the acceleration of around a few MeV/cm. However, the scaling with 
energy is such that at 50 MeV the radiation is negligible-though at this energy it is 
a quantum problem and is not calculated here though it is presumed small. 
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Table 3. Classical channeling radiation rates for a positron with 
50 GeV and with a trajectory that goes to 20% of the channel width. 

crystal plane 2 n (atoms/A3) dp (A) aTF (A) 1(0.2)/c (MeV/cm) 

Si (110) 14 0.050 1.92 0.194 210 

Al (110) 13 0.060 2.02 0.199 290 

Ni (110) 28 0.091 1.76 0.154 1740 

w (100) 74 0.055 1.65 0.112 2600 

CONCLUSIONS 

From the physics mentioned above, there are several ideas, or parameters for an 
experiment to test acceleration in a crystal that seem possible. Again there is much 
more work to do on each scenario that one can imagine and on the fundamental 
physics that might come into to play in any given example. 

For self-acceleration the beam densities required to create a high accelerating 
field seem restrictive. Though high energy positrons at the SLAC FFTB would prob- 
ably channel effectively, their self-acceleration is difficult to observe. Also, for the 
driven accelerator, the gradients are too small for the energy gain to be measureable 
compared to the inherent energy spread. However, more work is still needed. 

For lower energy beams, 50 MeV, the driven technique seems more realistic. Re- 
call the example of driving the plasma to give a 5 MeV/cm acceleration while the 
bremsstrahlung losses are about 2.6 MeV/cm. Ionization can be expected to increase 
and perhaps double this energy loss for a non-channeled particle. Notice also that 
tuning the plasma does not yield a bigger gradient than 5 MeV/cm because the quasi- 
resonance conditions and the form for the accelerating gradient taken together do not 
depend on the plasma parameters. However, this currently seems the best approach 
for studying acceleration in solids. 
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