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ABSTRACT 

The formation of color-singlet hadrons in hard-scattering processes is governed 

by process-independent distribution amplitudes. Such a.mplitudes may be mea- 

sured in a class of processes we call semi-exclusive, where one ha.dron is formed 

directly in hard scattering and the other QCD partons hadronize in jets. These 

processes can be identified experimentally by requiring a la.rge angular or rapid- 

ity gap around a directly produced meson. We present, cross-sections for such 

processes, and show that experimental results, especially t,he ratio of charged to 

neutral I{ production, are highly sensitive to the hadronic clist,ribution amplitude. 

We discuss methods and prospects for thus gaining informa,tion a.bout hadronic 

wavefunctions at present and future colliders. 

.- .-- . 
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1. INTRODUCTION 

The analysis of exclusive hadronic processes in Quantum Chromodynamics 

(QCD) depends on knowledge of the underlying distribution amplitudes [l] which 

relate hadronic amplitudes to perturbatively calcula,ble QCD processes. While 

some progress has been made in the theoretical extraction of these non-perturbative 

quantities from QCD sum rules [a], q uantitative experimenta, tests of the resulting 

models are difficult to construct. 

In this paper we propose a new method by which t,he distribution amplitudes 

may be measured in some detail: analysis of “semi-exclusive” processes in which a 

single-hadron state recoils against an inclusive state. We show how these processes 

can be used to shed light on the meson distribution amplitudes; future colliders, 

such as a high-luminosity B-factory, will be able to precisely examine the leading- 

twist portion of t,he distribution amplitude. 

This paper is organized as follows. Section 2 introduces distribution amplitudes 

and the conventions we will use. Section 3 is devoted to the computa,tion of one such 

process 7 e+ e- + K-X, where the isolated Ir’- is produced directly ra.ther than 

in the hadronization process. Section 4 extends the result of Section 3 to other 

similar processes and proposes predictions which are insensitive to soft physics. 

- Section 5 derives results for semi-exclusive production of heavy Qy mesons in 2’ 

decays. Finally, Sec. 6 summarizes our work and presents conclusions. 
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2. DISTRIBUTION AMPLITUDES 

In exclusive hadronic processes where a “hard” scale Q >> AQ~D can be iden- 

tified, the overall amplitude can be factorized as [l] 

M hadronic = 
J 

[d+b]#$(y; &)Thard(J:, Y; QMi(~i Qb 

where 

$f, 4; are non-perturbative distribution an~plitucles for the final- 

and initial-state hadrons; 

Thard is a hard scattering amplitude at the part,on level, calculable 

.-in perturbative QCD (pQCD); 

-1, ‘Q is th e ac orization scale, such that soft subprocesses with mo- f t 

mentum scale < Q are absorbed into the distribution ampli- 

tudes, while processes with momenta, > Q a.re considered as 

COrreCtiOnS t0 Thard; and 

2, y are the 1 ongitudinal momentum fractions ca,rriecl by parton 

constituents, collinear up to scale Q, within the ha,drons. 

(1) 

Here the distribution amplitude $f(~; Q) is the probability amplitude for par- 

- tons collinear up to scale Q and carrying momenta :r;l) t,o combine into a hadron 

of momentum p. This is the fundamental physical quant,ity which determines the 

QCD structure and coherence properties of the hadron. Due to QCD evolution, 

it i: mildly dependent on Q [l]; we shall generally ignore this dependence. Since 

we are concerned here with hadronic events in eSe- annihilation, we may take 

Q = E,, for simplicity. 
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Since the hard-scattering amplitude TH is slowly varying over momentum 

ranges k - p, where p is a typical transverse momentum within the hadron, the 

contribution to the amplitude from formation of the meson in a state with nonzero 

angular momentum will be suppressed by powers of p2/Q2, as will contributions 

with additional partons (gluons or qq pairs) in the hadron. In this work, we will 

neglect such terms; thus we are concerned only with the L, = 0 state of smallest 

particle number, the valence Fock state of the hadron. 

When dealing with mesons, we will always use CC = SQ to denote the momentum 

fraction ca.rried by the heavier quark constituent, and .% G 1 - .r for the light-quark 

momentum fraction. Since the wavefunction favors equal parton velocities, we 

expect (x) z.-(Z). 

~‘;Fjnally, note that the wavefunction of a pseudoscalar QQ meson contains a 

helicity factor (Qrql - QJ@)/&; we will absorb the l/ fi into the average over 

spins. (In contrast to exclusive processes, in which we must sum over the internal 

parton spins within the amplitude, semi-exclusive processes require that we treat 

the spins of the outgoing color-triplet partons as observables; we neglect quark 

masses, so that this determines the internal parton helicities as well.) 

3. SEMI-EXCLUSIVE PRODUCTION 

The distribution amplitude is a universal, process-independent property of the 

hadron; as such, it can be inserted into any parton-level calculation to extract the 

amplitude for a process involving both hadrons and partons[3]. In this paper, we 

propose to examine processes in which some, but not all, of the fina.l-state partons 

combine into observed hadrons in the hard scattering: for t,his reason, we call such 
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processes semi-exclusive, and refer to the creation of hadrons in hard scattering 

as direct QCD production [4]. Th e remaining quarks will hadronize outside the 

hard subprocess; we do not attempt to analyze this. Instead, we distinguish direct 

semi-exclusive production from inclusive production by specifying the kinematic 

features of the directly produced hadron. We now turn to the problem at hand: 

designing tests to probe the distribution amplitude in semi-exclusive processes of 

the form e+e- --+ HX for a hadron H. For definiteness, in this section we will 

take H = I(-. 

K- 

klJ I \ 5( k2 

(b) 

K- 

0 
e e+ 

-+ 
jet 

jet 

s U 

12-92 
7321Al 

Figure 1. (a) A Feynman diagram contributing to the semi-exclusive process 
e+e- --+ K-X; the 0th er d iagrams are obtained from different atta,chments of 
the photon line. The remaining u and S quarks will ha.dronize nonperturba- 
tively; at this level, we neglect final-state interactions a.nd resonance physics. 
(b) The observed kinematics of a semi-exclusive event. Note that the plane 
containing the K and jets need not contain the incoming beams. 

A representative Feynman diagram contributing to the direct production in 

wl$$ we are interested are shown in Fig. l(a). S ucl a,mplitudes are of higher 1 

twist than the inclusive 4-jet process; hence the resulting cross-sections will be 

suppressed by a factor fi-/ s where f~c is the kaon decay constant. To distinguish 
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such a weak signal, it will be necessary to restrict ourselves to extreme kinematic 

regions where backgrounds are supressed. Thus the experimental signature of the 

events will be an extremely isolated meson recoiling against jets; since the meson 

is a color singlet, it will not be affected by the jet ha,dronization process. 

The amplitudes take their simplest form in the center-of-momentum frame if 

we define the K momentum fraction (see Fig. l(b)) 

the quark and antiquark back-momenta (light-cone moment’s in the frame antipar- 

allel to $K) 

with yr + y2 = 1; 6 and c$, where 0 is the e-- to-K polar angle and d, is the angle 

between the K-q-q plane and the plane containing the beam and K [5]; and 

s E sin(0/2), c E cos(0/2). In these terms, 

da = 
1 

1024~~ 
zzdz dy, dco&d$ ; c I,%,]“; 

spms 

the amplitude M for a process with three final-state pa,rticles has dimensions 

of rnassrl 

.- .-- . 
We let qs and qu denote the fractional QED charges of the s and u quark 

respectively, and define z = 1 - Z. If the outgoing s qua.rk has the same helicity 
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as the electron, the hard-scattering amplitude then becomes 

TH 
(+I = CFP e29,2 yazqu - 

Q2 [ 
ylxqs (se+ - EC) (c _ Ese--i4j 

ZXQYiE 

+ iE.semi4q,(c - Es) 

- i!$$qs(.se+ - E&)1, 

(1) 

where the color factor CF = 4/3. The amplitude ‘7$’ for opposite s and e- 

helicities is obtained by the substitution se-‘4 -+ c, c + --.pe’@. Defining 

’ bdx> dx 
1 

AK(z) G 
J ’ ./ 

h+) dxe 
2(1 -.2x) x(1 - 5) ’ 

0 0 

BI; E AK(O)= 
J 

bdx) dx - 
z 2 and Br; E AI,-(~), 

we can rearrange Eq. 1 to obtain 

+ &.s2ewai4 ( (2) 



In the exclusive limit (z + l), the sin2 8 angular dependence of the cross- 

section required by hadron helicity conservation is confirmed [6,7]. Note that the 

naive expectation that the cross-section vanishes for qu t qs (zero ha,dron charge) 

is violated even when A(z) = A( z and y1 = ~2; the hard photon probes the ) 

partonic rather than the overall hadronic structure. From Eq. 2, one can see 

that the interference term is $-dependent, leaving a cross-section proportional to 

.z,z~(A~ + A2); thus, in the exclusive limit, the cancellation again becomes complete. 

Squaring M and averaging over spins yields a complicated expression which 

we choose not to present here. Instead, we integrate out the angulas dependence, 

eliminating many cross terms in the squared amplitude. Aft,er considerable simpli- 

fication, this .leaves 

d 
u 

= 167r CY~CY; 
27Q4 

zdz dyl 

(3) 
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4. OBSERVABLE RESULTS 

The form of Eq. 3 is clearly independent of the specific meson under consid- 

eration; the generalization to other light pseudoscalas mesons is immediate. We 

now propose several quantities whose measurement will yield insight into mesonic 

wavefunctions. 

Ideally, one could attempt to reconstruct y1 and y2 from mea,sured jet momenta. 

However, in addition to the intrinsic difficulty of tagging the primary quark flavor 

[8], one would then also be confronted with the sme:aring of the momenta l;i in 

hadronization. Thus we adopt the more practicable strategy of selecting an exper- 

im$+l cut and integrating over the values of y1 which allows it to be satisfied. 

The simplest such condition is that the meson should carry a momentum frac- 

tion 2 > l/2 and be isolated in its own momentum hemisphere in the center-of- 

momentum frame (that is, in the c.m. frame $‘A- . c < 0 for a,ny other final-state 

particle momentum z). Such a drastic cut will be necessary to identify the weak 

signal against prevalent backgrounds [9]. Th is cut is frame-dependent, as is Z; 

we choose it for its relative ease of implementation and the striking signature it 

presents. The cut is equivalent to the parton-level constra.int 

1-Z 
min{y1, ya} > c. z 

Integrating over the values of y satisfying this constra,int, we obta.in (for TIC- real) 
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+ +h-(+A- + A&)&)quqs)]). 

We find it advisable to restrict ourselves to values of 2 where the invariant 

mass &Q 0; the h a d ronizing Su system is large enough t,hat resonance physics 

mai be’neglected. We place the dividing line at &Q = 2 GeV; at Q = 10 GeV, 

for example, this corresponds to z < Z,.t = 0.96. Due to the overall factor of z in 

Eq. 3, little data will be lost to such a cut. 

To proceed further, we must consider models of the valence-state 

amplitude $~(z). A n y such function can be expanded on the basis of 

polynomials orthogonal over the measure with weight ~2: 

&&) = (f&i)“” [l + a&(1 -2X) + a22/14(1 - 522) 

+ a&@(1 - 2X)(1 - 7.2’2) + . . . . 1 

distribution 

Gegenbauer 

(5) 

The kaon decay constant f~ is measured in semileptonic decays to be about 

170 MeV; we will use this value in our numerical predictions. 
-*- .-- 

One model distribution amplitude, based on analysis of QCD sum rules, has 

been proposed by Zhitnitskii et al. (ZZC) [lo]; for 41<, t,hey give al = -0.24, 
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Figure 2. Three models of the distribution amplitude $1<(z). The double- 
humped structure of the ZZC wavefunction [lo] is a striking result of the 
sum-rule calculation. Note that the exact shape of the sum-rule wavefunction 
is‘determined not only by the calculated moments but 13~ the projection onto 
the’first four Gegenbauer polynomials. 

- QCD sum rules - -Toy model - - - Symmetric 
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Figure 3. -The transforms AK(Z) and AA-(~) of the distribution amplitudes 
in Fig. 2. When A >> A, as in the toy model, contributions from Feynman 
diagrams where the photon attaches to the light quark a.re suppressed. 
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a:! = 0.64, and a 3 = -0.13. We test the sensitivity of our conclusions to the wave- 

function by also using the toy wavefunction q%~(x) = 2&f*cz2z (corresponding to 

al = -l/a, all others zero), and the symmetric distribution $K(K) = &f~zZ 

with all a; = 0. These functions are plotted in Fig. 2; the resulting transforms 

AK(~) and Ah’(z) are shown in Fig. 3. 

4.1 RATIO OF CHARGED AND NEUTRAL I< PRODUCTION. 

Isospin symmetry, which [lo] asserts is valid to within 5 1% in mesonic wave- 

functions, dictates that $K-(x) = $~‘o(x); thus the simple substitution qu -+ qd 

gives the cross-section to form a hard isolated Ii”. Charge conjugation symmetry 

gives the rates for Ii’+ and 17’ formation. While resonance effects and final-state 

interactions may alter the cross-section, the ratio of charged to neutral production 

is a safe prediction of pQCD since the Su and .?d systems (for example) have the 

same resonance properties. 

Table I. Cross sections for semi-exclusive production of K and n- mesons at 
CESR or B-factory energies, as described in Sec. 4. The ratio RI<- jp is very 
insensi tive to soft physics. 

I I Distribution amplitude I 

meson ZZC [8,9] toy symmetric 

Ii’- 3.0 fb 1.1 fb 1.5 fb 

Ii0 0.7 fb 0.35 fb 0.25 fb 

7r+ 5.4fb - 1.5 fb 

7ro 2.6fb - 0.8 fb 
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Table 1 shows the production cross-sections for each light meson at Q = 

10.58 GeV, the mass of the TJ~. Note that the ratio 

RK-,hw s 
a(e+e- + K-X’) 
a(e+e- + KOX) 

is very sensitive to the choice of distribution amplitude. We obtain RI~~--/~;~ = 4.1 

for the ZZC sum-rule distribution, 3.3 for our toy model, and 6.5 for the asymptotic 

limit. 

I 
-Y 
2% 

---cL- 
F- --------I- ---- ----- -I-- --- 

7 
. -- 5 

I- K /* -I 
3 103 = /’ 

-0 "O I 1 ,f 1 I I I I I 7 
0 0.2 0.4 0.6 0.8 1.0 

12-92 Z 7321A4 

Figure 4. The differential cross-section for semi-exclusive K production at Q 
near 10 GeV, from Eq. 4; here the y-dependence has been integra.ted out. 

Note that the discussion above is predicated on a sca,rcity of experimental 

statistics. Operation of a B-factory would obviate this concern; it would then be 

possible to measure da/dz over a range of z and Q’ and, using Eq. 4, to verify the 

sealing properties and extract the distribution amplitude direct,ly! Figure 4 shows 
.-- .-- 

the behavior of da/dz for each of the distribution amplitudes under consideration. 

This promises to be a stringent test of any proposed dr;(.r). 
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For comparison, the inclusive cross-section for Ir’- production at 4 = 10.58 GeV 

is predicted by the LUND Monte Carlo as da/dz = 50( 1-z) pb for z near 1; thus 

we would expect - lo4 inclusive events at a given z for ea,ch semi-exclusive event. 

4.2 SEMI-EXCLUSIVE PION PRODUCTION. 

The pion distribution amplitude &(x) is symmetric under z t+ 2; thus uzn+l = 0 

in its polynomial expansion and we simply write 

444 = (fTf&)(sZ)(l + a&-q1 - v5;rF) + . . .). 

where the pion decay constant fX = 133 MeV is measured in 7r+ decay. The 7r” 

distribution amplitude is identical; we need not consider interference between the 

dd an-d uu states of the 7r”, as our neglect of resona.nce effects is ta,ntamount to 

treating the flavors of the hadronizing quarks a.s observables. 

The result of QCD sum rule analysis [ll] is a2 = 1.07 for the TT. This distri- 

bution amplitude and its transform are shown in Fig. 5; not’e that A,(z) G AK(z). 

Cross-sections for semi-exclusive K production are also given in Table 1. 

To date, CLEO at CESR has over 1 fb-l of integra.ted luminosity; thus some 

events of this type have probably already been recorded. This is especially true 

- if the QCD sum-rule analysis, which predicts comparatively large cross-sections, 

is valid. 
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Figure 5.(a) The distribution amplitude of [ll] from QCD sum rules; and the 
asymptotic limit of q&(x; Q2) as q2 + 00, the symmetric distribution [l]. (b) 
The resulting transforms A,(z) = AT(z). B ecause $(x) is more concentrated 
near the endpoints, A,(z) is much la.rger for the sum-rule distribution than 
for the asymptotic. 

1 

4.3 PRODUCTION AT LOWER ENERGIES. 

At smaller Q2, for example Q N 4 GeV at a T-charm factory, the assumption 

_ that the light mesons are massless begins to break down. Nonetheless, we present 

predictions for this case as well. 

At this energy, the semi-exclusive production cross-section is concentrated in 

the region fiQ = 1 - 2 GeV, where resonance effects may not be negligible. How- 
-- .- 

ever, the scaling behavior in Q of da/dz can be test,ed; if it shows the expected 

power-law behavior, our faith in the assumption of duality will be justified. [12] 
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Table 2. Semi-exclusive cross sections for Ii’ and x production at Q = 4 GeV. 
The normalizations are somewhat unreliable, as we cannot entirely avoid the 
resonance region; however, the ratio R,y-,,q -0 is again a, valid prediction of the 
perturbative calculation. 

I I Distribution amplitude 

meson ZZC[8,9] toy symmetric 

K- 370 fb 130 fb 180 fb 

IP 110 fb 50 fb 35 fb 

7r+ 700 fh - 180 f-h 

79 410fb ~ 90 k 

Table 2 shows our results for semi-exclusive light meson production cross sec- 

tions at Q = 4 GeV, with the cutoff &Q > 1 GeV. As before, the ratio R~i~-,~i~~, 

whi& ‘Is nearly independent of resonance physics, is a sensitive test of the K dis- 

tribution amplitude; at this energy, RIi--/~co = 3.3 for the ZZC model, 2.6 for our 

toy model, and 5.2 for the asymptotic distribution. 

4.4 SEMI-EXCLUSIVE D PRODUCTION. 

Finally, we consider D meson production at r energies. Here the neglect of 

quark masses is open to question, but provides a rea,sona.ble first approximation; 

the errors so introduced will be on the order of mz/Q2 N 5%). 

The D distribution amplitude is strongly peaked at s << 1, so that 

&+.l< AD(Z); th us the ratio of charged to neutral production is no longer a 

sensitive test. Instead, we hope to measure the absolute cross-section, which we 

will show is a measure of the extent to which the wavefunction is concentrated near 
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Figure 6. Th e semi-exclusive cross-section g,,(e+e- t DX) at B-factory 
energies. Here we have used the toy wavefunction, Eq. 5. The points marked 
correspond to the prediction of [lo] for (2); [lo] d oes not itself advance a model 
wavefunction. 

J: = 1. For definiteness, we use the toy wavefunction 

we expect [lo] that fD 21 f~; in this work we will simply assume .fs = fD = frc. 

To avoid resonance effects, which will decrease the reliability of our normaliza- 

tion, we restrict ourselves to the region where &Q > 4 GeV, so that Z,,t = 0.86. 

- The predicted cross-sections for II+ and Do production a.s a, function of 

20 = (x - 5) = 2 (x) - 1 are shown in Fig. 6. These preclict’ions do not include 

corrections from the charm quark mass; a careful trea,tment of such terms will be 

given.elsewhere [9]. The first-order results are encoura.ging; if .fD can be measured k 

independently, then (CC,-) can be measured to within 5% at a B factory. 
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5. AT THE 2’ PEAK 

The same methods can be used to calculate the semi-exclusive decay rate 

I’Sx(Zo + HX). Due to the much higher energy, the signal for this type of higher- 

twist process will be weaker; thus we must find a less stringent cut than the con- 

dition of isolation in a hemisphere. 

Bjorken et al. [13-151 h ave shown that the ‘rapidity ga.p’ is a natural and ef- 

fective tool for identification of subprocesses producing color singlet’s. Tha,t is, we 

require that the I< be isolated in rapidity (or pseudora.pidity) with respect to its 

own jet axis by some gap AY. In [13], ‘t 1 is estimated tha.t the process of hadroniza- 

tion smears Y by about 0.7 in each jet; thus we use AE’? G AY,, + 0.7 a.t the parton 

level, virhere AY,, is the experimentally observed rapidity ga,p after fragmentation. 

For a meson of mass M, the equivalent parton-level condition is 

min{yl,~2} > - 
z 

2 + (z2 

The quantity i In [ can be considered as the “rapidity cushion” by which the meson 

rapidity can exceed the rapidity gap. 

Again, we integrate over all y1 satisfying this condition. For simplicity, we use 

the notation of [14], where 

contains both the left- and right-handed weak charge. We then obtain 
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Figure 7. The distribution amplitudes $~(z; Q  = mz). We have used the 
evolution equation for the pion distribution amplitude [I]. 

(fork(xj real) 

%(au) = g2$2$2 x 
z z 

$) [(Z&(Z) + BK)~Q; + (zAr;(=) - BI<)~Q:] 

(6) 

At these energies, we cannot neglect the running of t,he distribution ampli- 

tude [l]; since the Gegenbauer polynomials of Eq. 5 are t’he eigenfunctions of the 
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evolution equation, we can easily evolve them to Q = mz. The result is shown 

in Fig. 7; note the extent to which the sum-rule distribution comes to resemble 

the asymtotic limit. The Q-d p d e en ence of the distribution a.mplitude reduces the 

cross-sections by 38% in the ZZC model, but by only 5% in the toy model we have 

used for comparison. Thus it is possible in principle (if not in practice) to observe 

directly the running of the distribution amplitude. 

2 
103 

L .C 

g lo2 
3 
5 
a 10' 
“N 

0 0.2 0.4 0.6 0.8 1.0 

12-92 lx0 - Xq) 7321 A6 

Figure 8. Partial widths per channel dI’,,(Z’ -+ ALX) for mesons A4 = 
K, D, B using the toy distribution amplitude, Eq. 5. The points marked on 
the curves for D and B mesons correspond to the values of (.r) derived in [lo]. 
We also show points for each $li(z) under consideration. 

Unfortunately, the branching ratios for such events a.re less than 10m6 for all 

flavors; the loss of phase space satisfying the ra,pidity-ga.p condition offsets the 

increase in A(z) as we move to heavier mesons. The partial widths for K, D and 
.- .-- . 

B production as a function of the parameter zo in Eq. 6 a,re shown in Fig. 8, 

along with the predictions from the wavefunction of [lo] and our toy model. For B 
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mesons, the rapidity-gap condition is in fact far more severe than that of hemisphere 

isolation; thus we choose to show the results for hemisphere isolation for I’sX(Zo --+ 

BX). 

One prediction we obtain is that -(d/(dAY)) In I’,,(AY) = 2.1 for K events, 

2.6 for D and 3.6 for B (e.g., d ecreasing AY by 1 increases the number of semi- 

exclusive K events by a factor e2.1 N 8) [15]. This might be used at smaller 

rapidity gaps to detect the onset of the harder semi-exclusive processes within the 

soft background due to statistical fluctuation. 

6. CONCLUSIONS 

rSO.be confident that we are calculating a meaningful quantity, we must consider 

the possibility that our results are unduly sensitive to the endpoint behavior of 

$1<(z), especially at large z. However, the behavior 41<(x) ix ZJ: is sufficient 

to ensure that &Ah’(z) -+ 0 as .z + 1, which means tha.t large-; divergences 

do not appear and the endpoints in z are not overly important. In addition, 

Sudakov suppression [16] ensures that endpoint cont,ribut,ions will not dominate 

the cross-section. 

Some experimental issues will complicate the mea.surement: chief among these 

are r/K discrimination at high momentum and the blurring of angles induced by 

the hadronization process. Neither of these seems insurmount,a,ble; it is our hope 

that future detectors will have the necessary meson identifica,tion ability. 

-- .-- . 
The cross-sections at & N 10 GeV are on the order of l-10 fb; thus mea- 

surements of gsX are barely feasible with current machines, but precise extraction 
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of da,,/dz should be possible with future high-luminosity colliders. With this 

information one can measure moments of meson distribution amplitudes; these 

parameters of QCD can then be compared to theoretical ca,lculations. 

On the other hand, rsX in 2 decays is extremely small under even the most 

favorable assumptions. Thus the discovery of more tha,n a handful of such events in 

the current LEP data sample, if they were not simply due to statistica,l fluctuations, 

would require reconsideration of our results. 

In sum, we have demonstrated that semi-exclusive production is a, powerful 

probe of meson distribution amplitudes in the valence Fock sta,te. Its advantage 

over traditional analysis through exclusive processes arises from two considera- 

tions. First, only a single hadron is formed in the ha.rd QCD event: thus the 

to.tal &s-section for semi-exclusive meson production scales as QV4, a.s opposed 

to the Qm6 scaling of exclusive meson pair production. Second, t,he observable z in 

the final state is directly related to the distribution a.mplit~ucle; instea.d of a single 

measurement such as a form factor, we can measure a, differential cross-section and 

analyze the shape of the distribution amplitude in det,ail. Thus we believe that 

these processes represent a fruitful field for experimental investigation. 
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