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ABSTRACT

The average beam powers and beam size anticipated for next
generation linear colliders makes them awesome tools of destruction. Systems
for machine protection will be crucial. A scheme for linac structure protection
by sacrificial collimators is presented in Section 3.

No matter what precautionary measures are taken, the tails of the
beam will be populated by hard coulomb collisions along the linac. To
remove these halos before reaching the final focus sytem optics, where
particle showers can blind the detector, it will be necessary to collimate
these beams. Section 5 discusses the equations governing the parameters of a
conventional collimation system. Wakefields determine gap sizes and lattice
functions. Materials properties dictate mimimum beam sizes at collimators
so they can withstand occasionally mis-steered beams. Spoiler scattering and
edge scattering effects mandate that the final doublet phase be collimated
twice, and depending on the results of further tracking studies, it may be
necessary to collimate each phase two times. Section 6 describes a nonlinear
collimation system that can collimate beams to smaller apertures than the
conventional system. The tolerances for such systems resemble final focus
tolerances. Section 7 addresses the problem of repopulation of the tails after
the collimation system.

The main conclusions are that it appears possible to collimate the
beams for these machines with conventional passively protected collimation
systems. However the length of present designs, which collimate energy and
both transverse planes and meet the requirements of complete tail scraping,
exceed one kilometer per linac. A collimation system may also be desirable
at the low energy end of the linac to minimize collimation of high energy
particles.

1. Horrors

The beamn powers being considered have enormous destructive
capability. Several experiments (as well as accidents) at the SLC have
demonstrated this, and confirmed methods for estimating and quantifying
consequences. The entry-point temperature rise for beams from all of the
present design parameters for a single pulse train or until turn-off, whichever
is smaller, is shown in the Table on page 7.I1.3 (these page numbers refer
to numbers occurring on the accompanying transparancies—7.11. refers to
Working Group 7, Part I1.) A single mis-steered pulse train from any of these
machines can destroy a substantial length of linac accelerating structure.

2. Properties of materials

We propose use of various materials in protection and collimation
systems:



¢ Tungsten for sacrificial spoilers in the linac and clean-up collimators in
the collimation system, because of short length per radiation length;

e Carbon (plated) for spoilers in the collimation system, because of their
low entry-temperature and thermal ruggedness;

o Copper for the main absorbers in the collimation system, because of
their good thermal conductivity.

The graph on page 7.I11.2 shows temperature rise in carbon and titanitum as
a function of radiation length for a 10! particle pulse with a o0, product
of 2000 square microns.

8. Linac protection

The most likely failure scenarios involve elements, like feedback
correctors, that are designed to change on a pulse-to-pulse basis. The
worst-case scenario addressed here consists of:

e The between-pulse short of two legs of a single quadrupole,
¢ No immediate response by the magnet monitoring system, and

o No detection of beam trajectory change from downstream BPMs.

We assume machine turn-off in one pulse based on a signal from machine
protection ionization monitors.

The linac may be protected from this failure mode by “sacrificial
spoilers” at each quadrupole. Proposed spoilers are made of tungsten; have
an aperture about one quarter of the quadrupole tip radius; are 5 cm long,
and have an entrance and exit taper (to reduce wakefields) of about 5 cm
each. The effect of the wakefields on beam emittance has been calculated
and is negligible. Condition determining length is that temperature rise of
downstream copper from residual photon beam should be less than 200°C.
The spoiler will burst in one pulse, with resulting release of tungsten vapor.
The impact on conventional and superconducting structures needs to be
assessed.

4. Collimation requirements

On page 7.11.6 there is a diagram of a typical final focus doublet
showing 10 o trajectories in both horizontal and vertical plane. This
particular doublet design allows for a ¢, two times smaller than that for
o), = o). Flexibility in o, is desirable because of strong dependence of
beam-beam dynamics on ¢,. Doublet apertures are somewhat larger than
those required based on consideration of resistive-wall and geometric wakes.
They are a little larger yet in this design. Collimation for this doublet
is required at about 5 0. and 30 o, to avoid Synchrotron Radiation (SR)
photons from impinging on quadrupole bore.



5. Conventional collimation system

The typical system consists of a thin, thermally-rugged spoiler,
followed by a thick, conductive absorber. These are shown together with
exemplary lattice functions in the figure on page 7.11.9. The beam must be
large enough at the spoilers so that the spoilers are not destroyed.

Wakefields also control conventional collimation system design. The
1/g® behavior for resistive-wall wake and the 1/g? behavior of taper section
for taper length are chosen to minimize total kick from geometric and
resistive wakes. Collimation system is a jitter amplifier, where the component
produced by the system is perpendicular to incoming jitter. The resultant
controling equation is

223 - 3az2+1<0

where definitions of terms are given on the bottom of page 7.I1.8. Equations
are more complex when there are several collimators of different length and
material in each phase. For Next Linear Collider (NLC) parameters, in the
horizontal plane, ny, = 3 and in the vertical plane, nmn = 20, for a 40%
increase in jitter. The practical working point is about n = 5 in the horizontal
and n = 35 in the vertical. Possibly, because of large final doublet aperture,
a conventional system would be adequate for collimation.

Because of the large amount of scattering from the spoilers, three
phases of collimation are certainly required, and perhaps four phases
(Interaction Point (IP) phase, Final Doublet (FD) phase, IP phase,
FD phase) will be necessary, so that the edge scattering from the last phase
collimated is acceptably small. The goal is zero particles hitting the final
doublet, assuming up to 1% of 10’2 being collimated. About one tenth of the
particles hitting within .1 u from the edge of the final scrapers re-emerge at
large angles in the beam. See pages 7.I1.10 and 7.1L.11.

Lattice functions for a three-phase system, followed by the big bend
for muon protection, are shown on page 7.11.12.

8. Nonlinear collimation system

If a conventional system is not adequate, a nonlinear system can be
used to scrape apertures that are smaller yet. The beam is first blown up
by a sextupole, then collimated, then a second sextupole at — I cancels out
the effects of the first. Equations governing this system are shown on pages
7.11.13 and 7.I1.14. Jitter at the sextupole causes jitter at the scraper, in
addition to incoming beam jitter at scraper phase. The wakefield kick at the
scraper can result in incomplete cancellation of the sextupoles.

Tolerances on sextupole stability (over time periods between lattice
checks with diagnostic bumps) are quite small (.4 g4 in one system
investigated)—comparable, but still larger than, similar tolerance (.1 ) in
the final focus system.

Possible lattice functions are shown on page 7.11.15. Lattice functions
for a nonlinear system combined with a conventional system are shown on
page 7.11.16.



7. Tail repopulation

Hard coulomb scattering can result in a repopulation of the tails as
the beam travels from the collimation system to the IP. There is a maximum
angle for this scattering, determined by the nuclear species and radius, with
the result that the R;; from the scattering point to the final doublet must be
greater than 200 m for a particle scattered there to hit the doublet. A very
large Ry, occurs in the collimation system when the IP phase is scraped, so
it follows that the FD phase must be scraped last.

Page 7.11.18 shows that the integral of the ratio of (R;2/200)? over the
beam line for which this ratio is greater than one, must be less than 280 m
for a gas pressure of 10~® Torr which indicates that a gas pressure of one
quarter 10~8 Torr will be required in the big bend.

8. Conclusions

It looks possible to protect the linac from the worst credible failure
(and others as well).

It looks possible to collimate the beam with conventional collimation
for all designs now being considered. However, the system requires
considerable length, and lengths have yet to be optimized. Ideas for length
reduction are welcome!

Much design work remains to be done, particularly to combine an
EGS code with particle tracking, to follow all particles produced at scrapers
and other accelerator parts, and to determine placement of absorbers along
with cooling and radiation protection requirements.
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Uill. Conclusions

It All Looks (bareluj Possible with Conventional
Collimation for 1812 Particles/Pulse

Requires Considerable Length (1 to1.5 km/linac)

Nonlinear System Can Collimate Smaller
Apertures If Necessary

Need Better Estimate of Worst Probable
Number of Particles to be Collimated

Much Work Remains to be Done

1) Follow all particles, primaries and secondaries,
through optical system

ii) Simulate scattering and production from
spollers, absorbers, and beampipe.

lil) Determine cooling requirements and radiation
levels.
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