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We complete the QCD sum rule analysis of the Isgur Wise form factor [(v. v’) at 

next-to-leading order in renormalization-group improved perturbation theory. To this 
end, the exact result for the two-loop corrections to the perturbative contribution is 
-derived using the heavy quark effective theory. Several techniques for the evaluation 

..sf--two-loop integrals involving two different types of heavy quark propagators are 
discussed in detail, among them the methods of integration by parts and differential 
‘equations. The order-o, corrections to the Isgur-Wise function turn out to be small 
&rd‘well under control. At large recoil, they tend to decrease the form factor by 
5 - 10%. 
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I. IhTRODUCTION 

.- 

In the limit of infinite heavy quark masses, the weak decay form factors describ- 
ing semileptonic transitions between any two ground-state (pseudoscalar or vector) 
heavy mesons, M(v) + M’(v’) e V, are described by a universal form factor t(y). 
This so-called Isgur-Wise function depends on the velocity transfer y = v . v’ and is 
normalized at zero recoil, <( 1) = 1, where the initial and final meson have the same 
velocity [l]. Th ese remarkable results follow from an implicit spin-flavor symmetry, 
which QCD reveals for heavy quarks although it is not explicit from its Lagrangian 
[2]. An expansion about this symmetry limit is afforded by the construction of the 

heavy quark effective theory (HQET) [3-51. In th e infinite mass limit, its effective La- 
grangian is explicitly invariant under spin-flavor symmetry transformations. HQET 
thus provides a convenient framework in which to analyze the properties of hadrons 
containing a heavy quark. In particular, it allows a systematic expansion of weak 
decay form factors in powers of l/m~ [5-71. 

To leading order in this expansion one recovers the Isgur-Wise limit, in which a 
large set of otherwise unrelated form factors reduces to the Isgur-Wise function. This 
-function describes the dynamical properties of the cloud of light quarks and gluons 
surrounding the static heavy quarks. Being a hadronic form factor, it can only be 
investigated using nonperturbative methods. One such method is provided by QCD 
sum rules [8], which were originally developed for light quark systems and have yielded 
many nice results which are competitive with lattice computations. Recently, several 
authors have used QCD sum rules to calculate hadronic matrix elements in HQET 
[g-18]. The more refined of these analyses included radiative corrections to both 
the perturbative and nonperturbative contributions. For the Isgur-Wise function, 
however, the radiative corrections to the perturbative part of the sum rule were 
only incorporated in leading logarithmic approximation [12]; the complete two-loop 
corrections to the triangle quark loop were never calculated for the case of heavy 

’ quarks. On the other hand, from the well-studied case of pseudoscalar decay constants 
it is known that next-to-leading logarithmic corrections can be quite substantial and 
should in principle be taken into account [ 1 l-131. 

With the advance of HQET, considerable progress has been made in the calcula- 
tion of radiative corrections. In Ref. [17], for the first time an exact two-loop result 
was obtained for a heavy meson form factor, in this case for one of the universal 
functions that appear at order l/m~ in the heavy quark expansion. The authors of 
Ref. [18] d eve o e 1 p d g a eneral method to compute the first two terms in an expansion 
of a two-loop diagram in HQET as a power series in (y - l), and applied their tech- 
nique to obtain an expansion of the two-loop corrections to the perturbative part of 
the Isgur-Wise function close to zero recoil. 

In this paper we derive the exact result for the two-loop corrections to t(y). 
‘I%his end, we develop several techniques to evaluate two-loop integrals in HQET 
involving two heavy quarks with different velocities (v and v’) and different residual 
momenta (Ic and Ic’), among them the method of integration by parts [19-211 and 
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the use of differential equations [22]. W e a so 1 introduce an integral representation 
for a general two-loop diagram which is particularly convenient for QCD sum rule 
calculations. These techniques are rather general and can be readily applied to other 
cases. In Sec. II we briefly review the sum rule analysis of the Isgur Wise function. 
The calculation of the two-loop perturbative corrections to t(y) are described in 
Sec. III. We discuss in detail the contribution of each individual diagram, so that 
the interested reader can follow the analysis step by step. After renormalization, we 
compare our exact result with the expansion around zero recoil given in Ref. [18] and 
find agreement. Sec. IV deals with the renormalization-group improvement and the 

;n_umerical analysis of the sum rule. We find that the effects of radiative corrections 
to the Isgur-Wise functions are moderate and well under control. Sec. V contains the 
conclusions. 

. . 
II. SUM RULE FOR THE ISGUR-WISE FUNCTION 

The derivation of the QCD sum rule for the Isgur-Wise function has been dealt 
with at length in Refs. [lo; 12,141, t o which we refer the interested reader for details. 
-Here we restrict ourselves to a brief review for the purpose of introducing the necessary 

- _. _ notations and recalling the main ideas of the method. One studies the analytic 
properties of the three-current correlator _. * 

. _ J dzdzei(k”“-k’z) (0 ]r{[(lr;,~h’]~, [ L’I’h],, [?&,&}]O) 

E E(w, w’, v - v’) Tr{p’I’P} , (1) 

where h and h' describe heavy quarks with velocities v and v’ in the effective theory. 
These quarks have “residual” momenta k and k’, which are related to the total exter- 
nal momenta by P = mQv + k and P’ = mQ’v’+ k’, where mQ and mQ’ are the heavy 

:-quark masses. Depending on the choice I’M = -y5 or IM = yP - vP, the heavy-light 
_ currents interpolate pseudoscalar or vector mesons, respectively. The Dirac structure 

jr of the heavy-heavy current is arbitrary. Usually, however, this is a flavor-changing 
weak current, in which case I = yP(l - 75). The Dirac structure of the correlator is 
entirely contained in the trace over “spin wave functions” 

p= lsprM 1+$’ 
2 

) 9=&p-, (2) 
which act as projection operators: 

$P=P=-P$, 
-@ = ;i?’ = p”fi’. (3) .- --.- -.L 

w The-coefficient function a(w, w’, v. v’) in (1) is analytic in the “off-shell energies” 
w I 2v - k and w’ = 2v’ . k’, with discontinuities for positive values of these variables. 
In particular, it receives a double-pole contribution from the ground-state mesons A4 
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and M’ associated with the heavy-light currents. This pole is located at w = w’ = 2A, - 
where A = mM - mQ = mM’ - mQl. The residue is proportional to the Isgur-Wise - 
function. It follows that [12] 

qmle(W 4 Y > = 
5(Y7 d F2(P) 

(w - 2A + ie)(w’ - 2A + k) ’ 

where y = v.v’, and F corresponds to the scaled meson decay constant in the effective 
theory (F - fMfi). Note that both F and the Isgur-Wise function are defined 
in terms of matrix elements in the effective theory and are therefore scale-dependent 

,wantities. 
In the deep Euclidean region, the correlator can be calculated perturbatively by 

using the Feynman rules of the heavy quark effective theory [5]. The idea of QCD sum 
. . rules is that, at the transition from the perturbative to the nonperturbative regime, 

confinement effects can be accounted for by including the leading power corrections in _- 
the operator product expansion of the three-point function. They are proportional to 
vacuum expectation values of local quark-gluon operators, the so-called condensates 
181.. One then writes the theoretical expression for the correlator in terms of a double 

_ _. _ dispersion integral, _ . - 
%h ( w,w’, y 

*- )=J Pth(? 6 Y> dv dv’ (V _ w _ ic)(yl _ w, _ ;c) + subtractions, V-9 

and performs a Bore1 transformation in w and w’ (see Appendix A for the definition 
of the Bore1 operator). This yields an exponential damping factor in the dispersion 
integral and eliminates possible subtraction terms. Because of the flavor symmetry 
it is natural to set the associated Bore1 parameters equal: r = 7’ G 27’. Following 
Refs. [12,15], one then introduces new variables wk = f(~ f v’), performs the integral 
aver w-, and employs quark-hadron duality to equate the integral over w+ up to a 

‘threshold ws’to the Bore1 transform of the pole contribution in (4). This yields the 
- Bore1 sum rule 

WO 

5(y, p) F2(p) e-2A'T = J dw+ e-W+‘T j!&(W+, y) f I((T, ‘Jo, y) . (6) 
0 

_ The effective spectral density jth arises after integration of the double spectral density _ 
over w-. 

To lowest order in perturbation theory, the theoretical expression for the right- 
hand side of the sum rule is given by [9,10, 121 

JqT,Wo,Y) = 2 8; (&)‘Tdw+w; e-w+lT - (@) 

(a.& + (2~ + 1) m: (QQ) 
48rT 3 4T2 ’ (7) 
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We have included the leading nonperturbative contributions in the operator product 
expansion, which are proportional to the quark condensate (dimension d = 3), the 
gluon condensate (d = 4), and the mixed quark-gluon condensate (d = 5). In the 
numerical analysis in Sec. IV we will use the standard values (at ~1 = 1 GeV) 

(Cjq)= -(0.23 GeV)3, 
(a,GG) = 0.04 GeV4, 

(gsijtTp,,GpYq) = rni (ijq) , rni = 0.8 GeV2. (8) 

; -_ At zero recoil, a Ward identity relates the three-point function (1) to the correlator 
of two heavy-light currents, from which one derives the sum rule for the parameter F. 
It allows one to replace the product F2e-2AIT in (6) by K(T,we, 1). Then the final 
form of the sum rule for the Isgur-Wise function explicitly reveals its normalization 
at zero recoil: 

t(Yd4 = 
WC wo, Y > 
K(T, wo, 1) . (9) 

In the following section we will derive the complete expression for the perturbative 
corrections to the function IC(T, ws, y) arising at order CX,. The one-loop corrections 
to the quark condensate were calculated in Ref. [ 121. The mixed and gluon condensate 
are already of order gs or g,“, and consequently one does not have to include radiative 
corrections to these terms at order CX,. What is missing are thus the order-o, correc- 
tions to the perturbative contribution. There are restrictive constraints on the result 
of this two-loop calculation. The normalization of the Isgur-Wise function requires 
that, at zero recoil, one must recover the expression for the two-loop corrections to 
the perturbative part of the sum rule for F. This implies [ll-131 

3 WO 
r 

&rt(T, Wo, 1) = - 87r2 J 

dw+w:e-“+/T 2lnL+T+$C 11 - (10) 
0 w+ 

Furthermore, the two-loop calculation must reproduce the known anomalous dimen- 
sion of both F(p) and ~(Y,P) [2,23,51. W e will see at the end of Sec. III how these 
constraints are fulfilled. 

III. TWO-LOOP CALCULATION 

The two-loop corrections to the perturbative contribution to the three-current 
correlator (1) are shown in Fig. 1. We shall analyze these diagrams separately below. 
Throughout the calculation we use Feynman gauge. For practical purposes, it is 

.- u~sef.ul to realize that the dependence of the perturbative spectral density ,5nert(w+, y) 
o?w+ is ‘known on dimensional grounds: 
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i& t(W t,Y )  = w : [P i (Y)  +  P a ( Y )  ln  $ 1  7  

co  
* J d w + e - W + ‘Tj&r t (w+,y )=2~3[p~(~)+pz(~) ( ln~+7r  $1.  (11)  

0  

. . 

T h e  c o e fficie n t fu n c tio n s  p ;(y) a r e  i n d e p e n d e n t o f w + . It th u s  suff ices to  calculate 
direct ly th e  B o r e 1  t ransform o f th e  corre lator ,  co r respond ing  to  th e  s e c o n d  l ine in  
th is  e q u a tio n . T h e  spectra l  densi ty  c a n  th e n  b e  r e a d  o ff i m m e d i a tely. B e low, w e  wil l  
a lways d e n o te  Bore l - t rans fo rmed q u a n tities  by  a  “h a t”. 

-” -, 

A . G luons  at tached to heavy  quark  l ines 

Cons ide r  th e  th r e e  d i a g r a m s  Dr  to  0s  in  Fig. 1 . T h e  eva lua tio n  o f th e  first g r a p h  
g ives 

D 1  =  1 6 N ,CF g ,” y Tr(  ? I’ P  y”l} 

x J ds” d f (w  +  2 V  -  s)(w +  2 V  * t)(w’ + s ;v~  -  s)(w’ +  2v’ * t) s2  (s -  t)” ’ (12 )  - 
_ _ _  _-  

w h e r e  CF  =  (Nz -  1 ) /2 N ,, a n d  ds” =  (27r ) -DdDs.  T h e  two- loop  in tegra l  is m o s t 
conven ien tly p e r fo r m e d  by  us ing  a  Four ie r  r e p r e s e n ta tio n  fo r  th e  l ight q u a r k  a n d  
g l u d n  p r o p a g a tors, a n d  a n  e x p o n e n tia l  in tegra l  r e p r e s e n ta tio n  fo r  th e  heavy  q u a r k  
p r o p a g a tors. A  d e ta i led  d  escr ipt ion o f th is  m e th o d , as  wel l  as  its app l ica t ion  to  th e  
a b o v e  integral ,  c a n  b e  fo u n d  in  A p p e n d i x  A . A fte r  B o r e 1  t ransformat ion w e  fin d  

A  

4 y A  Dr=- (D-4 )  [2(y  +  l)]D’2 - 2 G ( 0 , 0 , f -  1 ; y) (13 )  

< w h e r e  w e  h a v e  abbrev ia te d  

1 6 N ,CF g ,” (2T )2D-5  

A  =  -  ( 4 7 9 D  [2(y  +  l)]“-” 
I’(f)I’(f -  l )Tr{  F’I’P } . 

H e r e  a n d  in  th e  fo l low ing  w e  wil l  o fte n  e n c o u n te r  in tegra ls  o f th e  fo r m  

(14 )  

(15)  

which  a r e  re la ted  to  genera l i zed  h y p e r g e o m e tric fu n c tio n s  o f th e  velocity t ransfer  y. 
T h e  c o n tr ibut ion o f th e  s e c o n d  d i a g r a m  is 

.- 
_ : - -  _  
-ii. ; D 2 = 1 6 i V $ ~ g ~ T r { ~ ‘I’P ~ a )  

x J dsd i  (w  +  2v  -  s>yw +  2v  -  &yjwl  +  2v’ * s) s2  (s -  t)” -  (16)  
6  
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_ _. 

Introducing a shifted loop momentum by t’ = t + s, one can first perform the integral 
over t’ and then carry out the integral over s by using the master equations (Al) and 
(A2) for one-loop integrals in HQET ( see Appendix A). After Bore1 transformation, 
the result is 

A 
D2= (Dvf);Dm3)[2(Y+1)l D/2-2 (17) 

Obviously the third diagram, D3, gives the same contribution. 
Next we set D = 4 + 26 and expand in E, using some of the integrals collected in 

,Appendix B. we find 

2 h = A { 1 [2 - Y’(Y)] + 2[1 - y r(y)] In [2(y + I)] + 2yh(y) - 4 + O(L)}. 
i=l CE 

(18) 
The functions r(y) and h(y) are given by 

NY+) 
_ . - 

T(Y) = &--q 7 

_. * h(y)= & [Lz(l -Y”> - J52(1 -Y-,] + $=2(Y), (19) 

where y* = y f dm, and L2( XC> is the dilogarithm (see Appendix B). They satisfy 
r(1) = h(1) = 1. 

B. Gluons attached to the light quark line 

i Next consider the self-energy contribution for the light quark shown in diagram 
04 in Fig. 1.’ It gives 

D4 = -4( D - 2)NcCF gf Tr{ ?I P yayPyY} 

x ds”dt” J SC-i tp sy 
(w + 2v - s)(w’ + 2v’ * s)(9)” t2 (s - t)” * PO> 

After performing the integral over t, the remaining one-loop integral can be readily 
evaluated using the master,equation (Al). After Bore1 transformation, one finds the 
simple result 

A jj4=-- A 
, - D-4 =-se 

--.- -.L _ %i. - . 
(21) 
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C. Gluons attached to both heavy and light quark lines 

Let us now turn to the most cumbersome part of the calculation, namely the loop 
correction of the heavy-light vertices. The contribution of the diagram 05 in Fig. 1 
is 

D5 = SN,C, gf Tr{ F’I P y*j++?) 

x dgdt” J (w + 2v *s)(w + 2v .t;;:f+ 2v'*s)s2t2(S -t)” - (22) 

. . 

3t-is convenjent to split the calculation into three parts by use of the trace identity 

Tr{ F’I P r”$rP} = Tr{ F’I’ P(gap + f [ra, rP] + 2vayP)}. (23) 

Let us denote the corresponding contributions by Dr) and discuss them in turn. _- 

1. Cuzcuzation of I$) 

_ By rewriting its numerator, the integral appearing in DF) can be further decom- 
posed into three parts: 

* - J ds” dt” 
s2 + t2 - (s - t)” 

. _ (w + 2v * s)(w + 2v * t)(w’+ 2v'* s)s2P(s - ty = I1 + I2 + 13* (24) 

The integral II can be evaluated by introducing a new variable s’ = s + t and using 
the master equation (Al). We find 

i 
Il=t;;-$;3 r(4- D) r(f - 1) Jdu$ 

0 

x dt” J 1 

(w+ 2v *t)(R/V + 2c * t)4-Dt2 ' 

where V = (1 + 2yu + u2)lj2, R = w + uw’, and Qa = (v + UV’)~/V is a unit vector. 
The integral over t can again be performed using the master equation, resulting in a 

- double parameter integral. The result simplifies upon Bore1 transformation. We find 

A 2c G(“, ‘7 f - ‘; Y) . 
I1 = (D - 2) [2(y + qDi2-’ ’ 

c _ (2T)2D-5 r( Q> r( g _ 1) 
(47r)D 2 2 * (26) 

-- The calculation of the remaining integrals is straightforward. For I2 we introduce 
f&t + 6’ and make repeated use of the master equations. 4 factorizes into the 
product of one-loop integrals. To evaluate its Bore1 transform it is convenient to 
combine denominators by a Feynman parameter. This gives 

8 



A  iC  1  
I2  =  - (D - 3 ) (D - 2 )  [2(y  +  I)]~ ‘~-’ ’ 
A  

13=- (D2F2)  G (2-D,O + l;y). 

T h e  calcu lat ion o f th e  p a r a m e te r  in tegra l  in  is is d iscussed in  A p p e n d i x  B . 

2 . Calcu la t ion of D p )  

(27)  

:-- Fo r  th e -  two- loop  in tegra l  a p p e a r i n g  in  D p ’ w e  u s e  th e  in tegra l  r e p r e s e n ta tio n s  
d iscussed in  A p p e n d i x  A . W e  fin d  th a t 

. . $  Tr{  % P  [y”, r P ] }  /d b  d t” 
(w  +  2v  * s)(w +  2v  * t”,$+  2v’ * s) s2  t2 (s -  t)2 _-  

= (y -1)Tr {$ rP}14 ,  (28 )  

- w h e r e  a fte r  B o r e 1  t ransformat ion 

*- 
. _  - 

-j4  L  A  G ( ~ - R O & Y ) -  
{  

G (L  0 , f; Y >  
[2(y +  l)]D’2-’ 

r (D-1)  O ” J J ( U &  -  l )D/2-2 

r(f) rcf -  1 )  1  
d u r  m d u 2  

1  [Ul +  2(y  +  l ) (u2  -  l ) lD-’ 1  * (2g )  

T h e  d o u b l e  in tegra l  b e c o m e s  trivial in  th e  lim it D  +  4 . T h e  eva lua tio n  o f th e  first 
p a r a m e te r  in tegra l  is o u tlin e d  in  A p p e n d i x  B . 

R e m a r k a b l e  cancel la t ions ta k e  p lace  w h e n  o n e  a d d s  u p  th e  c o n tr ibut ions f rom 1 1  
-?  to  1 4 . W e  fin d  th e  sim p le resul t  

b 5 ” +  b p ’ =  A  { - ; +  O (c)} . 

3 . Calcu la t ion of D p ’ 

This  p a r t o f th e  a m p litu d e  involves th e  h a r d e s t integral :  

Ip  =  J ds”d t” (w  +  2v  * s)(w +  2v  .ty(LYf 2v’ -  s) s2  t2 (s -  t)” * (31)  

e-  It c a n - b e  sim p lifie d  by  us ing  th e  m e th o d  o f in tegrat ion by  p a r ts, wh ich  a l lows o n e  
t& e d u c e  a  g i ven  l o o p  in tegra l  to  a  ser ies o f sim p ler  in tegra ls  [1 9 - 2 f]. In  th is  case,  
w e  c a n  re la te  1 0  to  a  s u m  o f fo u r  in tegra ls  invo lv ing five  ( ins tead o f six) typ e s  o f 
p r o p a g a tors. T o  th is e n d , w e  eva lua te  th e  i d e n tity 
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J ds”dia 
2v * t sp (t - s)a 

at, (w + 2v * s)(w + 2v * t)(w’ + 2v’ - s) s2 t2 (s - t)” = 
0 (32) - 

to obtain 

+ Jds dt” 
2v*tsp 

(w + 2v * s)(w + 2v . t)(w’ + 2v’ * s)(P)’ (s - t)2 

. . 

- ds”dt” 
2vAsg J (w + 2v - s)(w + 2v * t)(w’ + 2v’ - s)(P)” s2 

- ds”dt” J w SP 
(w + 2v * t)“(w’ + 2v’ * s) s2 t2 (s - t)” 

= $I+ $2’ + $3’ + $4) 
P * (33) _- 

The first three integrals can be calculated along the lines discussed above. After Bore1 
transformation, we find 

_ _. _ j(l) = 4c (v + V’>P 
’ _ . - (D - 4)(D - 2) [2(y + I)]~-” ’ 

* - . _ jp- C 

[2(y + 1)]D’2-2 I[ 
(v + v’)p _ &] G(“J&l’ y) 

+ G(O, 1,:; Y> vup + G(O, 0, f; Y)$}, 

jr’ = 2C [G(3 - D, 1, %) up + G(3 - D, 0, f) v;] , (34 

.-c with C as defined in (26). N o ice that because of the factor (D - 4) on the left-hand t 
side of (33) th ese expressions have to be evaluated up to first order in E. 

The evaluation of Jr’ is more involved. We have used the method of differential 
equations to calculate this integral [22]. Th is interesting technique will be discussed 

- below. For the moment we just present the result: 

j(4) = _ 2cvb 1 
P D - 2 [2(y + I)]~‘~-~ 

- (D - 4) G(0, D - 4, f - 1; y) 

-2C jdzi (1 - u”-“) 
(uv + v’)p 

0 (1 + 2yu + U2)D’2 . 
(35) 

. -. We:have not written the last integral in terms of G-functions in order to show explicitly 
t%t it is’of order (D - 4). 

Next we set D = 4 + 26 and expand the above expressions, keeping terms of 
order 6. The integral-s encountered are collected in Appendix B. They yield rather 
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n o n trivial fu n c tio n s  o f y. H o w e v e r , a g a i n  r e m a r k a b l e  cancel la t ions a p p e a r  if o n e  sums  
th e  var ious  c o n tr ibut ions to  th e  r igh t -hand  s ide  o f (33 ) . N o t on ly  d o  th e  po les  in  l/c -  
c o n ta i n e d  in  $ ’ a n d  Jf’ cancel ,  b u t a lso  m o s t o f th e  y - d e p e n d e n t te rms . O u r  fina l  
resul t  is, in  fact, very sim p le. It r e a d s  

- (D -  4 )  fp  Tr{  ? I’P  yp}  =  [2(y  + c I)]D-2 Tr{  ? I’P } 

x{4  -  2 t[2  +  T  +  (y” -  +2(y) ]  +  O (e2)) .  

(36)  

. . 

f,.’ 

L M te r  Bo re l t ransformat ion,  th e  d i a g r a m  Ds g ives th e  s a m e  c o n tr ibut ion as  D 5 . H e n c e  

6 5  +  b > s  =  A  {f -  2  -  $  -  (y” -  1 )  r”(y) +  O (L)) .  ( 37 )  

D. Calcu lat ion of Jr’ us ing  a  di f ferential  equa t ion  

In  th is  p a r a g r a p h  w e  i l lustrate th e  app l ica t ion  o f di f ferent ial  e q u a tio n s  to  th e  ana l -  
ysis o f m u lt i - loop d i a g r a m s . S u c h  techn iques  w e r e  in t roduced  in  R e f. [2 2 ] to  eva lua te  
in tegra ls  .with mass ive  p r o p a g a tors. They  a r e  readi ly  a d a p ta b l e  to  H & E T . T h e  i d e a  
is to  der i ve  a  di f ferent ial  e q u a tio n  fo r  a  p a r ticu la r  l o o p  in tegra l  w h o s e  i n h o m o g e n e o u s  
te &  c a n  b e  ca lcu la ted in  te rms  o f sim p ler  integrals.  T h e  or ig ina l  l o o p  in tegra l  is 
th e n  o b ta i n e d  f rom th e  so lut ion o f th e  di f ferent ial  e q u a tio n . 

W e  sta r t by  rewr i t ing Jf’ =  s&Jp(s) l ,=r ,  w h e r e  

J&T)  =  /d a d i 
(xw +  2v  * t)(w’ + s ;v’ * s) s2  t2  (s -  t)” ’ (38)  

T o  der ive  a  di f ferent ial  e q u a tio n  fo r  J@ (x), w e  u s e  a g a i n  th e  m e th o d  o f in tegrat ion by  
zparts. S ta r tin g  f rom th e  i d e n tity 

w e  fin d  

J -a  sp  tcx 
ds”d t d t, (zw +  2v  * t)(w’ +  2v’ * s) s2  t2  (s -  t)” =  O  (39 )  

w h e r e  

f& ) =  J d S  d i  S P  
( 2 w  +  2v  * t)(w’ +  2v’ * s) s2  [(s -  t)2]” S P  .- -  ds”d t” _ : -- _  ; J (41)  -i. (xw +  2v  * t)(w’ +  2v’ * s) t2  [(s -  t)2]” 

d o ,es  i n d e e d  on ly  c o n ta in  sim p ler  integrals.  T h e  g e n e r a l  so lu t ion o f th e  di f ferent ial  
e q u a tio n  is 

1 1  



cc 

Jo(x) = xD-4 {J dz z3-Dfij(z) + k@} , 
I 

(42) - 

with Icp being independent of x. We are interested in the Bore1 transform of this 
equation.. A straightforward calculation gives 

z”-“.&(z) = ‘2;rj;-5r2(f - ‘) { (1 + 2y :z2,D,2-l (43) 
z  

2D-3 ( + ‘“‘)@ D-2 
; Cd 

D _ 4 (1 _ *4-D) 

(1 + 2yz + *2)D’2 * 

. . 
In order to determine the constant of integration kp we consider the limit x + 00 in 
(38), in which 

J~IXJ~(X) = k/didi SP 
(w’ + 2v’. s) s2 t2 (s - t)” 

Bz. (2T)2D-5 

(WD 
r($i)r(f-2)v&. (44) 

By evaluating (42) f or x >> 1, on the other hand, we find (for D > 3) 
*- 

. _ 
Jirnm xjp(x) = 

(2T)2D-5 

MD 
r(f - i)r(~-2)v~+~~~~~xD-3. (45) I 

Hence io = 0 follows. From the solution of the differential equation we now obtain 

jf’ = x$&(x)I 
X=1 

= -f@(l) + (D - 4) Tdz z”-“j&) . 
1 

-Substituting here z = l/u leads to (35). 

E. Summary and renormalization 

- 
We are now in a position to sum up the various two-loop corrections that con- 

tribute at order cy, to the Borel-transformed correlator. We find 

A 
” -1 E kh; = A{ %(f - $ - i) - [yr(y) - I] (k +2ln[2(y + l)]) 

i=l 

.- --.- -.L _ 
‘t. - 

+2[y WY) - l] - (Y” - 1) T2(Y) + Ok)}. (47) 
. 

Next we expand A from (14) around D = 4, keeping terms of order 6, and relate 51 
to the lowest-order correlator 

12 



2 
Tr{P’I’P}. 

This yields 

A 
” 
-1 = 

35 
-0 T 1 ( 

-I+ 2lnF+2ys-3 
i > 

+$+y 

Y(Y) 
-- [ - 

2 
f+ ( 2ln&+278-3)] +~p~~~(y)+O(t) 1 

, 

-*here 

1 

. . 
-=A+yEln$. 
i E 

_- We have introduced the functions 

Y(Y) = 5 [Y T(Y) - l] 7 

(48) - 

(49) 

(51) 
Y(Y) 

[ 
Y+l _ _. _ c-pert(Y) = 2 4ln2-3+ln- 

2 1 [ - t y h(y) - l] + In T + ; (Y” - 1) T2(Y> 
___ .- 

= 
*- (fln2-z)(y-l)- (kln2-g)(y-l)2+... , 

both of which vanish at y = 1. The first two terms in the expansion of ~+,~(y) around 
zero recoil were previously calculated in Ref. [18], and we confirm the result obtained 
there. 

The l/i poles in (49) cancel upon renormalization of the heavy-light and heavy- 
heavy currents in (1). In the MS subtraction scheme, the corresponding renormaliza- 
tion factors are [2,23,5] 

: 

&=1-2, z,,h=l+$(!/)- (52) 
That means that our two-loop calculation reproduces correctly the known running of 
the hadronic form factors F(p) and [(y, CL). By comparing (49) with (11) we can now 
write our final result for the renormalized correlator in form of a dispersion integral 

- and introduce the continuum threshold wg to obtain 

, -. --.- -.L _ 
w. - 

x{l+ri,[?l~L+$+~-y(y)ln-&+~ert(y)]}. (53) %- . w+ 

This is the exact expression for the perturbative part of the correlator at order a,. It 
is now seen that at zero recoil one indeed recovers (10). 

13 



I 

IV. RENORMALIZATION-GROUP IMPROVEMENT 
AND NUMERICAL ANALYSIS - 

The theoretical expression for the correlator depends on the subtraction scale 
~1, indicating a scheme-dependence associated with the subtraction of the l/i poles. 
This just reflects that the hadronic parameters F(p) and ((y,~), which are defined 
in terms of matrix elements of currents in the effective theory, are scheme-dependent 
quantities. At next-to-leading order in renormalization-group improved perturbation 
theory one can define renormalized, scheme-independent form factors by [24] 

; CM F,,, = [n,(p)]2’g{ 1 - * [zhl + &l] } F(P), 

&(y) = [cY,(p,]-aL(y){ 1 - * [Zhh(Y) + MY)]} ((Y, P) 9 (54) . . 

_- 
where Q(Y) = ~-Y(Y) 151, and we have used that the number of light quark flavors 
in the effective theory is nf = 3. The next-to-leading logarithmic corrections consist 
of two parts. The coefficients 2 are renormalization-group invariant quantities. For 
-nf = 3, they are given by [24-271 _ _. _ 

_._ ._- 185 7n2 .&I-- - - 
*- 324 243 ’ 

. _ (55) 

[L2(1 - ~2) + ln2(y-)]} 

: ‘= ~-~)(y-l)- (g-g)(y-l)2+...) ( 
where y- = y - Jm, and the hyperbolic angle 8 is defined by y = cash 8. The 
coefficients S, on the other hand, are scheme-dependent. They arise from matching 
of QCD onto the effective theory and combine with the scheme-dependent terms in 

_ (53) to give a renormalization-group invariant result. In the MS subtraction scheme 
one has [24,26] 

bhl = ; , bhh(Y) = 0. (56) 

-- 
After renormalization-group improvement, the sum rule for the renormalized 

Isg~nr-Wise function takes the form 
. 

&m(Y) = [@)] 
-L(Y) @T, uo, y) 

F(T,Wo, 1) ’ (57) 
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where we have summed the leading logarithms down to a characteristic scale given 
by the Bore1 parameter T. The renormalization-group invariant function ?? is given 
bY 

- 2% + y(Y)[Ei(-$) --i-E] + c(qq,(y)-z,,(Y)]} 
+ 1) m; (@I) 
3 4T2 * (58) . 

We have included the order-a, corrections to the quark condensate as calculated in 
Ref. [12] .i The function c(@~) (y) h as a similar form as ~+,~(y). It reads 

Y(Y) 
C(m)(Y > = y- [ 

4 In 2 + In q] - i [y h(y) - l] - i (y - 1) r(y) 
_ . - 

= (fln2-g)(y-I)- ($ln2-&)(y-1)2+... . (59) 
*- 

A remark is in order concerning the appearance of 7~ and the exponential integral in 
(58). The effective spectral density for the quark condensate receives contributions 
proportional to S(w+) and l/w+ +6(w+) ln(w+). Th e a 1 tt er ones have to be regularized 
in the dispersion integral, leading to 

If one introduces a continuum threshold, one obtains an extra contribution Ei( -we/T) 
from the second term, where Ei(-2) = - JZm $emt is the exponential integral. This 
contribution is very small and has been neglected in Ref. [la]. 

For the-numerical analysis of the sum rule (57) we use the vacuum condensates as 
given in (S), as well as Am = 0.25 GeV (f or nf = 3) in the running coupling a,(T). 
In Fig. 2(a) we show the range of predictions for the renormalized Isgur-Wise function 
obtained by varying the continuum threshold over the range 2.0 < ws < 2.6 GeV, and 
the Bore1 parameter inside the “sum rule window” 0.8 < T < 1.2 GeV, where the 
theoretical calculation is reliable. This window is determined by requiring that the 

, - 
--. -.-- _ 
-86 - . 

‘The function c(~~,(Y) was called $cm(y) in Ref. [12]. Note that we have simplified the 
dilogarithms appearing.in h(y) as compared to this reference. 
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nonperturbative contributions to the sum rule be less than 30% of the perturbative 
ones (T > 0.8 GeV), and that the pole contribution account for at least 30% of the 
perturbative part of the correlator (T < 1.2 GeV). The lower limit on T also ensures 
that cr,(T) is small enough to allow for a perturbative expansion. The above range 
of values for wo was obtained from the study of the correlator of two heavy-light 
currents. As in previous analyses, we observe excellent stability of the sum rule. The 
sensitivity of the Isgur-Wise function to different choices of the continuum model is 
investigated in detail in Refs. [12,15]. W e d o not discuss this subject here, since we 
are mainly interested in the effects of radiative corrections. We just note that the 
theoretical uncertainty in the sum rule prediction is probably larger than indicated 

‘l$ the width of the band in Fig. 2(a). 
To study the importance of radiative corrections we first have to relate tren(y) 

. . to a more “physical” form factor, which includes the logarithmic dependence on the 
heavy quark masses. Otherwise it is not possible to consider the limit cy, + 0. For 

_- simplicity, we work with a single scale ti and define 

&,hys(ti, y) = [C&k)] OL(y){ 1 + q Zhh(Y)} &e&d * (61) 
We use fi 21 2.3 GeV as a characteristic scale for b + c transitions [24]. Fig. 2(b) 
shows-the next-to-leading order result for this form factor in comparison with the 
“bare” Isgur-Wise function computed by neglecting radiative corrections. We also 
show the leading logarithmic approximation to &,hys(ti, y), which is obtained by ig- 
noring terms of order CY, in (58) and keeping only the first factor in (61). It is 
apparent from this figure that the radiative corrections to the Isgur-Wise function 
are well under control. The large y-independent corrections, which enhance the sum 
rule prediction for the decay constant F by 50% [ll-131, cancel out in the ratio (57). 
The remaining recoil-dependent radiative corrections are small. At large recoil, they 

.~:tend to decrease the form factor by 5 - 10%. Part of this effect comes from leading 
_ logarithms and is associated with the velocity-dependent anomalous dimension am 

-of the heavy-heavy current in the effective theory. 

V. CONCLUSIONS 

We have presented the complete QCD sum rule analysis of the Isgur-Wise form 
factor [(v .u’) at next-to-leading order in renormalization-group improved perturba- 
tion theory. To this end, we have derived the exact result for the two-loop corrections 
to the triangle quark loop. Such a calculation, which was never done before for a form 
factor of heavy mesons, becomes feasible by using the heavy quark effective theory. 
We have developed some general techniques for dealing with two-loop integrals with 
tw.o:different types of heavy quark propagators. Using the method of integration by 
p&s, complicated integrals can be reduced to simpler ones in a recursive way. In- 
tegrals which cannot be reduced any further can be evaluated by using differential 
equations. We have applied this technique to the loop corrections to the heavy-light 
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vertices. We have also presented an integral representation for two-loop integrals 
which is particularly convenient for QCD sum rule calculations. These methods can 
be applied to other sum rule calculations and will eventually lead to more accurate 
predictions for heavy meson form factors than were available before. 

Our numerical analysis shows that, unlike in the case of meson decay constants, 
radiative corrections to the Isgur-Wise function are small and well under control. This 
is an important result which puts the sum rule analysis of <(v . v’) on a firm footing. 
The smallness of the two-loop corrections in this particular case was not unexpected, 
however, since the normalization of the Isgur-Wise function at zero recoil prohibits 

;tny recoil-independent radiative effects. This does not imply that such corrections 
are always negligible. In fact, some of the universal functions appearing at order 
l/m* in the heavy quark expansion receive their leading contributions at order (Y,. 
Then the two-loop perturbative contribution is important and cannot be neglected 
for a reliable analysis [17]. 
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APPENDIX A: LOOP INTEGRALS IN HQET 

1. One-loop integrals 

We summarize some important equations for one-loop tensor integrals in HQET. 
Integrals involving massless propagators only can be found, i.e., in Ref. [28]. Inte- 
grals involving two types of heavy quark propagators were considered in the second 

;r_eference in [ 141. Th ere the master equation 

(Al) I pl...pn (a, A Y) = /dt” 
t bn 

( - P)“(w + TV 
. . . 
* t)P(w’ + 2v’ * t)’ 

= (4*iD/2 I&, P, r) rdu ,u’-’ 
o Pwla+’ 

[ - z] D-2a+n I$l...p,Ju), 

-was derived, where dt” = (27r)-DdDt, and 
- _ ̂ . -. I&, A r> = r(2a + p + y - D - n) r(D/2 - a + n) 

rw w> r(Y) 
7 

_- 
_ qu)=w+uw’, 

V(u) = (1 + u2 + 2u v * v’y . 

For n = 0, 1,2 the tensors K,,...,,(u) are given by 

Ii’(u) = 1, 

Ii;l(u) = -i/,(u) ) 

&v(u) = R(u) k(u) - D -g;i + 2 , 

with .pP(u) = (v+u~‘)~/V(u) b em ’ g a unit vector. We note that the master equation 
is valid for arbitrary values of o, ,B, and y. 

In the case of one heavy quark the master equation reduces to [14,25] 

W) 

r(2a + p - D - n) rp/a - (Y + n) 
bL(%Y,P) = 

r(Q) w> 
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IL . ..Pn is obtained from above by replacing cP(u) by wP. 
The integral representation (Al) is particularly convenient for a Bore1 transfor- 

mation in w and w’. Defining the Bore1 operator by 
n 

; r=zfixed, 
n 

we note that 
; Cd 

@?fp [ - n(u)]-” = g+ 6(u - $) . 

. . 

_- 2. Two-loop integrals 

Let us now turn to two-loop integrals in HQET. The case with one heavy quark 
-has. been discussed in detail in kef. [25]. H ere we consider integrals with two species 
of -heavy quark propagators. They have the general form 

I ;::::pm (a, A Y, 6; a, 4 c) = WV *- 
J 

t”l h 
Ad.?-dt” 

spl . . . sp,, . . . 

(w+2?J. s)a(w+2v. t)qw’+2v’. s)‘(w’+2vf. t)6(-s’)“(-t2)b[-(s - t)“]” 

We will derive a representation for this integral which is particularly convenient for 
further analysis. The first step consists in performing a Wick rotation of the loop 
moment a, 

- so that 

s + (isO, q ) t + (it”,?) ) 

-s2 ---+ (SO)2 + z2 E Sk ) 

v *s -+ iv”so -ii.s’c ivE-SE, 

where SE = (so, .G’) and VE = (v’, ic) are vectors in a Euclidean space. Note that this 
definition of a Euclidean velocity ensures that v’& = 1 and uE.& = y, where y = v.v’ in 
Minkowski space. After the Wick rotation, we represent the massless propagators as 
Fourier integrals in a D-dimensional Euclidean space and use an exponential integral 
representation for the heavy quark propagators: 

r(:-a) dD e2iSE% 

rD/2 rya) s z (x2)D/2--o ’ 

1 
(W + %?JE*SE)a 

(w < 0) 
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.-’ 

T h e  m o s t g e n e r a l  two- loop  in tegra l  involves th r e e  D-d imens iona l  in tegrat ions over  2 ; 
a n d  fo u r  o n e - d i m e n s i o n a l  in tegrat ions over  X ;. T h e  a d v a n ta g e  o f th e s e  r e p r e s e n ta tio n s  -  
is th a t th e  in tegra ls  over  th e  l o o p  m o m e n ta  c a n  i m m e d i a tely b e  p e r fo r m e d  a n d  g ive  
r ise to  two D-d imens iona l  S - fu n c tio n s , wh ich  e l iminate  two o f th e  in tegrat ions over  
x;. Fu r th e r m o r e , n o te  th a t two o f th e  in tegra ls  over  X ; b e c o m e  trivial u p o n  B o r e 1  
t ransformat ion,  s ince 

@ 4  ,xw =  S ( X  -  T-1) .  

T h e  te n s o r  structure in  th e  n u m e r a to r  in  ( A 3 )  c a n  b e  g e n e r a te d  by  tak ing  der ivat ives 
with respect  to  x;. Recal l  th a t fo r  every  tim e l ike index  th e r e  is a  factor  i e n c o u n te r e d  

-  % l’i i ing th e  W ick ro ta tio n . Fo r  every  spacel ike  index,  o n  th e  o th e r  h a n d , o n e  e n c o u n -  
ters  a  factor  i w h e n  ro ta tin g  back  to  M inkowski  space . T o g e th e r  with a  factor  i2  f rom 

‘2 + m + n  th e  l o o p  in tegrat ions th e r e  is th u s  a  factor  o f z to  b e  ta k e n  into a c c o u n t. 
. . L e t us  i l lustrate th is  te c h n i q u e  fo r  s o m e  o f th e  in tegra ls  e n c o u n te r e d  in  S e c . III. 

W e  sta r t wi th th e  in tegra l  in  (12 ) . It c o n ta ins  on ly  two typ e s  o f mass less p r o p a g a tors, 
a n d  c o n s e q u e n tly th e r e  a r e  n o  in tegrat ions over  xi left a fte r  eva lua tio n  th e  S - fu n c tio n s  
ar is ing f rom th e  l o o p  integrat ions.  In  th e  n o ta tio n  o f ( A 3 )  w e  fin d  

-  1 ,& l, 1 ,l; l,o ‘, 1 )  =  r(f) r(f -  ‘)  m d A l d X 2  d & d &  e ( h + + ‘+ ( ~ 3 + ~ 4 ) W ’ 

_ _ _  ~ ._  ( W D  J 
X l, lo  ’ (x3D/” (x#N”-’ ’ 

w h e r e  x1  =  (X l  +  X2)v  +  ( X a  +  &)v’, a n d  x2  =  X ~ V  +  X q v ’. A fte r  B o r e 1  t ransformat ion 
w e  o b ta in  

. 

ia(l, 1 , 1 ,l; l,O , 1 )  =  ‘(’ +  “b  J ‘drl  d Z 2  1  

K Y  +  1) l”” o  (212  +  2; +  & w 2 )  
D/2-1 

-‘with C  as  d e fin e d  in  (26 ) . S u b s titu tin g  2 2  =  ~ 2 1 , a n  in tegrat ion by  p a r ts in  z1  y ie lds 
1  

J dzl  d z 2  1  
(2 ; +  2 ; +  2yz iz2)D’2-’ 

=  - (024 )  G ( O , 0 , $  -  1 ; Y >  , 
0  

which  leads  to  (13 ) . T h e  in tegra l  ..7 ,$ ? ’ in  (33 )  c a n  b e  eva lua te d  a l o n g  th e  s a m e  l ines. 
-  In  th is  case  th e r e  a r e  on ly  th r e e  in tegrat ions over  X ;, a n d  o n e  is th u s  left wi th a  s ing le  

p a r a m e te r  in tegra l  a fte r  B o r e 1  t ransformat ion.  
A  m o r e  compl ica ted  in tegra l  is th a t a p p e a r i n g  in  (28 ) . Fo l low ing  th e  g e n e r a l  

p r o c e d u r e  o u tlin e d  a b o v e  w e  der ive  

Y 2 ( $ )  q g  -  1 )  O ” .- d &  d X 2  d &  e ( X l + A 2 b “+ X 3 w ’ 
_ : - -  _  lp*(l, l,l,O ; l,l, 1 )  =  -  
w . - -  J (47r )D/2  o  

‘. J X T  1  
d ’l ~x;; fV2 (x;)D/2 (x#W- l  ’ 

2 0  



where 52 = xi+(Xi+X2)2)+Xsu’, and 2s = xi+Xiv+Xs2)‘. The integral over xi has the 
form of a Euclidean one-loop integral and can be performed in the standard manner by - 
introduction of two Feynman parameters z;. One then contracts the Lorentz indices 
with those in the trace in (28) to compute the integral 14. The result is 

dX3 X2X3 e(h+A2)W+x3W’ J 
where Z; = 1 - zi, and 

; Cd M2(X;, 2;) = z1(z2p2 + 22q2> - &2P + 224)2 

with p = Xxv and q = (Xl + x2)11 + x3~'. After Bore1 transformation the integral can 
be cast into the following form: 

i4 = ‘2c;;;-5 I’(D - 1) jdA X2-D Tdq Tdu2 [ 
0 x l/X 

Ul 
+$;;r,;)D’rI,lD-l . 

u2 

_ _. _ F’or D < 3 one can use an integration by parts in X to obtain (29). By analytic 
continuation, this result can then be evaluated around D = 4. 

. _ 
APPENDIX B: PARAMETER INTEGRALS 

We collect some useful formulae for the evaluation of parameter integrals. We 
start with a remark on divergent integrals such as those appearing in (27) and (29). 
Assuming first that D is sufficiently small, one can use an integration by parts to 
rewrite these in terms of integrals which have a well defined expansion around D = 4. 
For instance, for D < 4 one can show that i 

.(D - 4)G(3 - D,O, f; y) = D [y G(4 - D,O, ; + 1;~) + G(4 - D, 1, f + CY)] - 1. 

_ Similarly, G(2 - D, 0, f - 1; y) can be related to G(3 - D, 0, f; y) plus nonsingular 
terms for D < 3. By analytic continuation, one can then evaluate the resulting 
expressions in the vicinity of D = 4. 

We now present a list of parameter integrals which are encountered when one 
expands the results presented in Sec. III around D = 4. When evaluating these 
integrals it is useful to introduce a hyperbolic angle t9 by y = cash 8. Then 

V”(u) = 1 + 2yu + u2 = (u + eO)(u + 8) 

.- fac$riiesj Setting Ro = V2(1) = 2(y + l), we find: 
. 
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. . 

1 
1 r(y) 

4=oduVZ(u)=~, J 
F2=&jdu ’ 1 - r(y) + 1 

o [vyu)]2 = qy - 1) ' 

1 

F3=ho J du [;2;u;]2 
Y+l In Ro + l(y) = -or - 2 , 

‘*- F4 = &.jdu ‘$i(i)F) = -y - 4(y ‘_ 1) {[r(y) + l] In & - 2 Z(y)}, 

F5 = id: ‘;:;L() = -F In Rs + h(y), 
0 

’ lnV2(u) 
F6=%/du [712(u)]2 = 

1 

2b - 1) 
(2Y - 2h(Y) + MY> - 1lP + 1nR”,} 7 

-:-F7= jdu “j’-;J’ [ Ilip)l2 - 11 = In2Ro _ ?r” _ Yz r”(y) _ ?!-$A r(y) 
221 8 12 8 

0 *- 
. _ Y lnR0 _ (2 - Y>(Y + 1) 

3Y - 1) 4(Y - 1) 
[r(y) lnR.0 - VY)] , 

F =R2 1du1nV2(u)-1n& =-f y2-l J Y+l 
8 0 (1 - u) [V2(u)12 6 

- 4 r”(y) - 2 r(y) ln Ro 

+(~+l)(l-ln~)-~+(y+l)~F5+F6-F?lnRo~- 

The functions r( y ) and h(y) have been defined in (19). In addition, we have introduced 

Z(Y)- = & [Lz(-Y + Jy2-1) - L2(-Y - Jyz-l)] , 

which satisfies Z( 1) = 2 In 2. Here &(x) = - Jo” $ ln( 1-t) is the dilogarithm. The first 
derivatives of these functions at y = 1 are r’( 1) = -$, h’(1) = $, an-d Z’( 1) = i--s In 2. 
Finally, we note the following useful identity (n 2 1): 

1 
D(Y + 4 

1 

J d" ln"(' - u> ~V2(U~ID/2+’ = n o J d" 
ln"-l(l -u> 

(1 - 4 [ 
R,D/2 _ [v2(u)]-D/2] 

--.- -.L 0. _ 
-ii. - . 
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FIG U R E S  

FIG . 1 . T w o - l o o p  d i a g r a m s  c o n tr ibut ing a t o r d e r  ( Y , to  th e  p e r tu r b a tive  p a r t o f th e  
s u m  ru le  fo r  th e  Isgur -Wise  fo r m  factor.  Heavy  q u a r k  p r o p a g a tors  a r e  d r a w n  as  d o u b l e  
l ines, wh i le  th e  wavy  l ine r e p r e s e n ts th e  w e a k  current .  

. . 

FIG . 2 . (a )  S u m  ru le  pred ic t ion fo r  th e  renorma l i zed  Isgur -Wise  fu n c tio n  I& ,(Y ) . T h e  
% d th  o f th e  b a n d  ar ises f rom var ia t ion o f w u  a n d  T as  speci f ied in  th e  text. (b )  T h e  

“physical” fo r m  factor  & ,phys(  fi, y) c o m p u te d  in  n e x t-to - l ead ing  o r d e r  in  renormal iza t ion-  
g r o u p  i m p r o v e d  p e r tu r b a tio n  th e o r y  (sol id),  in  l ead ing  logar i thmic  a p p r o x i m a tio n  ( d a s h e d ) , 
a n d  wi thout  inc lud ing  a n y  Q C D  correct ions ( d o tte d ) . W e  u s e  th e  c e n tral va lues  w u  =  2 .3  
~ G e V  a n d  T =  1 .0  G e V . 
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