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. . . ABSTRACT 

In this paper the Bern-Kosower-type rules for effective actions, derived in an 

earlier paper, are used to find the actions for low-momentum gauge fields induced 

by loops of heavy scalars and Dirac fermions. Because of the special organization 

inherent in the first-quantized methods, certain gauge invariant structures in the 

effective action appear automatically, each multiplying a separate Feynman pa- 

rameter integral; others can be extracted with minimal effort. In the abelian case 

the low-momentum effective action-can be completely analyzed for an arbitrary 

number of external photons; the calculations are significantly simpler than those 

used in Feynman diagrams. On the basis of these results it is argued that the 

advantage. of the Bern-Kosower rules lies not simply in their use of the Feynman 

parameter representation but also in the special way the Feynman parameter inte- 

grands are organized. It is suggested that the benefits demonstrated in this sample 

calculation are also useful when computing full S-matrix elements. 



1. Introduction 

In the past year significant advances have been made in techniques for calculat- 

ing one-loop scattering amplitudes in gauge theories. There has been considerable 

interest and ‘debate concerning the new Bern-Kosower technique for perturbative 

calculations in gauge theory [l-6,9], w ic converts amplitudes with external gauge h h 

bosons into Feynman parameter integrals and uses a novel diagrammatic expan- 

sion. In a recent paper [9] (which I will henceforth refer to as Paper A), I showed, 

using first-quantized path integrals, that Bern-Kosower-type rules could be derived 

from field theory for computation of one-loop effective actions. Recently Lam has 

reminded us [6] that any Feynman diagram may immediately be written as a pa- 

rameter integral [7,8], raising the question as to whether the Bern-Kosower rules 

represent a real advance in calculational techniques. In this work I will argue that, 

at least at one loop, the new rules do indeed have advantages; their power lies not 

merely in their Feynman parameterized form but in their special organization. 

In this paper, I will study the semi-classical effective action for low-momentum 

abelian and non-abelian gauge fields due to massive scalar or spinor particles. My 

purpose is to illustrate several special features of the Bern-Kosower techniques in 

a setting where the concepts are clear and the calculations are trivial. The most 

elegant way to do the specific calculations of this paper is to use the gauge invariant 

methods of Schwinger [12] and Shore [13]; h owever these results are only derived 

for covariantly constant fields and do not easily generalize to arbitrary momentum. 

On the other hand, traditional Feynman diagrams, even when parameterized as in 

[7], are somewhat clumsy, despite the conceptual simplicity of their building blocks, 

because their individual pieces are not gauge invariant. The Bern-Kosower rules 
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have the conceptual simplicity and broader applicability of the Feynman approach 

while benefiting from the more explicitly gauge invariant structure of the Schwinger 

proper-time representation. 

. . . 
A particular feature I will emphasize is one that I discussed briefly in section 5 

of Paper A: the manifestly gauge invariant organization of the formalism. Feynman 

diagrams are simply not gauge invariant in their various pieces, whether one uses 

Lam’s technique or more standard approaches. By contrast, the starting point of 

the Bern-Kosower formalism [1,2], eq. (2.1), is explicitly gauge invariant. After 

applying the integration-by-parts (IBP) procedure, which is described by Bern 

and Kosower [1,2] and in Paper A, one finds that the full abelian amplitude can 

be easily organized into gauge invariant combinations of Lorentz invariants, each 

multiplying a single integral. In Feynman diagrams, one must compute many 

more parameter integrals, cancel many terms against each other, and reshuffle the 

algebra to-make the answer look explicitly gauge invariant. In the Bern-Kosower 

approach the cancellations are removed at the start by the IBP, and the appropriate 

organization comes out automatically. Non-abelian theories are more complicated: 

the effective action contains more gauge invariant structures, not all of which are 

easy to identify from the organization of the amplitude, and there are contact terms 

from the IBP which must be accounted for, which are nevertheless well-organized, 

as they are computed from the pinch rules of Paper A. All of these points will be 

illustrated below. 

In Sec. 2 I discuss the Bern-Kosower Master Formula and its properties, and 

state a theorem which I use in later sections. Sec. 3 contains a discussion of 

the effective action of abelian gauge fields due to a massive scalar or spinor; a 
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simple formula for the leading term in l/m2 at order-# is written down. In 

Sec. 4, a similar computation for non-abelian gauge fields is carried out to order- 

g4. Discussion and conclusions are presented in Sec. 5. 

. . . 

2. The Bern-Kosower Master Formula and its Properties 

The computation of the effective action begins from the following expression, 

called the Bern-Kosower Master Formula. It was first arrived at from string theory 

by Bern and Kosower [1,2], and later rederived in Paper A from field theory. (It 

may also be viewed as a gauge invariant form of eq. (2.1) of ref. [7] .) The abelian 

Master Formula is 

bv(h, * * *, hv) = 

(ig)N O" dT e-m2T N ' 

(479*/z s 
o T1-N+D/2 (n / d”i) exP ( 5 Ici * ‘.iGjs) 

i=2 0 i<j=l 

P-1) 
which is valid in D-dimensional Euclidean spacetime. (Here u1 f 0.) This ex- 

pression gives the abelian one-loop effective action for N external photons and 

a scalar loop; on shell it gives the one-loop photon S-matrix. The ci and ki are 

the polarization and momentum vectors of the ith photon; the scalar has mass 

m. The last line in (2.1) is called the “generating kinematic factor” (GKF); only 

terms containing each of the N polarization vectors ei exactly once are to be kept. 

Normally one carries out an integration-by-parts procedure (IBP), described in 

refs. [1,2] and discussed in Paper A, which removes all factors of 22, leading to 

an “improved generating kinematic factor” (IGKF) which is a sum of terms each 
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containing N G, functions. For large N, there are many equivalent ways to carry 

out the IBP, and consequently many possible forms for the IGKF. 

For a Dirac spinor loop one multiplies (2.1) by -2 and makes the following 
. . . 
. replacement *wherever possible in the IGKF: 

d d 

rI 
* ikik-1 G, --f 

rI 

&ijik-l - fi($ik-l 

> 
(2.2) 

k=l k=l k=l 

where io E id. (This manifestation of world-line supersymmetry is easily derived 

from an explicitly supersymmetric formalism. See also ref. [lo].) The functions 

&i, G;, @ and ei are [1,9] 

-Gg = GB(ti,tj) e T(lui -ujl - (u; - uj)2) ; 

di = &iGB(ti,tj) E (sign(ui - uj) - 2(ui - uj)) ; 

CT?; = tJEGB(ti,tj) E $(b(ui-uj)- 1) 

G$ = G~(ti,tj) s sign(ti - tj) = sign(u; - uj) 

(2.3) 

where the ti are proper times on a loop of total proper time T, and u; = t;/T. Note 

that G$ = G$ and @i = Gg are symmetric, while ($2 = -&‘c and G$ = -G$ 

are antisymmetric. 

There is a basic though limited theorem about the structure of the IGKF which 

I will use throughout the remainder of this article. Before stating it I must define 

some terminology. 

A chain is any series of G, functions arranged so that the second index of one 

G, is the first index of the next, as in the expression 

&;2($3&1;4.. . en-2,n-l&n-l,n 
B B * (2.4) 
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Every factor of C?$ in the GKF or IGKF is accompanied by a kinematic invariant 

of the form E; - cj, pi - kj, or ki * kj. I will sometimes use the word chain to refer not 

only to the chain of &g functions but also to the kinematic invariants multiplying 

‘. them. j 

A chain which completely closes on itself will be called a closed chain, and will 

be denoted by its indices placed (in order) between braces; for example, 

~1 . k3e3. e2k2 . k& . k&j%~@“cG,1 (2.5) 

is a closed chain denoted (1326) or (2316) or {1623}, etc. The kinematic factors 

which may appear as part of a closed chain will be specified in the theorem below. 

A chain whose last index j appears in a closed chain but which itself is not 

part of a closed chain is called a tail. For example, in 

the structure ~5 . klq - k,&y&‘g is a tail attached to the closed chain (326); 

the complete notation for (2.6) will be 1513) (326). (It is proved in Appendix D 

that in any tail Jab - . - 
. 

;j) appearing in the GKF or IGKF, the last Gg function is 

associated with a kinematic invariant ci . kj or k; - kj.) Tails may have branches, 

as in (41) 1513) {326}, and closed chains may have an arbitrary number of tails, as 

in 141) 1513) 176) 186) (326): 

&41 &751&13 676 686 &32 e26 e63 
BBBBBBBB- 

.” 
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It is useful to define the invariants 

+ all possible exchanges of (E; t) -k;) 
P-8) 

for p > 3, and 

In general, every term of the factor D,(p, . . . ,2,1) which appears in the IGKF 

multiplies the closed chain of GB functions 

To state the theorem, I need to define a set QN. An element q E QN is defined 

as follows: Let S be any subset of the integers 1,. . . , N. Divide S into ordered 

subsets Sk, where each Sk has at least two elements, and where Sk is defined 

only up to cyclic permutation and inversion of its ordering. The set {Sk} is an 

element q E QN. Let n(q) E {2,3,. . . , N} be the number of indices appearing in 

S. Considering all possible S and Sk gives all possible q for fixed N; the set of all 

possible q’s will be called QN. For example, the elements of Q4 are 

(ij}, 1 5 i < j 5 4; (ijk), 1 5 i < j < k 5 4; 

(12}(34}; {13}{24); (14}(23}; (1234); (1324); (1243) . 
(2.11) 

For q E QN let D(q) be the product of DP functions whose arguments are the sets 

Sk contained in q, and let S(q) be th e associated product of closed chains Sp of tiB 

.” 
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functions. For example, for q = {421}, 

D(q)S(q) = D3(4,2,1)6’~@%~ , 

.._ 
. while for q = (42)(31}, 

-; - 

D(q)S(q) = D2(4, 2)D2(3, l)~~@$‘$%~ . 

(2.12) 

(2.13) 

The statement of the theorem is the following: 

Theorem: The IGKF at order gN has the form 

IGKF(N) -= iN c [Oslo c T(q)] + other terms, (2.14) 

qEQN ITI 

where v(q) = fl, and where the second sum is over all tails or products of tails of 

the form 

(2.15) 

the product is over only those indices r which do not appear in q, and the j, = 

1,2,..., N are chosen so that T itself contains no closed chains. The “other terms” 

in the IGKF all possess at least one tail containing a factor ci.~j (with ;, j not in q.) 

This result is independent of the choice of algorithm for the integration-by-parts 

procedure. 

The proof of the theorem is given in appendix D. It is somewhat tedious, 

however, and readers may instead wish to convince themselves by working a few 

examples, or by following along with Sec. 4 where the four-gluon case is discussed 

in detail. 
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One may conjecture an extension to the theorem, which to this point I have 

been unable to prove, though I have verified it up to N = 4. 

Conjecture: If the integration-by-parts procedure is carried out using a particular 

. algorithm (as yet unknown), the IGKF at order gN has the form 
.; - 

IGKF(N) = iN 
qE&N ITI 

(2.16) 

where the second sum is over all tails T(q) of the chains represented by D(q), 

such that each pi appears once either in D(q) or T, and where v(T(q); q) = 0, fl 
. .. 

depends on q and on T(q). If T(q) = 1 or a product of E; * kjG2 factors, then 

the factor D(q)T(q) app ears in the IGKF no matter what algorithm is used for the 

integration by parts, so q(T(q);q) = fl. 

Proof or disproof of this conjecture might be useful, in that it might help us 

to understand the IBP procedure, -and ‘might identify a particularly efficient IBP 

algorithm. 

3. The Abelian Case 

In this section I will compute the one-loop effective action of QED due to 

a massive scalar or Dirac spinor particle in the limit of low momentum. For N 

external photons, I will calculate the leading term in k2/m2 of the N-point one- 

loop amplitude, where k is the characteristic momentum of the gauge bosons and 

m is the mass of the particle in the loop. After studying the vacuum polarization 

in some detail, I will use theorem (2.14) to write the low-momentum effective 

. . 
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action for all N as an expression equivalent to Schwinger’s famous result [la]. All 

calculations will be performed in Euclidean space. 

First, I review the result of Paper A for the infinite term in the vacuum polar- 
- 

ization of scalar QED. I will explicitly present many steps in this calculation so as 

to illustrate how unnecessarily difficult the standard Feynman diagram techniques 

actually are. 

Let us work for the moment in an arbitrary number of dimensions D. For 

N = 2 the Master Formula yields [9] 

which contains both diagrams of figure 1. This expression is similar to that which 

one would arrive at using the formalism of Lam and Lebrun [7], but it is organized 

in a very special way. In particular, if one straightforwardly computes the leading 

term in (3.1), and expands in powers of k2/m2, one finds 

. . 
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1 

I’2(kl, kg) = -g2 
(47r)D/2 J 

du 
0 

x cl . k2c2. kr(1 - ~u)~I-‘(- 4 2 D, [m2 - ICI . k2(u - u”)] F 

D-4 

2-D 0--2 
l)r(,-) [m2 - kl . k2(u - u”)] ’ 1 

k2 
km. h(l - 2~)~[1+ S(---&] 

- jj-&52~r - c2m2(S(u) - 1) 

Jrn - 261 - c2m2 

+ 61 . k2c:2 + kr(1 - 2~)~ + 2q . c2kl . k2(6(u) - l)(u - u2) 1 
2 

=(4ripD,2r( 

+ 61 - k2c2. k+ - 2~ . c2k1 . k2(;) 
1 

e2 kl . k2 - cl . k2c2 . kl I 
The leading terms are highly divergent in any integer dimension D > 2 but are not 

gauge invariant; after these cancel one must pull out the sub-leading divergences 

and only then take the lim it k2/m2 --f 0. Notice the four separate (though, in this 

case, simple) Feynman parameter integrals. If we had not taken the k2/m2 -+ 0 

lim it then it would have been taken somewhat more effort to show that the leading 
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terms cancelled and the result was gauge invariant. 

The more clever method, introduced by Bern and Kosower via string theory 
. . 

[1,2,9], is to integrate the GB term in (3.1) by parts to arrive at 

., - 

b(kl, h) = (cd2 
(47p [ cl - c2 kl . k2 - ~1 . k2c2 . k1 I 
x j du [~$‘g(u)]~ J”T~~-l ekl’k2GB(u)-m2T 

0 0 
2 4-D 

= (4:)*Pr( 2 )L cl - c2 kl . k2 - cl . k2c2 . kl I 
1 

J 
X du [@B(u)]2[ m2 - ICI . kz(u - u2)]F 

0 

(3.3) 

jrn 
D-4 61 . ~2 kl . k2 - cl . k2c2 . ICI I 1 

X du+$f(u)]2 J 
0 

and the single Feynman parameter integral yields a factor of i. Notice that the IBP 

removed the higher-order, gauge noninvariant divergences, left the expression in a 

manifestly gauge invariant form, and gave us a single Feynman parameter integral 

to perform which, in the limit k2/m2 -+ 0, easily gave us the correct coefficient. 

If we specialize to four dimensions, the vacuum polarization is logarithmically 

divergent. It is interesting to see this emerge through the use of a single Pauli- 

Villars regulator of mass M, which appears in the Master Formula through the 

replacement emrnZT + (e-m2T - e-M2T). 

. . 
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x [e, - k2c2 * k#B(u)]2 + cl * C2GB(u))] 

+ &log ($) [cl . c2 kl . k2 - cl . k2 e2 . kl] jdu [&(u)12 

0 

In the standard techniques, the use of Pauli-Villars regulators for vacuum polar- 

izations requires three regulator fields and a careful balancing of their masses to 

ensure both quadratic and logarithmic divergences are controlled [ll]. 

The same calculation for a Dirac spinor gives 
n 

r2(kl, k2) = - 2g” [q . c2 ICI . k2 - 
(W2 

cl - k2c2 . kl I 
OOdT ’ 

X J J T 
du ekl~k2GB(u)-m2T 

(@B(d2 - [W412) - 
0 0 

- %og ($) [q . c2kl . k2 - cl . k2c2 . El = (47r)2 du [(l - 2~)~ - l] 

0 

=&log ($) [tr * e2 kl~k2-q~k2~2~k1 I 
(3.5) 

Granted, these calculations are not hard to do from Feynman diagrams. Let 

us therefore move on to something more complex. 

First, let us see why all amplitudes with an odd number of abelian gauge bosons 

vanish. To calculate the amplitude with N photons, one expands (2.1) to order 

. . 
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gN. As we saw, every term in the IGKF contains exactly N &B’S (or, for spinor 

loops, n G,‘s and (N - n) &g’s.) When every gauge boson is integrated over 

the entire loop, as it is in an abelian theory, we can make the change of variables 

._ ui --t V; = 1: ui. The integration region and the exponential exp[C k; - kjG$] are 

_, .- unchanged; the IGKF changes by a factor of ( -l)N, showing that if N is odd the 

result of the integration must give zero. 

I now turn to the calculation of the four-photon amplitude in figure 2. (For 

the remainder of this paper I will work in four dimensions. In the Bern-Kosower 

formalism all calculations beyond N = 2 are finite, so no regulator is needed.) The 

starting expression is now rather long; however, we may discard most terms from 

the start by using the theorem (2.14). 

The key is that any term C in the IGKF possessing a tail, as defined above 

eq. (2.6), may be discarded in the low momentum limit. The reason for this is that 

when k2/h2 + b the only dependence on the Feynman parameters is in the IGKF 

itself. The first index of any tail (ijk - - - mn) E C can occur only once in C, as 

part of the function @j, so C can be written as &,C’. For example 

is a total derivative, while 

(3.6) 

. 
are not. Since eg and Gg are periodic functions, and the integration region of 

each u; is the entire loop, a total derivative like (3.6) vanishes when integrated. 

. . 
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We may therefore keep only those terms which are made purely of closed chains 

without tails; in other words, rewriting the theorem (2.14), 

IGKF(N) = iN C [~(q)~(q)q(g)] + total derivatives; 
qEQR 

where Qg is the subset of QN whose elements contain all N integers. 

Thus, in the limit lc2/m2 + 0, the four-photon scalar-loop amplitude is 

r4 = (47r)%-rz4 o 2g4 jdu4 jdu3 jdu2 o o 

(3.8) 

The Feynman parameter integrals are simple and yield 

2g4 r4 = (47+24 
D2(2, V2(4,3) + D2(3, W2(4,2) + D2(4, V2(3,2)] 

+ & [D&h 3,2,1> + D&, 2,3,1> + D&4 4,2, I)]} 
(3.10) 

In the Feynman diagram calculation each of the three types of diagrams has terms 

proportional to log[M2/m2] and to l/m2; in the Bern-Kosower formalism these 

terms are automatically removed by the IBP procedure and never need to be com- 

puted. Even if one were to identify all terms in the Feynman diagram calculation 
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that are lower order than l/m4 and discard them, the remaining terms would mul- 

tiply a substantial number of integrands, in contrast to (3.9) in which only two 

appear. 

For a Dirac spinor world-line supersymmetry gives us 

0 0 0 

D2(2,1)D2(4, 3)([ti;]2 - [G$‘]2)([&$f]2 - [Gy12) 

+ &(3,1)D2(4, 2)([@]2 - [GF]2)([ti4,2]2 - [Gp12) 

+ &(4,1)&(3, 2)([@12 - [Gy]2)([&g]2 - [Gy12) 
(3.11) 

+ D&l, 3,2,1)(G$%gGgGg - GyGpG$!Gy) 

+ D4(4,2,3,l)(G~C$,?G;G~ - G4,2GgGpGF) 

+ D&,4,2,1)(@G~G$%~ - G$!G$%$?Gp) 
> 

leading to 

4 

r4 = -4(JT;2m4 Dd2,1)&(4,3) + &(3,1)&(4,2) + Dz(4, 1)D2(3, 2)] 

-- l4 [D4(4,3,2,1) +D4(4,2,3,1) +D4(3,47271)]} 
45 

(3.12) 

Clearly D2; bears some relation to Ffi”Fpv, and 04 to F~VFv,F~uF,,. Let us 

make this relationship more precise. In Paper A the derivation of (2.1) required a 

gauge field AI” = C $c@‘~. The appropriate field strength is therefore 

N 
Fpv = dfiA” - d”AP = i 

C( k’t; - k;ce, (3.13) 
i=l 
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while (Fp”)P f FL: . - * FL: F/i is given by 

where the starred sum indicates that only terms in which i, is the largest index 

of the set and in which i,-r > ir are to be included (this eliminates all equivalent 

factors of Dp.) 

With this result we may identify the expression (3.10) as 

2. 4: . 32 (F”VFvfl)2 + 8 .I45 FC”“F~pFP”Fu, 
> 

(E2 - Bi)Z -t f (E * q2} 

(3.15) 

where I have used 

Fp”Fv, = 2(E2 - B2) ; Fp”F,pFPuFucs = 2(E2 - B2)2 + 4(E. B)2 . (3.16) 

(The general relation between electromagnetic fields and (F,‘)P 

pendix B.) For the Dirac spinor the four-photon amplitude is 

is given in ap- 

r4 22 = - 2(4r)2m4 2!14 2 .42 .32 (Fp”F,,)2 - -& F’lYF,,F’CF,p} 
4 (3.17) 

= (4&24 
- -&(E2 - B2)2 + f (E. B)2} 

This is of course the famous Euler-Heisenberg Lagrangian. 

. . 
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We may also use (3.14) t o write down the effective action for general N. Re- 

ferring again to the theorem (3.8), and computing the signs q(q) by comparison 

between particular terms in (2.1) and particular terms in (FP”)P, the complete ef- 

‘_ fective action in this limit may be written down. The coefficients of the various 

terms are simply given by the integrals of the 6’, chains and G, chains. Specif- 

ically, note that any structure D(q)&(q) in (3.8) contains at least one term of the 

form 
N 

rI 
em * kj,,,&gim . (3.18) 

m=l 

On the other hand, the GKF and IGKF always contain the terms 

(-i)N fi r-2 em. kj_G;Ejm] . 
m=l j,=l 

(3.19) 

We may use this to determine the overall sign q(q) for each q. Now, with the help 

of (3.14), we may conclude that at order-g N the low-momentum photon effective 

action due to a massive scalar loop is given by summing over all partitions II(N) of 

N into even integers - I will write II(N) = {na, n4, . . . , nN}, np E (0, 1, . . . , N/p}, 

such that N = C(npp) - and associating with each partition the appropriate 

gauge-invariant factor and coefficient: 

(3.20) 

Here 

ban =fi 
1 

(J > 
dui ,gh%$y2n-1 . . . ($&g 

l 0 

~(~2;‘:)~ [4n2 - 4n - l] + ne 22r+1r 
r-l (2r + l)! b2n-2r * 

(3.21) 
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For an arbitrary number of dimensions one makes the replacement 

(N - 2)! 
mW--2)(442 + 

(N - D/2)! 
,W-W2)(4+W * (3.22) .. 

For spinor loops the result is 

rw = -2(ig)N w - v 
(47q ,2(N-2) (3.23) 

where bp is as above and 

The recursion formulas (3.21) and (3.24), which are straightforward to derive 

with the help of appendix A, yield 

bz=-;, b4=-& bG=--. 
945 ’ 

f2 = -1; f4 = f ; fc = -;. 
(3.25) 

We may use these results to check that (3.15) and (3.17) are indeed given by the 

general expressions (3.20) and (3.23). 

At order g6, the scalar hexagon gives 

3!g6 
rs = - (4T)2m8 1 - 3!. 413 . 33 (FpVFw)3 - 4. gf 135 (F”“FyPF”“F~~)(F”PFp,) 

- 12 2g45 F”vF,,FPuF,,FaBF&, 
> 

6 

=(4T;2m* $& (Is2 - 02)(E * q2} 

(3.26) 



while the Dirac spinor hexagon gives 

3!g6 
rs = + 2(4T)2m8 23 3! .43 .33 (F’“Fd3 4. ,“y,,, ‘~ - (F”“FypF”“F~~)(F*pF~~) 

124 

.._ + . 12 * 945 Fp”F,,FPuF,,FaPF PP > 
- 

(3.27) 

At this order, Feynman diagrams generate spurious terms at l/m2, l/m*, and 

l/m67 all of which cancel in intermediate steps. 

The above results of course agree with those derived by Schwinger [123 for 

constant background fields. Indeed, Schwinger’s exact result may be derived from 

the path integrals of Paper A. Alternatively, one may expand the path integral in 

powers of the background field; one arrives at the same products of GB and G, 

chains as in (3.20) and (3.23). 

In summary; the first-quantized approach to calculations allows many of the 

steps of Feynman diagrams to be circumvented. In this approach it is easy to 

identify the gauge invariant structures of the effective action and the integrals which 

must be computed to find their coefficients. The regularity of these structures 

and their associated integrands makes it possible to analyze the one-loop effective 

action completely. While this was done years ago by Schwinger [12], it is not 

straightforward to do this using Feynman diagrams because many spurious terms 

are generated and must be calculated and cancelled, and because many terms 

related by gauge invariance multiply different integrands which nonetheless give 

in the end the same coefficient. These problems are solved by the Bern-Kosower 

formalism, independently of the n2/ m2 + 0 limit which was used in this section 

*. 
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as an illustration. Thus, the power of the Bern-Kosower approach lies not in 

its expression in terms of Feynman parameter integrals, which could be simply 

accomplished from Feynman diagrams [6,7,9], b u in its special organization which t 

. . . allows terms to be easily analyzed and computed and unnecessary cancellations to 

.; - be avoided. This power is evident even in abelian gauge theory. 

4. The Non-Abelian Case 

In this section I treat particle loops in non-abelian background fields. There 

are several new complications. In a non-abelian theory the expansion in powers 

of k2/m2 at fixed power of g is not useful; for example, there are logarithmically 

divergent terms not only at order-g2 but also at g3 and g*. We should therefore 

expand the full one-loop effective action in powers of l/m2. At order-gN we will 

compute terms up to l/m2(N-2), which is as far as we would go in the abelian case. 

A second complication is that if the IBP procedure is used, there are extra terms, 

called pinch terms, which must be computed when working at any given order in 

g. (The rules for calculating them are closely related to the pinch rules presented 

by Bern and Kosower [1,2] for the computation of scattering amplitudes; they are 

discussed in Paper A and presented in appendix C. As of now they have not been 

proven correct to all orders.) These terms are organized in a way which reflects the 

underlying gauge invariance. In fact, these pinch terms never need be computed; 

they always contribute parts of gauge invariant structures at the same or lower 

order in l/m2 whose coefficients are already known. Another important change 

concerns the addition of color traces and the associated alteration of the integration 

regions. Instead of integrating all gauge bosons freely around the loop, we must 



now restrict the integrations in accordance with the path-ordering associated with 

each color-ordering, as explained by Bern and Kosower [1,2] or in Paper A. As a 

consequence the total derivatives which vanished in the abelian case will not do 

‘1 so here - implying that structures other than (Fp,,)2n will occur in the effective 

.; - 
-- action - and in addition the argument for the vanishing of odd-point amplitudes 

fails. 

At the four-point level and beyond, the discussion is further complicated by 

the different possibilities for performing the IBP and by ambiguities inherent in 

the expression for the effective action itself. For example, one may write 

FpuDPD2DpF,, = -~F~YFP"F~~F,,+F'YD=D~D~D~F~~ (4-l) 

showing that any given expression for the effective action is not unique. Further- 

more, by integrating by parts with respect to IC (not proper time, as in the IBP 

used in the Bern-Kosower formalism) one may change the form of terms in the 

effective action. Fortunately for the previous chapter, these ambiguities do not 

arise in the abelian theory. 

The vacuum polarization due to massive scalars or Dirac fermions is the same 

in QCD as in QED, 

itif2 1 1 
1% (2) ( 4TrJ’puFuJor~er-~2 x 

3, complex scalar loop; 

2, Dirac spinor loop. 
(4.2) 

so let us turn our attention to the 3-gluon effective action of a massive particle. 

We may expect terms of the form (Fp”)37 but we should not forget that the term 

(Fp”)2, which appears at order g 2, has an order g3 piece which must appear in this 

calculation. We will see that this happens in a very beautiful way. 

1s 
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The expression for the three-gluon amplitude is 

G9j3 
1 u3 

r3(h,ka,k3) = - w2 1 
Tr(Ta3Ta2Ta1) du3 I J du2 

. 
0 (4.3) - 

+ Tr(Ta2Ta3Ta1) 

where the generating kinematic factor is 

+ ( - icr . c,~?~ & c3 . kp6’z + cyclic permutations .)] 
(4.4) 

p=l 

(Recall that 6$$ A 0.) Integrating by parts yields 

IGKF=-i&[ ~3 - kpDa(2, l)[&;]“@ 
p=l 

(4.5) 
+ 62 . kpD2(17 3)[6’;]2&$ ] 

--D&i, 2,l)@$;ti~ 

and the integrations yield 

h(kl, h, h) = - g3 30m2(47r)2 
Tr(Ta3Tu27’u1) 

x 
([ 

~3 . (h - h)D$, 2) + 62 - (kl - k@z(3, 1) 

+ 61 * (k3 - kz)Dz(2,3)] - =h(3,2,1)) 

+ (2 - 3) 
1 

P-6) 
Of course, this is not the entire order-g3 effective action; there is still a pinch term 

to be evaluated below. 

.s 
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Clearly, we should identify D3(3,2,1) as stemming from a term Tr(FPV)3 in 

the effective action. The other terms contain (Fp”)2, and in order to be gauge 

invariant should also contain two covariant derivatives. Because of the Bianchi 

._ identity, then term Tr( DPFp”)2 is the unique term involving two field strengths 

and two derivatives; the equation of motion is not needed for this conclusion. By 

writing out these gauge invariant structures, we may easily use (4.6) to identify 

their coefficients in the effective action: 

In particular, (4.6) contains the part of (4.7) h h w ic is order g3 and which involves 

the abelian pieces of Fp”. Other terms in (4.7) come from pinches or from expand- 

ing (3.4) in k2/m2, as will be shown below. 

For example, it is interesting to see how the term (dpFflv)‘, part of (DPFfiV)2, 

appears in this approach. Since it is .an order-g2 term and is higher order in 

k2/m2 than the term (Fp”)2, it must appear in the next-to-leading term in (3.4). 

Expanding (3.4) we find 

(i9j2 h(h,k2)11/m2 = - 
w2 [ 

cl.c2 kl~k2-q~k2~2.kl kl.k2 I 

X ] du [&B(u)]~ [$GB(u, T)e-m2T 
0 0 

W) 

which has the correct Lorentz structure but not obviously the correct coefficient. 

However, since 

G; = T J duk tiz (4.9) 
uj 

the coefficient in (4.8) is equal to the coefficient of ~1 . (k3 - kz)Dz(2,3) in (4.3). 
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Now let us move on to the application of the pinch rules, as described in 

Paper A and presented in Appendix C, to the IGKF of (4.5). For the color trace 

Tr(Ta3Tu2Tul) and the diagram given in figure 3, the pinch rules tell us to extract 

.-. a contribution from the term D3(3,2,1) in (4.3) of the form 

:. - 
-- 

i[ dT ] du3T du2 exp( fl: ki.kjG$-m2T) 
0 0 i<j=l 

[ 
21 (~3 . klea . cl - ~2 . k1c3 . q)&‘, 6’ -f3” S(u3 - u2)/T] 

(4.10) 
= -i (~3 . klc:! . ~1 - ~2 . ICI 63 . ~1) 

du [e~(u)]~{ 1+ S(k2/m2)} 
0 

where I have left off the overall factor of (ig)3(4r)-2. Symmetrizing in 2 +-+ 3 

and summing over cyclic permutations, we get the full pinch contribution, which 

is plainly the cubic term in (Fp”)2,-as expected from (4.2). Notice it has the same 

dependence on the Feynman parameters as does the quadratic term (eq. (3.4)); 

thus it has the correct coefficient. Furthermore, the antisymmetry in exchange 

of any two indices show that this term is proportional to the structure constant 

Tr([Tu3, T”‘]T”‘), as it should be. We could have guessed this would be the case; 

every pinch removes a factor of ki . kj/ m2 from the result without changing the 

power of g in the coefficient, indicating that pinch terms stem from operators which 

first appear at order gk/m2tkB2) but which have pieces at the same order in m and 

higher order in g. 

Eq. (4.10) also demonstrates that pinching a closed chain of G, functions leaves 

a closed chain of eB functions (though the kinematic structure acquires a gap); 
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similarly, pinching a tail leaves a tail of G, functions. (This is a trivial consequence 

of the pinch rules.) Of course the number of G, factors in a closed chain or tail 

decreases by one when it is pinched. 

If we now expand (4.10) to the next order in k2/m2, we will find a contribution 

that is at the same order in g, k and m as those in (4.6). However, as we will 

see, the Lorentz structure of these terms cannot include any of the Dk functions 

as defined in (2.8) and (2.9)’ and therefore must involve non-abelian pieces of Fp” 

in (4.7). Since the commutator in Fp” carries a power of g, the only term in (4.7) 

which fits this description is the order-g3 part of (dpF~““)2. Indeed, the expansion 

of (4.10) yields 

i7 dT .) dusJ dU2 esm2Ti$lki* kiG< 
0 0 0 

x 
[ 
(c3 - klc2 . cl - c2 . klc3 . ,I)621 b13 B B +3 - u2,/T] 

(4.11) 
= -i(eg - klc2 ~61 - c:2 . kl Es . ~1) ICI . (k2 + k3) 

x 7 Fe-m2T] du [e~(u)]~GB(u){ 1+ CJ(k2/m2)> 

0 0 

which from (4.9) has the correct coefficient. 

Repeating all of this for quark loops is simple, using world-line supersymmetry; 

the same gauge invariant structures appear but with new coefficients. The new 

terms in the effective action are 

(DpF,Y)(DpF,‘)] + ig&Tr ~pvFvpFpp]} (4.12) 

I will now compute the order-g* terms in the effective action. If I were merely 



interested in calculating the effective action, it would be sufficient to use the the- 

orem (2.14) to write down enough of the IGKF to compute the coefficients of all 

new gauge invariant structures appearing at this order. My interest, however, is in 

. . . showing that the Bern-Kosower formalism has a special organization which makes 

.: - it easy to understand how and where individual terms in the effective action arise. 

For the purpose of illustrating this feature, I will compute the full IGKF in detail, 

use it to find the coefficients of the new structures in the effective action, and 

then study the pinches of the IGKF to find explicitly all remaining order-g* terms 

expected from the new structures and from (4.2) and (4.7). 

The first step is to compute the full IGKF, which requires choosing an algorithm 

for integrating by parts. The ideal method for carrying out the IBP has not yet been 

found. It is useful, for the purposes of this paper, to maintain as much symmetry 

as possible under cyclic permutations of the indices and under the replacement 

ei H ki. However, this still does not completely specify exactly how to perform 

the IBP, nor is complete cyclic invariance possible. Perhaps by systematically 

analyzing the gauge invariant structures produced at arbitrary order it will be 

possible to design a particularly elegant algorithm, or perhaps 

techniques can be found, but I will not discuss this issue further 

At order-g*, 

r&l, Jca, h k4) = 

29* 
(47r)2m4 

tr(Tu4Ta3Tu2Ta1) du4 j jdu3 jdu2 
0 0 0 

many equivalent 

in this work. 

(4.13) 

+ all non - cyclic permutations } [IGKFI 
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To find the IGKF, we start from the Master Formula, which gives 

P,%T,s=l 
4 

T,S=l 

+ all non - equivalent cyclic permutations ] 

At this order one may proceed by applying the IBP first to the terms with the most 

factors of (2 BY though there is an ambiguity in the choice of index.* As a specific 

algorithm, I choose to IBP with respect to the largest available index whenever 

the requirements of gauge invariance and cyclicity are not sufficient to determine 

the next step. With this arbitrary choice, the GKF becomes 

“21 '37 '49 Q * kT Q . k,GB GB GB 
T,S=l 

+ all non - equivalent cyclic permutations ] 
4 

(4.15) 

- 
CC ~1 

“21 ‘43 ‘4s 
* E2c3 * &hkJ * k,GB GB GB 

s=l 

One may now recognize that the new terms generated in the previous step are 

related by gauge invariance to other terms in the GKF, and the remainder of the 

* I thank Bern and Kosower for suggesting this method to me. 



IBP should be carried out in such a way as to preserve that relationship. The 

related terms are 

The IBP is now applied to all the remaining terms with a GB function. In most 

terms, the choice of index for the IBP is irrelevant. For example, if we integrate 

@!@k’g by parts with respect to t4, we find 

(4.17) 

whereas if we IBP with respect to t3, we get 

- f: C$%;@?(k3. k,@ + ICI. k&g + k2. ks($) . (4.18) 
s=l 

Since &‘g = -kg7 etc., (4.17) and (4.18) are equal. Similarly, the IBP of 

(3 @ @l is unambiguous because 

-&k3 . k&g + kl . k&f) = - &(ka. k,@ + k2 . k&‘~) 
s=l s=l 

(4.19) 

However, in the case of c$,?[G~]~, using t3 for the IBP is just as valid as but is 

not equal to using t4. The reason for this ambiguity is unclear. Notice, however, 
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that in either case the term [~?g]~[@j]~ will occur; this is in accordance with the 

theorem of Sec. 2. (See also lemma 3 in Appendix D.) . . 

Again I use the prescription that when in doubt the largest available index is 
.-.r 
. used for the IBP. This results in 

-, -_ 
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IGKF= ~1. 
0 

k3e2 . k3($d; + cl . k4c2 . k&f@ 

+el . k3c2. k&?&“B + cl . k3c2 . k&f@ 

+q + k4c2 . k&f&~ + cl . kqc2. k&g@ 
.-. 

.: - & > k2c2 . k4 - (1 . c2k2 . kq)&%~ 

+(q - k2r2 e k3 - cl . c2k2 . k&g&g D2(4,3)@$: 
I 

+ three cyclic permutations 
> 

+ 
{ 

[El - k2c3 . k,@j?$? + cl + k4c3 . k&%~ 

+el . k2c3 . k4blij2@ + ~1 . kqc3. k&%~ 

+el ..k2e3. k,@@jj + cl + kqc3. k,&‘g&“B’ 

+(el - k3c3. k2 - ~1 . cz3k3 . k$$%~ 

+(q - k3e3 . k4 - cl . tz3k3 . k&‘~@] D2(4,2)~~~4, 
(4.20) 

+{1+2+3+4~)1}. 
> 

+ D2(2, l)D2(4, 3)[&;]2[tig]2 + D2(1,4)D2(3, 2)[C?y]2[tig]2 

+ Da(3,l)Da(4, 2)[&;]2[@72 
1 

+ three cyclic permutations 

where the DI, are defined in (2.8) and (2.9). In a non-abelian theory the structures 

.s 
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Tr(FpvFvpFpuF~p) and Tr(FpvFvuFppFop) are different; the order of indices in 

Dp, up to cyclic permutations, is therefore important. Note also that the terms 

multiplying D2 (4’2) are not cyclically symmetric. 

The result of the integrations in the limit k2/m2 --f 0 is 

I’(‘) = g4 ’ 
4 ( 4r)2m4 630 

Tr[Ta4Ta3Ta2TW] 

- 3~1 - i&e2 - k3 - 361 + kqc2 . k4 + 361 . kje2 . kl 

+3(~1 - k2r2. k4 - E 1 . e2k2 . kq) - 2~1 . k3c2 . k4 

-8~1 - he2 - kl + 8q . k4c2 . k3 

--S(el - k2c2 . kj - EI : ak2 . ks)]D2(4,3) 

+ three cyclic permutations 

+ [6c1- 
{. 

he3 - k2 + 69 - kqc3 . kq - 661 . k2c3 . k4 

-6q - he3 - k2 + 5~1 . k2c3 . kl + 5q 1 k4c3 . kl 

+5(q . k3c3 . k2 - cl . c3 kg . k2) 

+5(q - k3e3. k4 - E 1 - wh . h)] D&2) 

+{1+2+3+4+1} 
> 

+3O[D2(2,1)D2(4,3) + &(1,4)&(3,2)] + lOD2(3,1)D2(4,2) 

+ 
1 

961 . (ka - k4)03(4,3,2) + three cyclic permutations 

-lOD4(4,37 27 1) + 12[D4(4,2,3,1) + D4(3,1,2,4)] 1 
+ all non - cyclic permutations, 

(4.21) 
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where the superscript zero is to remind the reader that the pinch contributions 

are not included in this expression. Note that most of this result could have 

been written down using the theorem (2.14); only the terms of the form ci * cj Icj * 

‘.. k,Da(m, n).depend on the algorithm used for the IBP. 

This expression is far more organized than similar expressions coming from 

Feynman diagrams. Certain pieces of the above result are easy to identify, while 

others are more subtle. Terms made entirely of closed chains can be identified 

as powers of Fp”; the terms with D3 and a factor ci . kj are evidently part of 

F,“(D,Fvp)(DaFP~). Th e erms with a single D2 are obviously more complicated, t 

and we must enumerate the possible gauge invariant operators. We may note the 

absence of factors like ci . ki or ci . kjci . k; in the tails of the D2(m, n) chains 

to eliminate structures like (D2F”“) - - - and (DpD,Fp,)(DuD~FV~) respectively. 

(Not that. these structures are dis.allowed - they just do not give the simplest 

representation of (4.21), and since they can be reexpressed in terms of other op- 

erators using (4.1) and similar identities there is no need to use them.) The only 

remaining structures are 

Tr[(DpD,Fpy)(DpD”F”“)l , Tr[(Fp”(DpFpv)(D,F”p)] . (4.22) 

Next, merely by studying the terms in (4.22) which are a product of a term in a 

D2 factor and a tail of ci-kj factors, one can easily identify which linear combination 

of these structures appears in the effective action. The effective action contains 

. . 
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the terms 

(4.23) 

This shows that, using the theorem (2.14), one can write down enough of the IGKF 

to find the order-l/m4 contribution- to the effective action without actually going 

through the IBP to find (4.20). Whether this is true for any number of gluons is 

not known. 

However, the astute reader will notice that although (4.23) contains many terms 

of the form ci . cjkj . k,D(m, n) from the structures (4.22), not all of these terms 

appear in (4.21). Th e reason for this is as follows: because each pinch removes a 

k; * kj factor, while expanding in k2/m2 adds factors of k, . k, with r, s not equal 

to ;,j, it is possible for terms of this type to hide in the k2/m2 expansion of pinch 

contributions. I will show this, as well as other aspects of the pinching process, in 

the remainder of this section. 

First, I should write the result for four gluons and a Dirac spinor loop, which 

is given by supersymmetrizing (4.20) and repeating the integrals. The new terms 

in the effective action are 

. . 
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2 

(4T;2m4Tr 315 [ qFP”(D,F,,)(D,FU’)] + ~[(D”DuF,,)(DP~uFYL)] 

+ ~[FJD,F,~)(D”F,‘)] - ~(F,yFv~FpuFuq 
,. 

- g(F,“FpuFv~F,p) - ~(F,yF,~Fp”F,“) 
(4.24) _ 

_I .- 
+ +$F,yFpUF/Fu~) + +$F,yF,“Fu~Fv~) 1 

Most of the remainder of this section will be devoted to studying the pinches 

of (4.20) and their expansions to l/m4, so as to find all order-g4 terms in (4.2) 

and (4.7), as well as those in (4.23) which did not appear in (4.21). There are 

a number of features which we may guess on simple grounds. For example, the 

double pinches, which come from diagrams like fig. 4, are order g4 log(iU2/m2), 

and are therefore the g4 term in (4.2); th e single pinches, from fig. 5 and related 

diagrams, are order g4/m2 and therefore come from the g4 piece of (4.7). 

Before going further, it is useful to define some shorthand notation: let F212, 

F213, F2]4 be the pieces of Fp”F,, which are quadratic, cubic and quartic in the 

gauge field; let F313, F31 4, etc. be similarly defined. We will also write [OFO’F],,,, 

where 0 and 0’ are gauge covariant operators coming from the tail(s) of an (Fp”)2 

closed chain, to indicate the part of this structure involving m factors of the gauge 

field of which n factors come from (FcL”)2. 

Now I turn to the explicit computation of the pinch contributions. To begin 

with, the only g4 term at order 1og(M2/m2) is F2j4 from (4.2). Since it is divergent, 

it must come from a Bern-Kosower diagram whose loop has two legs, as in figure 

4. Only D4 factors from (4.20) contribute to double pinches; if we double-pinch 

*. 
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D&i, 3,2,1)@@,?@@ using the diagram in figure 4, whose associated color 

trace is Tr[T”4Ta3Ta2Tal], we get 

[ dT 1 du47 dusf du2 exp(i$lki*kjGg-m2T) 
0 0 

[ E3 * c264 * ~1JigG'g S(U~ - ~3)6(~2 - U1)lT2] 

= -Es ’ c2E4 ’ 61 7 $e-m2T j du [&(u)12{ 1 + O(k2/m2)} 
0 0 

(4.25) 

which has the correct coefficient and Lorentz structure to be part of F214. (In this 

and subsequent formulas I ignore t-he overall factor of (;~)~/(47r)~.) By permuting 

indices, one may easily show that the full set of double pinches gives the full 

structure of F21q. 

Eq. (4.7) implies the existence of several terms at order g4/m2. These are F3j4, 

[DFDF]4,3, and [DFDF]4,4 = [(d,Fp,)2])4, which all involve the non-abelian part 

of Fp”, and [DFDF]4,2 = g2[Ap, FCLv][AP, F”“]\ 4,2, which contains factors of the 

form Da(m, n). On the other hand, only single pinches of (4.20) and the expansion 

of the double pinch (4.25) can give contributions at order l/m2. If we pinch a factor 

Dq(i, j, m, n), we get a term with a closed chain of three G, functions, which can 

only come from F314; for example, pinching D4(4,3,2,1) with figure 5 gives 

. . 
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I 

+ kl . ~4~3 - k4c2 . ~1 - kl . kqc3 * c462 * ~1) 

b 0 0 
(4.26) 

which is one contribution to F314 in (4.7). 

If we pinch a term of the form c; * kjDs(j, m, n), then we get a closed chain of 

length 2 which is not proportional to D2; the ci - kj tail is unchanged. Such a term 

must contribute to [DFDF] 4,3, as may easily be checked. 

The only other terms in (4.20) which contribute to pinches are terms like 

ci . cjkj . kmD2(m,n); the pinch leaves the D2 factor unchanged, allowing US to 

identify the result as part of [DFDF]4,2 = g2[Ap, FpV][AP, F”p”]/4,2. For example, 

pinching the &(4,3) and &(4,2) terms in (4.20) using figure 5 leaves 

[ dT IduJJ du37 du2 exp( 5 ki*kjGg-m’T) 
0 0 i<j=l 

(4.27) 
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which is clearly part of [Ap, FpV][AP, FVp] with the coefficient function appropriate 

to (DPFpV)’ (see eqs. (4.5)-(4.9).) 

The only remaining l/m2 term, [DFDF] 4,4 = [(apF,,)2]4, contains the quartic 

‘y part of ( FpV)‘, which requires a double pinch; it must therefore stem from the 
~- :, - 

expansion of (4.25) to th e next order in k2/m2, just as in (4.11) where [(dpFpv)2]3 

stems from the expansion of (4.10). 

At order l/m4, the expansion of the single pinches of the 04 and ci - kj 03 

terms clearly give [FD,FD”F]4,4 = [Fp”&Fv,daFP~]4,4 and [(D”D”F)2]~,3, while 

expansion of the double pinches of 04 gives [(DpDuF)2]4,4 = [(dPduFp”“)2]4,4. 

However, the? expansion of the pinches of E; * cjkj . km Da(m, n) is complicated. 

Before pinching, these terms contribute to the structures FP”DpFpVDuFV~ and 

D,DuFp,D~Du F”p. The pinch removes the factor of kj . km, but expanding in 

k2/m2 adds a factor of k,.k,, with {r, s} # {j, m}. It is straightforward if tedious to 

show that’all of the required termsfrom~F~“DpFClvDuFY~ and D,DuFp,D~DuFV~ 

are produced, though there is nothing elegant about the way in which this occurs. 

It is also at this point that ambiguities in the IBP procedure make their presence 

felt, as I will now demonstrate. 

As an illustration, let us focus our attention on all terms in the effective action 

of the form cl * EaD2(4,3)ki * kj with color trace Tr[Ta4Ta3Ta2Ta1]. The IBP 

procedure used above led to the following terms in (4.20): 

(4.28) 

For this color trace, only the kg . k3 term can be pinched, since gluons 2 and 4 are 

not adjacent. Carrying out the pinch, which comes from diagram 5, and expanding 
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to the next order in k2/m2, one finds the contributions 

(4.29) - 
761 . c2@D2(4,3)d3,4@6(U3 - 142)/T 

- 
[ICI - (k;! + k3)Gg + kl - k4Gg + (k;! + k3) . k&‘~] . 

Adding (4.28) and (4.29) and carrying out the integrals over the Feynman param- 

eters, one finds an overall contribution of 

g4 1 
---cl - aD2(4,3) (4a)2m4 630 

862 * k3 + h - h) + 3(ka . k4 + kl - k3) + 3kl - k2 + 6k3 . k4 I 
(4.30) 

+... 

which is in agreement with (4.23). 

By contrast, if the factor eg in (4:15) is integrated-by-parts with respect to 

the index 1 instead of 2, then the IGKF contains the terms 

This expression is related to (4.28) via the exchange of labels 1 c) 2, 3 H 4 and 

an overall minus sign; this minus sign is cancelled by another sign stemming from 

the change in the integration direction under the label interchange. Since the label 

interchange leaves (4.30) invariant, the process of pinching and expanding in k2/m2 

leads to the same result as before. 

Thus, the result (4.23) d oes not depend on the IBP procedure, even though 

(4.21) does depend upon it. The pattern with which this occurs is somewhat 
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mysterious, and it would be helpful to understand this point better. The way to 

avoid running into any confusion is to study first the terms whose tails contain 

only ci . kj factors, since they are independent of the IBP procedure, are covered 

‘., by the theorem (2.14), and, up to this order at least, are sufficient to specify the 

:, - effective action. 

The project is now complete: all order-g4 terms in (4.2), (4.7) and (4.23) have 

been found in the Bern-Kosower formalism. To do the same using Feynman rules 

would be much more difficult, as the reader is encouraged to verify. This again 

suggests that the special organization of the Bern-Kosower Master Formula and 

the accompanying pinch rules gives the new technique advantages over standard 

Feynman diagrams. 

At higher orders, the proliferation of gauge-invariant structures hinders the 

process of writing down the non-abelian effective action. In terms of Lorentz 

invariants,‘any amplitude may be straightforwardly computed; it is merely a matter 

of patience to write down all the terms and compute the polynomial integrals. It 

seems, however, that identifying the gauge-invariant structures being represented 

becomes rapidly more difficult at higher order in g, and an organizing principle is 

needed if a general all-orders analysis is to be carried out. 

The work of this section shows that while the non-abelian effective action is 

much more complex than the abelian case, it is still possible to make relatively 

quick progress in comparison to what would be expected from Feynman diagrams, 

and to identify terms which do not occur for covariantly constant fields. Without 

the IBP procedure, this would be much more difficult, for the reason that at a 

given order in g, the terms at low order in l/m2 are a mixture of spurious gauge- 
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non-invariant terms, all of which cancel in intermediate steps, and terms which 

are completions of gauge invariant operators from lower order in g. Unless the 

IBP is performed one cannot tell these two types of terms apart. The pinch rules 

.._ also make the analysis easier by employing Bern-Kosower diagrams, which separate 

:, - terms according to their dependence on the particle mass, or, when the k2/m2 -+ 0 

limit is not taken, by their dependence on the length of the loop T. 

5. Discussion and Conclusion 

In this paper I have used some simple calculations to illustrate the power of 

the Bern-Kosower approach. The calculations can be carried out from Feynman 

diagrams but are clearly easier in the new technique. In contrast to previous com- 

putations using the Bern-Kosower rules, this can be verified by any field theorist 

in an hour or two, and skeptical readers are encouraged to try these calculations 

themselves. 

One crucial point should be kept in mind. These computations were performed 

in the simplifying limit of low momentum. However, the canceZEations inherent in 

the IBP procedure do not depend on this limit. The advantage that spurious non- 

gauge-invariant terms are removed and the number of integrands and diagrams is 

reduced is a general feature of the Bern-Kosower rules. This has importance not 

only in reducing the amount of work in analytic calculations but also in avoiding 

dangerous cancellations of large spurious terms which occur in numerical evaluation 

of Feynman diagrams. We still do not know why the IBP procedure works this 

way, nor do we have a proof of the off-shell pinch rules given in Appendix C and 

used in Sec. 4. 
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Finally, I want to stress that the Bern-Kosower rules are not simply equivalent 

to writing all Feynman diagrams as Feynman parameter integrals. This is the 

technique used in [6, 71 and also, for comparative purposes, in [9]. Such a technique 

‘I’ does not lend itself to the sort of simple analysis used in this paper, because the 
.; - results it leads to are not organized by Lorentz invariants and one-dimensional 

propagators. Only with the special organizing principle of first-quantization does 

the IBP become a natural procedure, and without the IBP none of the results 

of this paper would have been possible. It should also be stressed that without 

the IBP the simple Bern-Kosower scattering amplitude rules [1,2] would also be 

impossible. In conclusion, it is the special gauge invariant organization of the 

Bern-Kosower Master Formula which distinguishes the Bern-Kosower rules from 

all previous techniques. 
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APPENDIX A: Formulas needed to derive recursion relations 

In this appendix I compute the integrals 

.; - 1 

fi (1 dui) ($;m($~m-‘. 
i=2 0 

As always I have set u1 = 0. 

For this, I use 

. @f@ , fi (j dui)G;mG;‘m-‘...G~G~. 
i=2 o 

1 
P 00 

uku;)@ = ] du; (E a~U~)[SigIl(Uj;) - 2Uji] = 

0 

= 5 [?‘*(g + &) - (1 - 2Uj)&] 

k0 

where uji z uj - ui. If we assume Cr & = 0 then we find 

2%-1 a’], 1 - 
k ’ 

k>O; ab=f+ 
o k+2’ 

which also satisfies C,” & = 0. Using this result, along with 6’: = -2~2 + 1, it 

is easy to derive the recursion relation (3.21). 

.- 
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Similarly, 

c,uf)Gj,” CkUf)Sigll(Uji) = 

ck = -- 
- k+l I 00 

= c I k ckuj ; 
0 

I 2ck-1 
c =-ii-’ k k>O; c;=-2”‘“. 

o k+l 

Using G$! = 1, this leads to (3.24). 

APPENDIX B: Expressing ( Fp”>p in terms of electromagnetic fields 

It is easy to write (Fpv)P as a function of S E E2 - B2 = i FpvFVp and 

p~E.B=~ 2+,puF~“FPu, using- the generating formula 

[(FJ4],p = F”xFxpFpuFup = SFayF,p + P2g,p. 

If we write 

[(FJP]: - A,FaYrFyp + C,gj. (B-2) 

so that (Fp”)P = 2SA, + 4C,, then it is easy to see that 

W) 

A, = SA,4 $ CPA2 , Gp = P2Apw2 . P.3) 

Starting from A0 = 0, Co = 1, one may generate the entire sequence. For example, 

Tr(F,“)4 = 2S2 + 4P2, and Tr(FP”)6 = 2S3 + 6SP2. 
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APPENDIX C: Pinch Rules 

In the following paragraphs, taken directly from Paper A, I explain how to 

compute the pinch terms at order-g N. .._ (These pinch rules have not yet been proven 

to all orders.) - 

Draw all (planar) qS3 graphs with one loop, N external legs and any number NT 

of trees, such that although each tree may have several vertices, the total number of 

tree vertices NV is at most N/2. (D ia g rams with trees may seem out of place in the 

construction of a 1PI object like an effective action, but the trees used here, unlike 

those for scattering amplitudes, do not contribute the usual propagator poles; they 

serve only as a mnemonic for ensuring all surface terms are accounted for.) The 

gluons which flow into a tree before entering the loop are said to be pinched; the 

number of these is NV + NT. 

Consider a particular graph and a‘particular color(path)-ordering; label the 

external legs clockwise from 1 to N following the path-ordering. Each tree vertex, 

since it is a three-point vertex, is characterized by one line pointing toward the loop 

and two outward pointing lines I and J, with two sets of external legs ir, . . . . im 

and jr , . . ..j. that flow into them. Let J be the line lying most clockwise. Now 

examine the improved generating kinematic factor term by term. If a given term 
, 

does not contain a factor ki. kjC$ or ki * kjG$ for each tree vertex, where i belongs 

to the set of gluons flowing into line 1 and j flows into J, then it vanishes. Even 
. . . 

then, it must contain exactly one G31; or G$ at each vertex; otherwise it vanishes. 
. 

If it survives, then replace Gg or G$ by +l, replace t; + tj in all Green functions, 

and eliminate the ti integral. Finally, for every internal tree line (into which flows 



momentum from gluons r, r + 1,. . . , s), divide by 

q=T Q=T 

.._ which becomes the expected intermediate-state pole only when all external gluons 

- 
- are on-shell. The effect of this procedure is to produce contact terms; no actual 

poles are ever generated. 

APPENDIX D: Proof of theorem (2.14). 

In this appendix I will prove the theorem (2.14), using several lemmas as 

stepping stones. A reader finding the presentation too dry may wish to study 

eqs. (4.14) through (4.20) in which-the lemmas are illustrated by example. The 

reader should note that I have ignored most signs in proving the lemmas; they play 

no role in most of the proofs and merely clutter the discussion. The skeptic may 

easily add-them-in. 

In Sec. 2 the definitions of closed chains, tails, and DP(iP,. . . , i2, ;r) were given. 

We will need some further terminology and notation in this appendix. 

A chain which contains a single ci . cj&$ factor and does not close on itself is 

called an open chain. An example is 

denoted [5( 13)2]. Op en chains may also have branches, as in 151) [41(32)67]: 

‘51 ‘41 ‘13 “32 ‘26 ‘67 
GBGBGBGBGBGB - P-2) 

which may also be denoted 141) [51(32)67]. W e may separate the indices of an open 
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chain into those attaching to one index of the GB function and those attaching 

to the other; the two groups may be called the two wings W(i) and W(j) of the 

open chain. The wings in (D.2) are the sets of indices W(3) = (5,4,1,3) and 

‘I‘ W(2) = (7,$2). 

We will see that closed chains with tails and open chains are the only forms that 

can arise in the GKF before integration by parts. The IBP procedure eliminates 

all open chains leaving only closed chains with tails. 

To get from the GKF to the IGKF one carries out an IBP of all factors of ($2. 

The IBP of an open chain leads to the replacement 

where W(i) is the set of indices in the wing containing index i, or 

or a linear combination of the two. (Recall &‘zm = 0.) This is easily proved by 

noting 

Every term Co E GKF contains 0 5 n 5 N/2 factors of 6; . c$‘$ and N - 2n 

factors of ci * kjC$; (D.3) and (D.4) h s ow that after the complete IBP every term 

. . 
48 



C E IGKF will contain n factors of ci . cj($, n factors of ki . kjG$, and N - 2n 
. .’ 

factors of ci * kjGg. C thus contains N 6, functions along with N dot products 
~. 

.^ of the N polarization vectors and N not necessarily distinct momentum vectors. 

~- .; - The descendants of a term Co E GKF are the terms C formed from Co during 

the IBP; the ancestor of the terms C is Co. The ancestor Co of any term C E IGKF 

may be found by disintegrating C, namely, by removing all factors of ki. kj&$j and 

replacing all factors of ci . cj@j by ci . cjG2 in C. 

Lemma 1: 

Any term C -E GKF has the property that every index is either in a unique 

open chain, a unique closed chain, or a unique tail of a closed chain. 

Proof: 

Choose an index i and a term-C E. GKF. The polarization vector ci appears 

once in C, either in a factor ci * cj6$ or in a factor ci. kj@. In the latter case one 

may move forward in the chain containing i and j by identifying the term cj*cm&‘irn 
. 

or cj. kmGkm in which cj appears. I will say that j is the index ahead of i, while m is 

two steps ahead of i. Since each c appears only once in C, the definition of the index 

ahead is unambiguous. If by moving forward one arrives at a term cm . c,GB *’ mn then 

one cannot move further forward, since cn has already appeared in C; otherwise 

one may move forward indefinitely. However, since the number of indices is finite, 

it is obvious that either index i is in a chain containing an cm . cnGB “mn factor, or it 

is in a chain which closes somewhere on itself, in which case i is either in a closed 

chain { ij . . . n} or in a tail of a closed chain 1. . . ij . . . n) {n - - - s}. 

. . The notion of moving backward is also useful, although there may be any num- 
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. 
ber of indices behind. Given an index i, with ci. tjei or ei. kjGg in C, one moves 

backward by identifying all factors in C with ch. k;Gg; the set of indices h are the 

indices behind i. The number of such indices may be anywhere from zero to N - 1. 

‘1’ If the number is zero, then the chain ends; otherwise the chain continues with one 
- 

or more branches, and one may continue moving backward. Of course one cannot 

move backward from ci . kj ($2 into a factor eh + ei&‘g, since pi appears only once 

in C. 

Choose an index i with pi . Icj E C and begin creating a chain by moving 

backward. After p steps in this process, consider an arbitrary index g which is p 

indices beind i. Let us try to move backward one more step; what may happen? 

There may be no indices behind g, -in which case its branch of the chain stops. 

There may be one or several indices behind g, none of which have previously 

appeared in the chain, in which case the chain continues as before; however for 

sufficiently large p this option becomes’impossible since the number of indices is 

finite. The third option is for there to be an index f behind g which has previously 

occurred in the chain, which implies cf. k, E C. However, if f is in the chain then 

either cf has already appeared or f = j, in which case cj . k,Gz ’ . is in C and the 

chain is closed. We therefore conclude that the chain containing pi either closes on 

itself so that i is in the closed chain {g . . . ij}, or ends with one or more indices 

g each with cg . km E C for some m and E~ . kg $ C for any n, as in jg . . . ij) or 

Id . . . h) lg. . . h . . . ij). 

If instead we choose an index i with ei . cj E C and begin creating a chain by 

moving backward, we find the arguments of the previous paragraph are unchanged 

except that since ej has already appeared in C the chain cannot close on itself; 

. . 
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thus the chain must end as in [g * * . (ij) . . -1. 

From these considerations it follows easily that any chain in the GKF contain- ~. 

ing an c; . cj&$i factor is an open chain, and that any other chain closes on itself 

- exactly once, forming a closed chain with one or more tails. This is enough to 

prove lemma 1. 

Lemma 2: 

Any term C E IGKF has the property that every index is either in a unique 

closed chain or in a unique tail of a closed chain. 

Proof: 

From lemma 1, a term Co E GKF consists of open chains V, closed chains D 

and tails of closed chains T. Consider the effect of the replacement (D.3) in an 

open chain Vo, and for any m E Vo consider the possibilities for r. If r is an index 

in VO, then a closed chain is formed, and every index in the formerly open chain 

is in the closed chain or in a tail connected to it. If r is in a different open chain 

V, then Vo and V join to form a new open chain. If r is in a closed chain D, then 

Vo becomes a tail of D. If r is in a tail 2’ of a closed chain D, then Vo becomes a 

branch of 2’. In all four cases the resulting term has the property that every index 

is either in a unique open chain, a unique closed chain, or a unique tail of a closed 

chain. We can now repeat the process until all open chains have been removed, at 

which point lemma 2 is obvious. 

Lemma 3: 

When new closed chains are formed in the IBP of an open chain V = [- . . (ij) . - a] 

they always include the indices i and j, and the same closed chains are formed what- 

.- 
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ever the choice of index for the IBP. Furthermore, if V = [. - - a - . - b. . - (ij) . . .I, then 

any closed chain formed containing index a also contains b. 

Proof: 

Let us IBP using (D.3) (f or e ni eness) d fi t and try to make a closed chain by 

- 
using r E V. If r = n E W(i), no closed chains are formed, because both k,-k,&$” 

and kn - km&km appear in (D.3), and they cancel. If r E W(j), however, a closed 

chain {m - . . ij - - - r} is formed which includes indices i and j. The full set of chains 

is 

C C {me--(ij)...r} . 
mEW(i) rEW(j) 

P.6) 

If instead we use (D.4), or even a linear combination of (D.3) and (D.4), we get 

the same set of closed chains. The last part of the lemma is obvious from (D.6). 

Lemma 4: 

If, at any stage of the IBP, a term C contains an open chain V = [- -. (mn) . - .I, 

and i,j E W(m) or i,j E W(n), th en any closed chain in any descendant of C 

containing the indices i, j must also contain the indices m, n. 

Proof: 

Let us assume the contrary, and try to construct a closed chain d containing 

i,j but not m,n. Let us take i,j E W(m). L emma 3 prevents us from forming a 

chain of this type from V alone, but perhaps we may do so by combining V with 

another open chain V’ = [a - - (ab) . - -1. L e us consider various choices for the IBP. t 

If we first IBP using index a (or b), we fail, since a term k, - kp, r E W(a) and 

p E V = W(i) + W(j) creates an open chain [. - - (mn). a.1 with i,j E W(m), to 
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which lemma 3 applies. If instead we IBP using index n, then from the term kp - k,, 

p E W(n) and r E V’ we get an open chain [. . . (ab) . . a] with i,j, m, n in the same 

wing but with m,n lying between i and (ab) and between j and (ab); from lemma 

F_ 3 any closed chain with i and/or j contains m,n as well. 

- 
- If we IBP with respect to m, however, the term k;.k,, r E W(a) creates an open 

chain [...mn...ir...(ab)...] with i,j, m,n in W(a) but with m, n further from 

(ab) than i; the IBP with repect to a or b permits a factor k, - kj, where s E W(b), 

to close the chain, potentially leaving out indices m, n. However, there is another 

term generated by the same IBP with the indices i, r, a exchanged with j, s, b. The 

factor &$!! changes sign under this replacement, and so the two occurrences of this 

chain cancel; thus the lemma holds in this case. 

The argument may be continued essentially unchanged for cases involving sev- 

eral open chains. 

Lemma 5: 

In the IGKF, the kinematic factor in every closed chain of length p contains 

p dot products of the p polarization vectors and the p momentum vectors which 

carry its indices, and is therefore a term in Dp, as defined in (2.8) and (2.9). Any 

other closed chain formed in an intermediate step of the IBP will not occur in the 

IGKF. 

Proof: 

If a closed chain is formed only out of factors of ci * kj, then the lemma is 

self-evident. If not, lemma 4 ensures that for every factor of k, . k, inserted to help 

close a chain, a factor 6;. cj occurs as well; since the remainder of the chain is made 

*. 
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Of Em' k, factors, the lemma holds. 

Lemma 6: 

-. Suppose a term C consists of a product of closed chains 
.^ 

. . 
~- -7 - C = II dp(ip, . . . , iz, il)S,(i,, . . . , iz, i1) P.7) 

where dp is a term in D, as defined in (2.8) or (2.9), and &(n, m  . . . ,j, i) is defined 

in (2.10), such that C contains N G, functions and all N polarization vectors 

appear once in C. Then the ancestor of C is a term Co E GKF, and C appears 

exactly once in the IGKF. As a corollary, if any such term appears in the IGKF, 

then all of n DP occurs in the IGKF. 

Proof: 

The assumptions about C imply that C has N Lorentz dot products of 2N 

vectors of which N are the polarization vectors and N are momentum vectors. 
. . . 

Disintegrating C leads therefore to a term Co with 0 5 n 5 N/2 factors of ci. cjGz 

and N - 2n factors of ci . kj&$; all such terms are in the GKF. 

Now we must show that C is a descendant of Co. 

Consider first the case when C consists of a single chain dN = {mlrna . . . mN}. 

If C contains n factors of ei * EjiTIz, then Co will consist of a set of n open chains 

whose wings span the closed chain except for n gaps: 

[ m lmg . . . (m;mi+l) . . . m ,] 

1 mr+lmT+2.. . (mjmj+l) . . . m ,] 

h+lm,+2.. - @ w -4+1). . .I 

1 . . . . . . mNl 

54 



If we IBP with respect to index mj+l, then cg+’ is replaced with a sum of terms 

as in (D.4); the factor km, - km,+l appearing in the sum is special in that it closes 

the gap between m, and m,+l, leaving a term with n - 1 open chains and n - 1 

_ gaps: 

[ml&2 . ..(mjm.+l)...m,] 
- 

[mr+lmr+2.. . mjmj+l . . . msms+ims+2.. . (wmk+l) . . .I (W 

[ . . . . . . mNl 
Similarly, if we IBP with respect to index mj there is a unique term in the sum 

which closes the gap between mr and m7+1: 

[ mlmz... (mimi+l) . . . mrmr+lm,+2.. . mjmj+l . . . m,] 

[ms+lms+2.. . (mwk+l) . - -3 

. . . [ .., mNl 

(D.lO) 

Thus, the terms-stemming from the IBP of ci * cj(?i E Co with respect to i include 

a unique term in which the gap at the end of the wing W(i) is closed by the 

same k, . k, factor that was removed in the disintegration of C. Each of the n 

integrations-by-parts closes one of the n gaps in Co; after the last step the factor 

dN remains, with the correct closed chain of 6’, factors, and thus no matter what 

IBP procedure is used the chain dN is created in a unique way from CO. 

If C consists of a product of chains, then, since no index appears in more than 

one chain, the same arguments may be applied to each chain independently. This 

proves the lemma. 
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Lemma 7: 

Suppose a term C consists of a product of closed chains, as in the previous . . 

lemma, and some tails T, all of which are products of 6; . kjCf$ factors, such that 

. C contains N CB functions and all N polarization vectors appear once in C. Then -_ 

the ancestor of C is a term Co E GKF, and C appears exactly once in the IGKF. 

As a corollary, if any such term is in the IGKF, then all of T n DP appears in the 

IGKF. 

Proof: 

Here C = dT, where d is the product of the closed chains in C and T consists 

of all the tails of-d. Since T is unchanged by disintegration of C, it follows that 

Co = doT, where do is the ancestor of d. As in lemma 6 it is clear Co E GKF. The 

arguments of lemma 6 apply to do, since the terms used in reconstructing d from 

do do not involve any part of T; again there is a unique way to construct d from 

do and hence C from Co. 

Lemma 8: 

Take any structure I( = T fl DPSP, where n DPSP is a product of closed chains, 
. ., 

and where T is a set of tails, each of which is a product of zero or more ci . kjGg 

factors, such that all N polarization vectors appear once in K and each term in I< 

contains N Lorentz dot products. There is at least one term in I( which appears 

in the IGKF, with an overall factor fiN. 

Proof: 

Consider a term in d E n DPSP which consists only of ci - kjG;z factors. (That 

such a term exists follows from (2.8) and (2.9); note it occurs with a factor fl.) 

.- 
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Since the terms (3.19) always appear in the GKF, and are unchanged by the IBP, 

the term Td is in the IGKF with an overall factor of fiN. 

The theorem now follows from combining lemmas 5 through 8. 

- 
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FIGURE CAPTIONS 

1) Feynman diagrams associated with the photon vacuum polarization. 

. . . 2) The three types of Feynman diagrams contributing to the four-photon effec- 

- tive action. 

3) A Bern-Kosower diagram associated with a single pinch in the three-gluon 

effective action. 

4) A Bern-Kosower diagram associated with a double pinch in the four-gluon 

effective action. 

5) A Bern-Kosower diagram associated with a single pinch in the four-gluon 

effective action. 
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