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Abstract 

We study a generalized Einstein theory with the following two criteria:i) on the solar 
scale, it must be consistent with the classical tests of general relativity, ii) on the galactic 
scale, the gravitational potential is a sum of Newtonian and Yukawa potentials so that it 
may explain the flat rotation curves of spiral galaxies. Under these criteria, we find that 
such a generalized Einstein action must include at least one scalar field and one vector field 
as well as the quadratic term of the scalar curvature. 
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1. Introduction 

Recent astrophysical observations of distant galaxy distributions [1],[2] and the cosmic 
microwave background [3] h ave revealed a quite astonishing picture of the universe. From the 
survey of relatively near galaxies, the void structure (the Great Wall) was discovered,[2] and 
rom the pencil-beam survey of galaxies, the quasi-periodic distributions (of period about 

I- f’ 
I -13OMpc) were inferred.[l] The data from COBE, on the other hand, have revealed extremely 

isotropic and homogeneous distribution of the 2.7 K cosmic microwave background with fluc- 
tuations of order 10V5.[3] In general, it is very difficult to explain how these anistopic and 
inhomogeneous large-scale structures of the universe have developed from such an isotropic 
and homogeneous distribution of matter in the early stage of the universe. The standard 
solution to this difficulty totally relies on the existence of dark matter which accounts for 
more than 90% of matter in the universe. The evidence for dark matter was first claimed in 
order to explain the flat rotation curves of spiral galaxies. Since there is no established direct 
observation of dark matter, however, there are many attempts to explain the rotation curves 
without dark matter by modifying the Newtonian force [4] or by modifying the Newton’s 
second force law.[5],[6] Other people have tried to derive such modified Newtonian force laws 
from the framework of general relativity: [7][8][9][10] 

In a previous paper,[lO] we attempted to explain not only the flat rotation curves of spiral 
galaxies but also the large-scale structure of the universe, starting from a simple model with 
the addition of a quadratic scalar curvature term to the Einstein action. Our generalized 
action could qualitatively explain the flatness of the rotation curves and the nearly periodic 
galaxy distributions. However, it turned out that our theory does not imply the unity of the 
coefficient y of the Robertson expansion [ 1 I] on the solar scale. [lo] This constraint (y = 1) 
from the classical tests of general relativity such as the observation of the radar echo delay 
is quite stringent, and it is very difficult to realize this value in the generalized Einstein action. 

In this paper, we construct the generalized Einstein action under the two criteria: i) it 
must give y = 1 in the post Newtonian a,pproximation, ii) the gravitational potential is a 
sum of Newtonian and Yukawa potentials. The second criterion is imposed, since it is the 
empirical gravitational potential of Sanders [4] that can quite successfully explain the flat 
rotation curves of spiral galaxies. We then show that the minimum ingredient of the theory 
that satisfies the above criteria is the R2 term, a scalar field, and a vector field in addition 
to the Einstein action. 
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2, Generalized Einstein Action and Its Post Newtonian Approx- 
imation 

The generalized Einstein action which contains quadratic terms of the scalar curvature, 
R2, and Ricci tensor, R,, Rp”, was introduced to regulate the ultraviolet divergences of the .._ 
Einstein theory. [ 121 It was applied to cosmology to obtain the bounce universe to avoid the 

; -singularity at the creation of the universe.[l3] The structure and the properties of the theory I 
-- were further elaborated in subsequent works. [14] 

In this section, we consider a further generalization of the theory by adding scalar and 
vector fields in addition to R2 and R,,,Rfi” terms and study its post Newtonian approxima- 
tion. We will investigate such a theory with two requirements: i) on the solar scale, it must 
conform with the classical tests of general relativity, ii) on the galactic scale, the gravita- 
tional potential is modified to give a sum of Newtonian and Yukawa potentials in order to 
explain the rotational velocity curves of spiral galaxies. 

We consider the following generalized action with the scalar curvature R, the Ricci tensor 
R,,, a scalar field C, and a vector field A,: 

I = /d4zfi{- A( R + cl R2 + c2RpVRpv) 

+d% - $0’ + glaR 
A2 

-fD,A,D’A” - TApA, + g2D,ApR + Lmatter) , 

(1) 

where G is the gravitational constant, p a.nd m are the masses of the scalar and vector par- 
ticles, D, is the covariant derivative, and Lmatter is the matter Lagrangian. The coefficients 
cl, c2, and G have the dimension of (mass)-2, while the coefficient gl has the dimension of 
mass and 92 is dimensionless. 

In order to calculate the coefficient y in the Robertson expansion,[ll] we introduce the 
weak fields $ and 1c, defined by 

go0 = -1 - a$‘+, gij = Sij( 1 + a$) . (2) 

In the post Newtonian approximation, we must take into account up to the quadratic term 
of the weak fields and source in the action, and the necessary formulae to the first order in 
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the weak fields are 

and the necessary formulae up to the second order in the weak fields and source in the action 
are 

J-sR = 244 + ‘W) + 4$All, + 2$7AlC, , 

J-sRp” R,, sz 2(A$)” + 4AdAlC, + 6(A$)” , (4 

J_SR2 e 4{ A($ + a$)}” , J_gLmatter x -pq5 , 

where we have suppressed the total derivative terms.[15] We substitute the weak field ex- 
pressions Eqs. (3) and (4) into Eq. (l), and retain up to the quadratic terms of the weak 
fields 4, T/J, CT, A, and source p to obtain 

Ix. /d43:[- --&{2n(m + a$) •t 4$A$ + 2$All, + 4cl(A@ + 2+)J2 

+&( +J$)~ + &All, + ;(Ati)2} 

+2glgA($ + 2$) + 2g,aiAiA($ + 2$) - ~$1 a 

Since the field A0 decouples from the other fields and source, we do not consider this field 
hereafter. It is convenient to introduce the following variables 4 and $: 

which in turn gives 

(7) 

4 



Substituting Eq. (7) into Eq. (5), we can rewrite the action as 

IW J [ d4x - &{2A$ + $$A$ - ;$A4 + 4~1(A$)~ + $((A&’ + ;(A$)2)} 

. . . +:~Ac - go2 + :AiAAi - $A: + 2glaAJ + 292diAiAJ - 3 + p’ q] . (8) 

Taking the variation with respect to the weak fields c$, $, A; and a, we obtain the equation 
of motion of the weak fields in the post Newtonian approximation: 

A { 1 + (6~1 + 2c2)A} 4 - 24rG(gl Aa + g2Ad;A;) = -47rGp , (9) 

A(1 - c2A)$ = -87r~~ , (10) 

(A - m2) Ai - 2g,Aai$ = 0 7 (11) 

(A - p2)a + 2glA4 = o . (12) 

From Eqs. (11) and (12), we have 

2g2’A2$ 291 A$ 
aiAi=A-m2, a=-A- 

P2 * 

Substituting this expression into Eqs.(S) and (lo), we then obtain the following: 

g,zA g;A2 
1+(6~1+2cz)A-48~G(-~_~~ + A-m2 = -4nGp, 

(13) 

(14) 

A(1 - c2A)$ = -87rGp . (15) 

In the next section, we will consider the possibility that the coefficient of the Robertson 
expansion y becomes 1. In order to obtain this result, it is necessary that both $ and 4 
behave - l/r in the limit r -+ 0. ( We remark from Eq. (7): if $ and 4 behave like 4 N const. 
and $ - l/r in the limit r + 0, we obtain y = l/2, while if c$ and I$ behave like $ - l/r 
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and II) N const. in the limit r + 0, we obtain y = -1.) In the region r + 0, the mass term 
is negligible, and the necessary condition to have y = 1 is that the highest derivative terms 
(cx A2) on the left-hand sides of Eqs. (14) and (15) must vanish (for p2 = m2 = 0). This 
condition reads 

. . . 6q + 2c2 - 48rGg; = 0 , 

-Near the origin we then have -T .I 

c2 = 0 . (16) - 

-- 
(1 - 6c1m2 + 48rrGgf)AJ x -4aGp , 

w E -8nGp 

We assume that the density takes the point-like distribution of 

p(F) = MS(F). 

Using the formula 47&‘p/A = -GM/r, we then obtain 

where 
k = 1 - 6c1m2 + 48rGg; . 

Therefore we obtain the gravitational potential of the form 

where 

(17) 

(18) 

the form 

(19) . 
t 20) 

(21) 

(22) 

(23) 

4k - 1 
G=liG. (24) 
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This leads to the following formula for y : 

2k + 1 
7=4&l * (25) 

.Here, by taking Morikawa model [ 161 as a.n example, we demonstrate how it is difficult to 

1 _ satisfy the stringent condition y = 1 in a modified Einstein theory in general. I 
-- 

Morikawa model is a Brans-Dicke type theory of the form [16] 

IMorikawa = /d4s&{-&(R - 2A) 

cp - gp2 + Xv + $R + Lmatter} , (26) 

where we have added the cosmological term A and tadpole term X9 to the original Morikawa 
action, since we consider the case that the scalar field 9 takes an expectation value V. We 
write C,S = u + CY and consider this g field as the weak field. We then obtain the weak field 
approximation of the form 

IMmikawa 
z Jd”zfi{- &(l - 8TTG&12) 

-+QYa”o - 
2 

$0” + @OR + Lmatter} . (27) 

Here, we have tuned A and X in such a way that 

(L- 
8lrG 

y + Xv) = 0 ) x - p2v = 0 ) 

for a given V. If we denote l/G = (1 - 87rG[v2)/G, th en according to our formula Eq. (21) 
(with the replacements m + 0,G -+ G’, and gi -+ tv), we have the expression k = 1 + 
487&‘t2v2, which gives 

1 - 87rG([ - 4C$2)V2 
’ = 1 - 87rG([ - 8t2)v2 ’ (28) 

In Morikawa’s case, [16] the scale factor of the universe oscillate with time, where the period 
is converted to the scale of 13OMpc through the velocity of light, and it is unclear whether q 
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here takes an expectation value on the solar scale. We obtain y = 0.88 by using Morikawa’s 
unit l/G = 47r/3 and his values t = 10 and v = 0.008, where the value of v is assumed to 
be of the order of the initial value of p . (Of course, if we set v = 0 in Morikawa model, we 
have y = 1.) 

‘1’ Through this ~example, we understand that the construction of the generalized Einstein 
: -action with y = 1 is quite non-trivial. I 

-- 

3. Generalized Einstein Action on Solar and Galactic Scales 

In this section, we show that the generalized Einstein theory, in which the gravitational 
potential is a sum of Newtonian and Yukawa potentials, must include at least scalar and 
vector fields in addition to the quadratic term of the scalar curvature in order that the con- 
dition y = 1 is satisfied. 

The condition y = 1 implies k = 1 in Eq. (25), which in turn implies cim2 = 8rGgf 
(see Eq. (21)). Taking into account Eq. (16) 1 a so, the necessary condition to have y = 1 is 
summarized as follows: 

Cl = 8rGg,2, c2 = 0 , (29) 
clm2 T 8FGg; . (30) 

This condition is classified into the following possibilities: 

I> Y2#0, 
4 91 = 0 , (~1 # 0, m = O), 
b) 91 # 0 , (~1 # 0, m # (4, 

II> 92 = 0 , (Cl = 0, g1 = 0). 

We first consider case Ia), where the scalas decouples from other fields. In this case Eqs. (14) 
and (15) become 

A$ = -47rGp, All, = -87rGp, (31) 
which in turn gives 
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Hence, we obtain the same result as the Newtonian approximation of the ordinary Einstein 
theory: 

(33) 

in which the desired Yukawa term is absent. . . 

1 ._ In case II>, the vector field decouples and there is no higher derivative term such as R2 
-- and R,,Rp”. In this case, Eq. (14) takes the same form as Eq. (31), and we obtain the result 

of the Newtonian approximation again. 

The final case Ib) turns out the one that satisfies our criteria. In this case, from the 
relation qm2 = 8’rrGgf, Eq. (14) becomes 

(A - rn2i* - p”) 
{A2 - A (m2 + p2 + 48rGgf(m2 - p2)) 

+m2p2}$ = -47rGp . (34) 

We then define CY and ,8 by 

a + ,L3 = m2 + p2 + 48rGgf(m2 - p2) , 
cup = m2p2 , 

and assume o > p. We can also define constants ICI, k2 and ks by 

- 47rG(A I m”)(A - p”) 
$ = - A@-a)(A-p> p7 

= -41rG{; + & + &}p , (36) 

(35) 

which gives the relations among ICI, k2 and k3 as follows: 

ICI + k2 + kg = 1 , 

kl(a + p) + k2p + kxa = m2 + p2 , 
klc@ = m2p2 . 

(37) 

From Eq. (35) we obtain kl = 1, so that k2 and kg are related by kg = -k2. Using this 
relation and substituting Eq. (35) into Eq. (37), we obtain 

k 
2 

= -k 
3 
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The modified gravitational potential in this case becomes 

. . . 

-Therefore we have the gravitational potential of the desired form: 

&-2$ GM -=-- 3 r 

(39) - 

(40) 

We now examine the condition for this gravitational potential to explain the flat rotation 
curves of spiral galaxies. We know that the gravitational potential in Sanders’ form [4] 

+-. G+(l;y~;T) 
(41) 

can account for the rotation curves in a satisfactory way when LYS = -0.9. For our potential 
Eq. (40) to have a similar form on the galactic scale, it is necessary to assume (for o > p > 0) 

6 5 q-) 7 (42) 
QY >> p > 0, (43) 

where ro is a distance on galactic scale ( N a few 1Okpc). Note that these relations imply 

exp(-J&c) % 1 . (44 

For the rotation curves to be flatter than the Newtonian results, we need CYS < 0 in Eq. (41). 
In our potential Eq. (40) th is requirement together with Eqs. (43) and (44) implies 

k2 > 0 . (45) 

By Eq. (38) th is is equivalent to 
m2 > p2 . (46) 
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Hence, the question is whether we can satisfy the above conditions Eqs. (42), (43), and (45) 
(or (46)) in a consistent way. From Eqs. (35) and (46), one obvious solution is 

(47) - 

where r. is the galactic scale. In this case, from Eq. (35) Q can be written as 

Q M m2(1 + 48nGgf) . (48) 

By defining x = 48rGgt( > 0) and neglecting p and p2 in Eq. (38), we have 

k2 = Iz: 
1+x ’ (49) 

so that k2 can change in the range 
0 < k2 < 1 . 

The coefficient QS of Eq. (41) in our theory is then written as 

k2 X 

aS=-3+k2 
=-- 

3+4x * 

Note that our. QS takes a value in the range 

(50) 

(51) 

- 0.25 < CYS < 0 , 

while Sanders takes (YS = -0.9 to fit the rotation curves. 

(52) 

In this way, starting from the generalized Einstein action with additional scalar and 
vector fields, we can tune the para.meters so that we not only have y = 1 on the solar scale 
but also obtain the empirical Sanders type gravitational potential on the galactic scale. 

4. Summary and Discussion 

In this paper, we have examined the generalized Einstein theory which contains higher 
derivative terms, R2 and RpYRp,,, and satisfies the criteria: i) on the solar scale, it must be 
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consistent with the classical tests of general relativity, G) on the galactic scale, the gravita- 
tional potential is a sum of Newtonian and Yukawa potentials so that it may explain the flat 
rotation curves of spiral galaxies. We have shown that it is non-trivial to satisfy the above 
criteria and that at least additional scalar and vector fields are required for a consistent 
theory. 

. - 

-- 
We have tuned the parameters of the theory so that the coefficient os of the Yukawa term 

( in Sanders’ gravitational potential) is negative, which is necessary to explain the flatness of 
rotation curves of spiral galaxies. It will be interesting to see how well our theory can fit the 
rotation curves quantitatively. Numerical calculations in this direction are now in progress. 

In our generalized Einstein action, even after the tuning of parameters, there are still two 
parameters, the vector mass m and the scalar p, to set the scale of interest. We have chosen 

l/m - galaxy scale, and it may be possible to explain the “periodic” large-scale structure 
of the universe by choosing l/p N 13OMpc. Numerical calculations of distant galaxy distri- 
butions are also in progress. 

Therefore, by taking the values of l/ m and l/p as above, our generalized Einstein theory 
may be consistent with observations over three different distance scales: the solar, galactic 
and beyond galactic scales of the universe. 
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