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; *- ABSTRACT 

. . A new fast algorithm for calculating a few maximum (or minimum) eigenvalues 

-- &nd the corresponding eigenvectors of large N x N Hermitian m&rices is presented. 

The method is based on a molecular dynamics algorithm for N coupled harmonic 

-oscillators. The time step for iteration is chosen so that only the normal mode with 
_ _. _ 

the maximum eigenvalue grows exponentially. Other eigenvalues and eigenvectors 

are obtained one by one from the largest eigenvalue by repea.ting the process in 

subspaces orthogonal to the previous modes. The characteristics of the algorithm 

lie in the simplicity, speed (CPU time 0: N2), and memory efficiency (O(N) besides 

the matrix). The effectiveness of the algorithm is illustrated by calculation of 

the groundstate and first-excited state energies of the Heisenberg model for an 

antiferromagnetic chain with N up to 16384. 



1. Introduction 

It is quite common in many fields of science and engineering that the calcula- 

tion of a few of the lowest or highest eigenvalues and the corresponding eigenvectors 

of large Hermitian matrices is required. As the size of the matrix becomes large, 

however, calculations by conventional methods become prohibitively difficult, since 

the required CPU time as well as the memory space grows very rapidly. One of 

-%he most popular and powerful methods for the diagonalization of large matrices 

is the Lanczos method.[l] In this article we present a new algorithm which is very 

simple, and yet has similar computation time and memory requirements as the 

Lanczos method. The algorithm is related to the method of ref.[2,3] in which the 

vibrational normal modes (frequencies and eigenvectors) for a system of masses 

coupled together by linear springs are obtained by means of an unusual molecular 

dynamics simulation.[4] In its simplest form the algorithm that we derive gives the 
.._ --. 

largest eigenvalue and the associated eigenvector. Lower eigenvalues can be ob- 

tained-one by one by repeating the process while restricting the initial conditions 

to subspaces orthogonal to the previously obtained modes. By a trivial modifica- 

tion, one can also use the algorithm to study the smallest eigenvalue and other 

eigenvalues adjacent to it. 

The paper is organized as follows. In section 2 we describe the algorithm. In 

section 3 we’demonstrate the effectiveness of the method by calculating the eigen- 

values of the lowest and first-excited states of Heisenberg antiferromagnetic chain. 

In section 4 conclusions are given. The FORTRAN program for the algorithm is 

presented in the appendix. 

2. Method 

2.1 Equation of motion for a system of harmonic oscillators 

.- Let us suppose that we want to study the eigenvalues of the N x N Hermitian 
-;ipr- - - matrix 4. The problem is equivalent to finding the normal modes of vibration of 

a.lattice of N particles. To make this association we can consider that the (1, I’) 
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element of this matrix, &I, is the spring constant connecting the particles 1 and I’. 

The equation of motion of this system is then given by 

Mi,(t) = - 5 $ll’w(t) , (1 = 1,. . . , N) , (24 
I’=1 

. 

. I- 

$rere M and q(t) are the mass and the displacement of the I-th particle, respec- 

tively. Hereafter, we consider a real symmetric matrix C$ only. The generalization 

to the case of a general Hermitian matrix is straightforward. We also set M = 1, 

-for simplicity. By discretizing time with a step 7, the equation of motion (2.1) 

becomes a molecular dynamics equation:[2] 

- . 

q(n + 1) = I+) + ruI(n + 1) 7 (2.2.b) 

where vi(n) is the velocity of the I-th particle at time t = nr. Each displacement 

q(n) and velocity vi(n) can be decomposed into a sum of normal modes as 

w(n) = C Qx(n)edx> 7 (2.3.~) 
x 

(2.3. b) 

where- Qx(n) and PA(n) are the amplitudes with which mode X contributes to 

-z.$k) and vr(n), respectively, and e/(A) is the normalized eigenvector of the mode 

A satisfying 
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(2.4.b) 

-7&e, px is- the eigenvalue of the matrix $ and WA z fi is the corresponding 

eigenfrequency of oscillation for mode X (WA is imaginary for px < 0). 
. . 

By substituting (2.3) into (2.2) and using (2.4), we have 
_~ 

Px(n + 1) = h(n) - PAT&X(~) , (2.5.~) 

*- 
. _ Qx(n + 1) = &x(n) + ~Px(n + 1) - 

These coupled equations can be rewritten as 

Qx(n + 1) - (2 - ,LXT~)&X(~) + Qx(n - 1) = 0 . 

Assuming a solution of the form 

&x(n) = (PA>” , 

where PA is a constant, we .have two solutions 

.I- 2 - /iAT2 f Jc1xT2(/LXT2 - 4) 

-;i:- -.- 
a,’ = 2 

The general solution for the amplitude is then given by 

(2.5-b) 

(2.6) 

(2.7) 

(2.8) 
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&x(n) = c;(Px+)" + c&Q" , (2.9.u) 

h(4 = ;CQAH - Qxb - 1)) 7 (2.9.b) 

-3dl ere cx + and CX are to be determined by the initial conditions. This solution de- 

scribes the time development of the system under the molecular dynamics equation 

(2.2). In an ordinary molecular dynamics algorithm, it is necessary to make the 

time step r as small as possible in order to minimize the error caused by discretiz- 

ing time. Here, we take the very unusual approach of using large values of 7, i.e., 

values that are comparable to a period of oscillation of the system of coupled par- 

ticles.. Of course, such values would not give an accurate time-development of the 

m&on of the mechanical system that we are considering. However, as we will now 

show; such a simulation can provide a very effective method for the determination - _ 
of the extremal eigenvalues. To see how this comes about we note that depending 

on the value of r (and PA), we can classify the behavior of the solution into two 

cases: 

(A) 
P) 

lpxl = 1 for 0 5 Iv2 5 4 ) (2.10.a) 

IPxl # 1 for pxr2 < 0 or ~1x7~ > 4 . (2.10.b) 

- Furthermore, examining (2.8) f or case (B) above, we find that one solution, which 

we refer to as a,‘, satisfies 

. I- IPX’I > 1 7 ;ipr- -; 
(2.11.a) 

while the other solution, p,‘, satisfies 
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I/Q<1 * (2.11.b) 

This is the key observation which leads to the present algorithm: for pxr2 < 0 or 

pxr2 > 4, the amplitude of the mode X grows exponentially as a function of time 

n, while for 0 2 pxr2 < 4, the amplitude oscillates and stays of the same order as 

time progresses. Moreover, @x> in (2.11.a) can be written as L -- 

l/q-l = 1x1 + &T&/F% 
2 , (2.12) 

for x < -2 or x > 2, where 

_ ^__. X = X(px) E pxr2 - 2 . (2.13) 

Hence; I /?z I is an even function of x. This equation determines which mode grows 

fastest. Namely, when there is more than one mode which corresponds to case (B), 

we have 

(i) the mode for the maximum eigenvalue PA,,,,, grows fastest, if all the modes 

of case. (B) satisfy pxr2 > 4 (x > 2), 

(ii) the mode for the minimum eigenvalue PA,,, grows fastest, if all the modes 

of case (B) satisfy pxr2 < 0 (x < -2), 

(iii) the mode for th e maximum (or minimum) eigenvalue px grows fastest when 

I ~PX,,,) I4 ~PX,,, > I (or I ~QL,,) 14 ~-Q,J I>, if SOme modes of case 
(B) satisfy pAr2 > 4 .and some other modes satisfy pxr2 < 6. 

We can likewise determine which mode grows next fastest. 

In-order to avoid the above complication, we assume hereafter that all the 
: -- _ 

ei&nvalties px are non-negative (only situation (i) above is possible). This can 

always be achieved by the following transformation: 
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d-++bL (2.14) 

where.b is a constant satisfying b 21 PX,,,~~ I and I is the identity matrix. 

2.2 Algorithm 

. 

Our algorithm is now summarized as follows. We choose the time step r so 

that only the maximum eigenvalue PA,,,,, satisfies 

iw2 > 4 , 

and the rest of the eigenvalues satisfy 

(2.15.~) 

0 5 pxr2 < 4 . (2.15.b) 

We then obtain PA,,, and the corresponding eigenvector by just iterating (2.2) 

with time n from random initial conditions ul(O) and vi(O). As n increases zll(n) 

converges to a multiple of the normalized eigenvector el(Xmaz) (see (2.4)) associated 

- with the maximum eigenvalue. The maximum eigenvalue itself can be obtained 

from the final ul( n) by the Rayleigh quotient: 

(2.16) 

Since the mode for PA,,, grows exponentially, it may be necessary to rescale ul(n) 

..- and vi(n) from time to time during time evolution. 
_: -- _ 
-Wh -- en we need the next highest eigenvalue, we can repeat the above process 

with the initial conditions chosen to be orthogonal to the normalized eigenvector 
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e&b4 for th e maximum eigenvalue PA,,, . Thus, we first pick a set of random 

displacements &( 0) and Cl(O), and then choose as initial displacements Us and 

vi(O) according to the relations: 

(2.17.~) 

(2.17.b) 

-Note that due to round-off errors, we may have to re-orthogonalize ul(n) and v{(n) 

wi.th.respect to e,(Xmaz _ _.- ) again after some number of iterations. 

- In principle, this procedure can be repeated to yield more eigenvalues. How- 

ever, when we want the Ic-th highest eigenvalue, we have to re-orthogonalize ul(n) 

with respect to the k - 1 higher eigenvectors, which causes an increase in required 

computation time and memory space. 

We could eliminate the need to re-orthogonalize by transforming C$ as follows: 

h/t + 41~ - CIXmalel(Xmaz.)elr(Xrnaz) . (2.18) 

- This is very effective for a medium size matrix 4. However, it is not a useful 

approach for a large matrix, since this transformation destroys the sparseness of 

the matrix and again slows down the calculation. Hence, depending on the size of 

the matrix, we have to choose one of the above two possibilities, (2.17) and (2.18). 
,- 

%n order to calculate a few minimum eigenvalues, we ca.n apply the above 

algorithm with the matrix 4 replaced by, for example, 
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where the constant b satisfies 

(2.19.u) 

b > pmaz 7 (2.19.b) 

. . 
and I is the identity matrix. We obtain the lowest eigenvalue first, then the next 

l.owest eigenvalue, and so forth. Note that we do not need the exact value of PA,,, 
_~ 

but only a rough estimate for the transformation (2.19). 

23 Choice for r - 

.. ‘Tt?Is desirable that we find the appropriate time step r which satisfies the 

condition (2.15) with minimum effort. For this we consider the following quantity - _ 
that we may think of in some regards as the total potential energy Ep of the 

system: 

Ep(n) = ;. 2 ul(n)+ll, dn + l) + z”r;(n) + udn - l) 1 , (n > 1) . (2.20) 
1,1’=1 

Using eqns. (2.2), (2.3), and (2.4), we can rewrite this as 

. - 

EP@) = $ c m(4 - w2)Qh42 - 
. 

(2.21) 
A 

I$cEe,- if (2.15) is satisfied, then Ep(n) will become negative for some value n 

n:‘matter what the initial value Ep(1) may be. This is because the amplitude 

&x(n) corresponding to the eigenvalue that satisfies (2.15.a) grows exponentially 
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as a function of n, while the rest of the amplitudes do not. This provides us with 

a strategy for finding r. The method is simply to calculate Ep(no) after a certain 

number of iterations no and see if it has become negative. If it has not, the value 

of r isfhen increased and the procedure repeated, until a negative value of Ep(ng) 

is obtained. For the Heisenberg model discussed in the next section, we found that 

no = 10 is a good choice. 

L-- The discussion of the algorithm in the previous section was given under the 

assumption that pxr2 was greater than 4 for only the largest eigenvalue. It is im- 

portant to note that even if r has been chosen so that there are severuleigenvalues 

for which pxr2 > 4, the algorithm still works because the mode with the highest 

eigenvalue grows fastest. This is an important considera.tion in systems that have 

a quasi-continuous distribution of eigenvalues, because for these systems it is time- 

consuming to find a value of r such that only one eigenvalue has pxr2 > 4. It ___ -- 
turns out that the algorithm works surprisingly well even if r has been chosen so 

thai several eigenvalues satisfy the condition. The reason for this can be seen by 

examination of eq. (2.12). A s a function of x, the quantity Ipx>l has a square root 

singularity at x = 2. Consequently, for those modes with eigenvalues such that x is 

in the range just above 2, //3,‘[ increases very rapidly with increasing x. Thus, the 

rate of growth of the mode with largest eigenvalue is significa.ntly larger than that 

of the next lower eigenvalue mode, even though the difference in the eigenvalues 

may be quite small. 

vire can also define a “kinetic energy” EK(n) by 

N 
2 

&c(n) = f c 
vl(n + 1) + VCn) 

I=1 
2 1 * (2.22) 

.- 
_: -- 

Tkn using eqns.(39) and (40) of ref. 2, one can show that the total energy Etot - 

EK + Ep is given by 

11 



- -.-a 

. . 

Etot = f c ~,(o)~ + f fl: (u,(O) - ~J(O)~)~JJ~~J~(O) - (2.23) 
I=1 J,J’=l 

This quantity has the remarkable property that it is conserved regardless of the 

value of r. In fig. 1 we show a typical time evolution of Ep(n) and EK(n) for r such 

that all the eigenvalues satisfy (2.15.b) (fig. la), and r such that one eigenvalue 

‘C&sfies (2.15.a) and the rest satisfy (2.15.b) (fig. lb). The matrix is taken from 

the Heisenberg antiferromagnetic chain (with N = 1024) which is analyzed in the 

next section. Note that the total energy Etol is conserved in both cases. 

To choose r for the second largest eigenvalue and so on, we apply the orthog- 

onalization procedure (2.17)) and a.gain sweep r upwards until Ep(no) becomes 

.negative. 

3. Results * 

-We have tested the algorithm for the one-dimensional Heisenberg antiferro- 

magnetic chain with spin s = 3. The Hamiltonian for a system of Ns spins is 

given by 

H=-&(i).$(i+1), 
i=l 

(3-l) 

where s(i) is the usual spin operator at the lattice site i and we set J = -1. 

Here, we assume periodic boundary conditions. The dimension of the Hamiltonian 

matrix is then 

N = 2NS . (3.2) 

_: -- 
By’usingthe transformation (2.19), we have calculated the groundstate and first- 

excited state energies of the He,isenberg model for Ns up to 14 (i.e., N = 16384). 
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Double-precision arithmetic has been employed. In table 1 we present the re- 

sults obtained after 100 iterations. The CPU time required for calculating the 

groundstate energy (with 100 iterations) was roughly two minutes on IBM9021 for 

N = 1.6384. These results all agree with those calculated by the Lanczos method 

[5] up to seven digits. We do not know the sources of discrepancies compared to 

ref. [5] after the sixth decimal place, but we remark that we have checked our re- 

sults against the results obtained by the conventional method for N up to 256 and 
; Cd 
obtained complete agreement. At least in this example, the number of iterations 

required for our algorithm does not vary rapidly with the ma,trix size. The results 

in table 1 are all for 100 iterations. In table 2 we show a few examples of how the 

eigenvalues converge as a function of iterations for N = 64, 1024, and 16384. Note 

that we need up to about 60 iterations for convergence to the tenth decimal place. 

- 
4:. Cmdusions 

*In this paper we have presented a fast algorithm for calculation of a few max- . _ 
imum (or minimum) eigenvalues and the corresponding eigenvectors of an N x N 

Hermitian matrix. The simplicity of the algorithm is the outsta.nding virtue, as 

illustrated in sec. 2 and the appendix. The algorithm is also very efficient in that 

it requires O(N2) computation time and U(N) memory space. These are the same 

--order of magnitudes as required for the Lanczos method. One should note, however, 

that when more than one eigenvalue is needed the necessity for re-orthogonalization 

causes an increase in required computation time as well as memory space, which 

in turn limits the largest matrix size we can deal with. This is the same problem 

encountered by the original form of the Lanczos method. The subsequent modifica- 

tions of the Lanczos method alleviate this re-orthogonalization problem, but create 

other complications such as occurrence of spurious eigenvalues.[l] Our algorithm 

is simple and does not suffer from these complications. Hence, if one needs only a 

.c- few extreme eigenvalues, our method is a very attractive alternative. 
_: -- _ Ni: -- 
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Appendix 

We present the FORTRAN program of the algorithm in the following. It is 

assumed that the matrix 4 is already transformed so that all the eigenvalues p~ are 

non-negative. We remark that if one already has good estimates for the appropriate 

r as described in detail in section 2, then one needs only DO loop 210 in the main 

program. 

-” .+& 

IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
PARAMETER (N=N) ! N is the matrix size. 
PARAMETER (NEIG=NEIG) ! NEIG is the no. of eigenvalues wanted. 
COMMON/CORD/U(N),V(N),TAU 
COMMON/MAT/PHI(N,N) 
COMMON/INTL/UINIT(N),VINIT(N) 
COMMON/REN/UEIG(N,NEIG),IEIG 

___ -- DIMENSION UNM(N),UN(N),UNP(N),UO(N),VO(N) 
C*** PARAMETERS 

* - NITER=lOO _ 
NSTEP=lO 
NSTORE=NITER/lO 
NRESC=5 
NTAU=lOO 
TI=O.ODO 
BOUND=BOUND ! BOUND is the lower bound for eigenvalue search. 
TFe2.ODO/DSQRT(BOUND) 
DTAU=(TF - TI)/DFLOAT(NTAU) 
DO 10 IEIG=l,NEIG 
IF(IEIG.EQ.l) THEN 
CALL INIT 
DO 20 IL=l,N 
UO(IL)=UINIT( IL) 
VO( IL)=VINIT( IL) 

20 CONTINUE 
ELSE 
DO 30 IL=l,N < - 

_: -- 
Ni - SUMl=O.ODO 

SUM2=O.ODO 
. DO 40 JL=l,N 

15 



I 
: 

. . 

SUMl=SUMl + UINIT(JL)*U(JL) 
SUM2=SUM2 + VINIT( JL)*U( JL) 

40 CONTINUE 
UO(IL)=UO(IL) - SUMl*U(IL) 

VO(IL)=VO(IL) - SUM2*U(IL) 
30 CONTINUE 

ENDIF 
C&w SWEEP TAU TO LOOK FOR APPROPRIATE TAU 

DO 50 IT=l,NTAU 
; Cd 

IF(IEIG.EQ.l) THEN 
TAU=TF - DTAU*DFLOAT(IT-1) 
ELSE 
TAU=TI + DTAU*DFLOAT(IT-1) 
ENDIF 
DO 60 IL=l,N 
U(IL)=UO(IL) 
V( IL)=VO( IL) 

60 CONTINUE ___ ._- 
DO 70 ISTEP=l,NSTEP 

* - IF(MOD(ISTEP,NRESC).EQ.O) CALL RENORM 
_ 

DO 80 IL=l,N 
UNM(IL)=U(IL) 

80 CONTINUE 
CALL TSTEP 
DO 90 IL=l,N 
UN(IL)=U(IL) 

90 CONTINUE 
CALL TSTEP 
DO 100 IL=l,N 
UNP(IL)=U(IL) 

100 CONTINUE 
Cw* CALCULATE POTENTIAL ENERGY 

EP=O.ODO 
DO 110 IL=l,N 
DO 110 JL=l,N 
EP=EP + 0.125DOd.JN(IL)*PHI(IL,JL)*(UNP(JL)+ 2.ODO*UN(JL)+UNM(JL)) 

110 CONTINUE 

%i-- . IF(IEIG.EQ.l) THEN 
IF(EP.LT.O.ODO) GOT0 50 

. IF(EP.GE.O.ODO.AND.ISTEP.EQ.NSTEP) THEN 
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TAU=TAU + DTAU 
GOT0 200 
ENDIF 
ELSE 
IF(EP.LT.O.ODO) GOT0 200 
ENDIF 

70 CONTINUE 
50 CONTINUE 

C*** MAKE A LONG RUN TO OBTAIN EXACT EIGENVALUE 
-” .+& 200 DO 2-10 ITER=l,NITER 

CALL TSTEP 
IF(MOD(ITER,NRESC).EQ.O) CALL RENORM 

. . IF(MOD(ITER,NSTORE).EQ.O) THEN 
_~ CALL EIGEN(EIGVAL) 

WRITE(6,lOOO) ITER,EIGVAL 
1000 FORMAT(’ IT =’ ‘,13,’ EIGVAL = ‘,F16.10/) 

ENDIF 
- 210 CONTINUE 

Ci”*i-STORE THE EIGENVECTOR 
* - DO 220 IL=l,N 

_ UEIG( IL,IEIG)=U(IL) 
220 CONTINUE 

TI=TAU 
DTAU=(TF - TI)/DFLOAT(NTAU) 

10 CONTINUE 
STOP 
END 

- c*** 
SUBROUTINE INIT 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
PARAMETER (N=N) 
COMMON/MAT/PHI(N,N) 
COMMON/INTL/UINIT(N),VINIT(N) 

Prepare matrix elements, PHI(Z,Z’), and random initial conditions, 
UINIT( Z) and VINIT(Z). 

.- RETURN 
%i-- - END \ 

Ct** 
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SUBROUTINE TSTEP 
IMPLICIT DOUBLEPRECISION(A-H,O-Z) 
PARAMETER(N=N) 
COMMON/CORD/U(N),V(N),TAU 
COMMON/MAT/PHI(N,N) 
DO 10 IL=l,N 
FORCE=O.ODO 
DO 20 JL=l,N 

; .+& FORCE=FORCE - PHI(IL,JL)*U(JL) 
20 CONTINUE 

V(IL)=V(IL)+ TAU*FORCE 
10 CONTINUE 

DO 30 IL=l,N 
U(IL)=U(IL) + TAU*V(IL) 

30 CONTINUE 
RETURN 
END - 

c**,*-_. 
SUBROUTINE RENORM 

* - ~IMPLICIT DOUBLE PRECISION(A-H,O-Z) _ 
PARAMETER(N=N) 
PARAMETER(NEIG=NEIG) 
COMMON/CORD/U(N),V(N),TAU 
COMMON/REN/UEIG(N,NEIG),IEIG 
SUM=O.ODO 
DO 10 IL=l,N 
SUM=SUM + U(IL)*U(IL) 

10 CONTINUE 
USCALE=DSQRT(SUM) 
DO 20 IL=l,N 
U(IL)=U(IL)/USCALE 
V(IL)=V(IL)/USCALE 

20 CONTINUE 
C*** GRAM-SCHMIDT 

IF(IEIG.NE.l)THEN 
DO 30 NEG=l,IEIG-1 
SUMU=O.ODO 

_: -- k -SUMV=O.ODO 
DO 40 IL=l,N 
SUMU=SUMU + UEJG(IL,NEG)*U(IL) 
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SUMV=SUMV+ UEIG(IL,NEG)*V(IL) 
40 CONTINUE 

DO 50 IL=l,N 
U(IL)=U(IL) - SUMU*UEIG(IL,NEG) 
V(IL)=V(IL) - SUMVdEIG(IL,NEG) 

5il CONTINUE 
30 CONTINUE 

ENDIF 
RETURN ; Cd EN-D 

c*** 
SUBROUTINE EIGEN(EIGVAL) 
IMPLICIT DOUBLE PRECISION(A-H,O-Z) 
PARAMETER(N=N) 
COMMON/CORD/U(N),V(N),TAU 
COMMON/MAT/PHI(N,N) 
GO=O.ODO 
G2=0.ODO __. -- 
DO 10 IL=l,N 

* GO=GO + U(IL)dJ(IL) _ AL=O.ODO 
DO 20 JL=l,N 
AL=AL + PHI(IL,JL)*U(JL) 

20 CONTINUE 
G2=G2 + U(IL)*AL 

10 CONTINUE 
EIGVAL=G2/GO 
RETURN 
END 

_: -- _ 
k. -- 
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TABLE CAPTIONS 

1. Groundstate and first-excited state energies of Heisenberg antiferromagnetic 

chain with N,y spins. The results are rounded off at the eleventh decimal 

place. 

,~- 2. Groundstate and first-excited state energies (PA, and PA,) of Heisenberg an- 

tiferromagnetic chain as a function.of iterations for N = 64,1024, and 16384. 

. . 



. 

- Table 1. 

Ns N Groundstate First-excited state 

4 16 -2.0 -1.0 

6 64 -2.8027756377 -2.1180339887 

8 256 -3.6510934089 -3.1284190638 
; .+- 

lo- 1024 -4.5154463545 -4.0922073467 

12 4096 -5.3873909174 -5.0315434037 
. . 

14 16384 -6.2635495335 -5.9564438240 
_~ 

__. --. Table 2. 

IT /-dN = 64) pXo(N = 1024) pXo(N = 16384) 

20 -2.8027750983 -4.5153136281 -6.2632192228 

40 -2.8027756377 -4.5154463545 -6.2635493911 

60 -2.8027756377 -4.5154463545 -6.2635495335 

80 -2.8027756377 -4.5154463545 -6.2635495335 

100 -2.8027756377 -4.5154463545 -6.2635495335 

IT PA~ P = 64) pxl (N = 1024) pAI (N = 16384) 

20 -2.1180325187 -4.0922058679 -5.9564352761 

40 -2.1180339887 -4.0922073467 -5.9564438234 

60 -2.1180339887 -4.0922073467 -5.9564438240 

.80 -2.1180339887 -4.0922073467 -5.9564438240 .- 
-.. -- ‘t; 100 -2.1180339887 -4.0922073467 -5.9564438240 
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FIGURE CAPTIONS 

1) Typical time evolution of energies. (a) All the modes satisfy oscillatory 

condition (A) of eq. (2.10.a). (b) One mode satisfies condition (B) and the 

rest satisfy condition (A). 
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