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Abstract

We reconsider the recent derivation by de Rafael and Taron of bounds on the slope

of the Isgur-Wise function. We argue that one must be careful to include cuts starting

below the heavy meson pair production threshold, arising from heavy quark-antiquark

bound states, and that if such cuts are properly accounted for then no constraints may be

derived.

SLAC-PUB-5956

UCSD/PTH 92-35

CALT-68-1830 October 1992

* Work supported in part by the Department of Energy under contracts DE–AC03–
76SF00515 (SLAC), DE–FG03–90ER40546 (UC San Diego) and DE–AC03–81ER40050
(Caltech).

1



It has recently been argued by de Rafael and Taron [1] that one may use analytic

properties to derive constraints on the Isgur-Wise function ξ(w = v · v′) [2] of the heavy

quark effective theory (HQET). These constraints have provoked much interest, because

they are in conflict with almost all extractions of ξ(w) from fits to experimental data on

semileptonic B → D∗ decays [3], as well as with estimates from QCD sum rules [4] and

potential models [5]. Hence it is very important to understand whether the derivation

of these bounds is correct. We have reconsidered this issue, and we have found that the

careful inclusion of heavy quark-antiquark bound states, lying below the heavy meson pair

production threshold, invalidates the argument. In fact, we argue that it is not possible to

obtain any such constraints at all.

We begin by reviewing carefully the derivation of de Rafael and Taron, paying par-

ticular attention to a number of delicate points which are somewhat glossed over in their

analysis. We will then present two counterexamples, namely Isgur-Wise functions which

we argue are reasonable in certain physical limits of the theory, but which violate the

bounds which are derived. Finally, we will show precisely at which point the argument

fails, and argue that the failure can be understood both on technical and physical grounds.

For concreteness, we will follow ref. [1] and take the heavy quark to be the b quark.

Then the physical form factor F (q2) which is of interest is given by the matrix element of

the vector current V µ = b̄γµb between B-meson states:

〈B(p′)|V µ |B(p)〉 = (p+ p′)µF (q2) . (1)

For q2 ≤ 0, this is the elastic form factor, corresponding to the kinematic region described

in the HQET by the Isgur-Wise function ξ(w). For q2 ≥ 4m2
B, F (q2) describes s-channel

production of BB̄ pairs. Conservation of b-number in QCD yields the normalization

condition F (0) = 1; the question is whether F (q2), and hence the Isgur-Wise function, can

be further constrained in the physically interesting elastic region q2 ≤ 0.

One begins the argument by considering the two-point function

Π(q2) (qµqν − gµνq2) = i
∫

d4x eiq·x 〈0|T {V µ(x), V ν(0)} |0〉 . (2)

The derivative of Π(q2) satifies an unsubtracted dispersion relation (Q2 = −q2),

χ(Q2) ≡ −∂Π(Q2)
∂Q2

=
1

2πi

∫
C

Π(t)
(t+Q2)2

, (3)
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where the contour C runs below and then above the physical cut on the real axis, closed

by a circle at |t| = ∞. In the real world, this cut starts at the mass of the lightest

state which couples to the current V µ. Ignoring weak and electromagnetic interactions,

this is at t = 4m2
π, corresponding to the annihilation of the current into two pions. It is

convenient, however, to suppress annihilation diagrams, by imagining that V µ is actually a

flavor-changing current, between two different, but degenerate, heavy quarks. Since these

fields are subject to a heavy quark flavor symmetry, none of the low-energy properties

of the theory, in particular no properties of the Isgur-Wise function, are affected by this

change. But now the cut in the two-point function starts with a pole at the mass of the

lightest (and stable) “Υ” state, t = m2
“Υ”, followed by a series of cuts associated with the

production of additional hadrons. There is then a cut starting at t = 4m2
B corresponding

to pair production of BB̄ mesons, and so forth.

There is no contribution from the circle at infinity; then the integral may be expressed

in terms of the discontinuity across the cut, plus an additional contribution from the “Υ”

pole,

χ(Q2) = χpole(Q2) +
∫ ∞

(m“Υ”+2mπ)2
dt

Im Π(t)
π(t+Q2)2

. (4)

Because of the optical theorem, the value of Im Π(t) is proportional to the cross-section

for production of on-shell states with invariant mass
√
t. All physical states which couple

to the current V µ contribute to Im Π(t). Dividing these states into those lying above and

below the continuum BB̄ threshold, we write

χ(Q2) = χpole(Q2) +
∫ 4m2

B

(m“Υ”+2mπ)2
dt

Im Π(t)
π(t+Q2)2

+
∫ ∞

4m2
B

dt
Im Π(t)

π(t+Q2)2
. (5)

The first two terms in eq. (5) are positive; if we estimate them as a sum over perturbative

Coulomb bound states, they are proportional to α3
s(mb) They will not play an important

role in the analysis. The third term is bounded from below by the contribution of the BB̄

final states. (Note that there is no relation between Im Π(t) and |F (t)|2 in the physically

inaccessible region t < 4m2
B. This is why we must make the decomposition (5).) The first

two terms are positive (and small) and so, performing an integral over the available phase

space, one then obtains

16π2m2
Bχ(Q2) ≥ 1

12

∫ ∞
1

d y
(y − 1)3/2

y3/2(y +Q2/4m2
B)2
|F (y)|2 , (6)

where y = t/4m2
B.

3



In the strict limit mb →∞, the form factor F (y) is analytic everywhere except along

the cut y ≥ 1. (For finite mb this is no longer true, and soon we will see that one must

treat this issue with care.) If the integral around the end of the cut can be neglected, the

integral in (6) may be rewritten as a contour integral, running from y =∞ to y = 1 along

the bottom of the cut, back to y =∞ along the top, and closing with a circle at |y| =∞.

Then the inequality (6), plus the three conditions

(i) F (y) analytic everywhere inside the contour,

(ii) the normalization F (0) = 1,

(iii) −Q2 < 4m2
B real,

allow one to derive constraints on F (y), in particular in the elastic region y ≤ 0 [6]. This

analysis is performed most conveniently after the change of variables
√
y − 1 = i 1+z

1−z , under

which the interior of the contour is mapped onto the open unit disk, and the elastic region

−∞ < y ≤ 0 onto the real axis 0 ≤ z < 1. The constraints take the form F−(z) ≤ F (z) ≤
F+(z), where

F±(z) =
1

(1 + z)2
√

1− z

(
1 + z + (1− z)

√
1 +Q2/4m2

B

1 +
√

1 +Q2/4m2
B

)2

×

1±
√

z2

1− z2

√√√√6144πm2
B χ(Q2)

(
1 +

√
1 +Q2/4m2

B

2

)4

− 1

 .

(7)

If we choose |Q2| � Λ2
QCD, we may approximate χ(Q2) by its value in perturbation theory,

χ(Q2) =
3

4π2

∫ 1

0

dx
2x2(1 − x)2

m2
b + x(1 − x)Q2

+O(αs(Q2)) . (8)

Then expression (7) simplifies to a given function of z and Q2.

Thus one obtains constraints on F (z) for any value of Q2 such that the perturbative

calculation of χ(Q2) is valid. Since at leading order, for y ≤ 0, the form factor F (y) is

equal to the Isgur-Wise function ξ(w = v · v′ = 1 − 2y), eq. (7) leads directly to a family

of upper and lower limits on the slope −ρ2 of ξ(w) at w = 1. The lower limits on ρ2 (from

F+(z)) are not interesting, as they lie below the kinematic bound ρ2 ≥ 1
4 [7]. As for the

upper limit, it is strongest if we take |Q2| � m2
B, which gives the bound quoted ref. [6],

ρ2 ≤ 1.42 . (9)
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However, there are reasons to believe that this bound on the slope of the Isgur-Wise

function cannot be correct. In particular, one may construct two simple counterexamples.

The first involves a hypothetical world in which the light quark in the B meson has a

mass m` such that mb � m` � ΛQCD. In this case the nonrelativistic quark model

(NRQM) [8] is applicable, as the B meson is analogous to the hydrogen atom, a weakly

bound system with coupling strength αs(m`). The “charge radius” ξ′(1) may be computed

using nonrelativistic wavefunctions for the bound states, and one obtains a value which

is proportional to −1/α2
s(m`), in violation of the proposed bound. If such a “B-meson”

were really like a hydrogen atom, in particular if it were unconfined, the derivation would

have failed because of an anomalous threshold in F (q2) at the point q2 ≈ α2
sm

2
b. Yet the

NRQM should apply arbitrarily well for the confinement scale arbitrarily in the infrared;

for such “weakly confined” QCD [9], F (q2) must be analytic all the way up to the point

q2 = m2
“Υ”. However in this case there is still a “would-be anomalous threshold” near

q2 = 0 controlling the steep behaviour of ξ(w) at zero recoil. In potential models, such

would-be anomalous thresholds are typically associated with the presence of many poles

in F (q2), with residues large in magnitude and oscillating in sign, along but near the end

of the physical cut [10]. This is a hint that it may be necessary to consider more carefully

the behaviour of F (q2) near the physical threshold.

For our second counterexample, we recall that the techniques of HQET may be used

to extract the leading logarithmic dependence on the heavy quark mass mb of the physical

form factor F (y). Neglecting terms of order 1/mb, we find [11]

F (y) = [αs(mb)]aL(w) ξren(w) , (10)

where

aL(w) =
8

33− 2Nf

[
w ln

(
w +
√
w2 − 1

)
√
w2 − 1

− 1

]
, (11)

ξren(w) is a universalmb-independent and µ-independent function, andNf is the number of

light flavours. Now for mb arbitrarily large, αs(mb) is arbitrarily small, and the magnitude

of the slope of F (y) at y = 0 may be made arbitrarily large (note that as mb grows, the

inequality (6) is better and better satisfied). Of course, such behaviour is inconsistent with

any bound on the slope of the form factor which one might hope to derive.

So where does the argument which leads to the constraints (7) fail? The problem is

that it is not possible to convert the integral from y = 1 to y = ∞ of |F (y)|2 (times the

weighting function) into a contour integral, because it is not possible to integrate around
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the end of the physical cut at y = 1. This is simple to see when F (y), taken from eq. (10),

is expanded about y = 1, corresponding to w = −1. Writing w = −1+ε and taking ε� 1,

we find

F (y) ∝ [αs(mb)]aL(w) ∼ eK/
√
ε , (12)

for some positive constant K. We see that F (y) has an essential singularity at the point

y = 1. The integral around the end of the cut, taken on a small circle of radius δ, has no

well-defined limit as δ → 0; hence it is not possible to find a closed contour on which the

(weighted) integral of |F (y)|2 is bounded, and inside of which F (y) is analytic. Therefore

condition (i) cannot be met, and no constraints such as eq. (7) may be derived.

To understand what has happened, we need to look more carefully at the analytic

structure of F (y). The integral in the inequality (6) starts at y = 1, running to y = ∞
along the top of the cut given by continuum production of BB̄ pairs. However, there

are additional singularities in F (y), corresponding to diagrams in which the current V µ

converts to a heavy quark-antiquark bound state, which then couples directly to the B-

meson. These are singularities below BB̄ threshold, beginning at the mass of the “Υ”

state, which for very large mb is located at y = 1− 4α2
s(mb)/9. To complete the contour

integral in such a way that F (y) is analytic everywhere inside, one must close it to the left

of y = 1− 4α2
s(mb)/9. These additional contributions to the weighted integral of |F (y)|2

need not be negligible, and they are not known. Hence once again we see that we cannot

take the crucial step from a bounded integral over 1 ≤ y <∞, to a bounded integral over

a closed contour.

In fact, in both of our counterexamples we should expect singular, or at least dramatic,

behaviour associated with the “Υ” region below BB̄ threshold. In weakly confined QCD,

the presence of the would-be anomalous threshold near y = 0 is typically associated with

rapid variations in F (y) [10], which it is natural to associate with the “Υ” region. In the

HQET, the singular leading logarithmic behaviour (10) of F (y) at y = 0 arises from the

infrared divergence associated with multiple gluon exchange between heavy quarks with

nearly the same velocity. The quark and antiquark would like to form a bound state, but

cannot in the mb → ∞ limit with their velocities absolutely fixed. One may be misled if

one fails to account carefully for the contributions of these bound states below the threshold

for heavy meson pair production.

In conclusion, we wish to stress not simply that the analysis of ref. [6] is flawed, but

that it is not likely to be possible to amend this argument so that weaker, but still rigorous,
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bounds could be derived. Of course one could attempt to model the contributions to F (q2)

of the heavy quark-antiquark bound states, but such an approach would undermine the

rigor of the derivation. We have presented two counterexamples in which the magnitude

of the slope ξ′(1) may be made arbitrarily large, and in which any universal bounds which

one might hope to derive would be violated. We have argued that these are sufficient to

preclude the derivation of any such universal constraints on the Isgur-Wise function.

Similar work has also been done by B. Grinstein and P. Mende [12] and by C. E. Carl-

son, N. Isgur, T. Mannel, J. Milanu and W. Roberts. We are grateful to them for commu-

nicating their results to us prior to publication. We also thank D. Kaplan, M. Neubert,

M. Peskin and J. Taron for useful conversations. A. F. would like to thank the Depart-

ment of Physics at UC San Diego, where portions of this work were performed, for their

hospitality.
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