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I 
: 

INTRODUCTION 

The radial Dirac Hamiltonian has often been diagonalized in a finite basis, 

in order-to sum numerically over intermediate states. The Hamiltonian for the 

Coulomb potential has been diagonalized in a variety of Slater bases [l] with 

.- noninteger leading powers, by Goldman and Drake [a], by Goldman [3], and by 

-D&?ke [4], in order to calculate two-photon decay rates in one- and two-electron 

high-2 ions. Even in these bases, and for so simple a potential, a numerical eigen- 

state can be found that is physically meaningless, or a genuine eigenstate can be _~ 

lost from the numerical spectrum. In more complicated bases and for other poten- 

tials, numerical eigenstates can be found which are physically sensible but whose 
. --- 

- numerical eigenvalues lie below the true eigenvalues. Reviews of the empirical pre- 

script&ns used to circumvent such problems may be found in reference 5. Only 

for the Coulomb potential, and for one particular Slater basis, have the numeri- 

cal eigenvalues been proved, by Goldman [6, 71, even to be correctly bounded; our 

paper represents a generalization of his seminal work. 

For the Coulomb potential we find that the use of all of Drake’s and Gold- 

man’s Slater bases can be justified by a minimum principle for the radial Dirac 

Hamiltonian. This principle ensures, for any potential whatever, both the conver- 

-gence from above of the positive eigenvalues, and the convergence in mean-square 

of the corresponding wavefunctions. This principle uses any of a infinite set of 

r-dependent unitary transformations to decouple the large and small components 

of the radial Dirac equation; the transformed equation maps to an ordinary Sturm- 

Liouville equation, whose familiar minimum principle provides the bounds on the 

eige&alues and the convergence of the wavefunctions. We prove that this principle 

applies to any regular Dirac equation in a finite interval; to show that it applies to 
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at least one singular Dirac equation in an infinite interval, we apply it to the radial 

Dirac equation for the Coulomb potential. For this potential there are two particu- 

larly simple unitary transformations, for each of which the related Sturm-Liouville 

equation. is just the radial Schrijdinger equation for the Coulomb potential. To 

each transformation there corresponds a basis; for each basis it is shown when and 

-why a meaningless eigenvector is found or a genuine one is lost, and how the ba- 
; e, 

sis can be repaired. The positive variational eigenvalues are proved to converge 

. strictly from above to the exact eigenvalues, and the corresponding wavefunctions 

_~ to converge in mean-square to the exact bound-state wavefunctions. The functions 

used in the bases may have any variation near the origin, may have discontinuous 

second derivatives, and may contain a set of nonlinear parameters that may be 

tuned to optimize the representation; we can thus apply to the Coulomb potential, 

and jmplici-tly to any potential whatever, the full variational methods of Rayleigh 

and of-Ritz [S]. 

Some results apply to the Coulomb potential only. All the Slater bases used 

by Goldman and by Drake are special cases of one or the other of our two bases, 

and we thus justify their use. A relativistic Sturmian basis [l] is found in which 

the matrix eigenvalue problem is banded instead of full; this matrix problem can 

be solved quickly and stably in - N2 computer operations, instead of the usual 

- N3, even for 4800 basis vectors. An analytic formula is found that expresses the 

matrix eigenvalues and eigenfunctions of this basis, and also of the bases of Drake 

and of Goldman, in terms of the Pollaczek polynomials and their zeros. A simple 

recursion is presented that can evaluate in any Sturmian basis the matrix elements 

involved in the emission and absorption of radiation. 
. -- 

--5&e beginning of this paper deals with our first simple basis for the Coulomb 

potential; the middle deals with the second; and the end deals with our general 
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minimum principle. Section I reviews our conventions for the Dirac equation and 

a known correspondence between the Dirac and Schrijdinger Coulomb problems. 

Section II .begins our actual work and for our first basis lists our five principal 

theorems about the convergence of the eigenvalues and eigenfunctions; these the- 

orems are proved in Sec. III. Section IV develops a relativistic Sturmian basis in 

wl$h the matrix eigenvalue problem is banded, and Sec. V shows how to write the 

eigenvalues and eigenvectors in that basis analytically in terms of the Pollaczek 

. . polynomials and their zeros. Section VI introduces and develops our second sim- 

-~ ple basis, and Sec. VII presents the recursion that evaluates matrix elements in 

- any Sturmian basis. Finally;in Sec. VIII we develop the minimum principle that 

applies to any potential.whatever, prove that is works for any regular Dirac prob- 

lem & a finite interval, and building on our success with the Coulomb potential, 

make-some general remarks about the application of the minimum principle to any 

Dirac problem on an infinite interval. The paper is written so that section VIII 

can be read independently of the rest. 

1: REVIEW OF UNITS AND CONVENTIONS 

The symbol (f ) is a shorthand for sow f(r) dr. The symbol (a, b) denotes 

-the open interval a < r < b; the symbol [u,b] denotes the closed interval a 5 

r 5 b; and the symbol [a, b) d enotes the interval a < T < b. We adopt atomic 

units, fi = m = e = 1, and for the Dirac equation we adapt the conventions of 

- Goldman [6], [9]. The D irac equation for an electron in the Coulomb potential of 

a charge 2 > 0 is H8 = EQ, where 
. -- 

-G- -.- 
ZcY2 H=&$++L--- 

r * (14 
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Here G and ,B are the usual 4 x 4 Dirac matrices. The solutions Q may be written as 

i $9 Rjlm 

9= 

( ) -+ Rjim 
7 (l-2) 

where g(r) and f( r are the large and small radial functions, and the functions ) 

fl are two-component spherical spinors. The large and small functions satisfy the 

co\Tled equations H( r)t,!~ = u,b, 

where c = CY’E, and where K is the Dirac quantum number, K = &(j + 3) for upper 

component angular momentum 1 = j f 4 and lower component angular momentum . 

I” = j F- 3. Two new functions $ and 19, and a two-component function a, may be * 

defined by a unitary transformation [lo] of the functions f and g: 

Here cp may be in general a function of T. We seek a transformation that will 

-reduce the upper-left element of the matrix in Eq. (1.3) to a constant. There are 

two simple solutions that have cp itself constant: sin 2~ = aZ/r;, with cos 2~ = 

--Y/K; and sin2p = ~Z/K, with cos2cp = +y/~. The parameter y is defined by 

ey=,/v. T o each solution there corresponds a simple way to construct 

variational states. Picking the first solution, Eq. (1.3) transforms to h@ = e@, 

where the matrix operator I-L(K) is defined by 

I( 
77(K) BbF) 

- B+(K) -+)+A > 
. (1.5) 
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The operators B(K) and Bt( K), so defined [9], are Hermitian conjugates, because 

(flB(K)f~) = (fi@(~).fl), if [f1f2]? = 0. The eigenvalues of h(~) for which 

E # V(K) fall into two continua, with E < -1 or E: > 1, or into the discrete set 

$ = [1+ (@J]-1’2, (l-6) 

.wke?3 the index p runs p = 1, 2, . . . . There are two normalized solutions with 

c = V(K). We label these as @s for K. < 0, and as @f for K > 0. Both have lower 
. . 

_~ component functions 8 that are zero. The upper component functions $0 and ~$f 

are respectively 

--. ‘&.+) =. 
I( ) 

E ++21)r(l +2y) -1’2 r+y K. 1 exp{-.WI4) , K < 0 , 
P-7) 

q!&)-= 
[ 

( g-(1-2y)ql - 241 
-l/2 

rpy exp{-Zr/]K]} , K > 0 . 

The second solution @f is normalizable only for y < l/2. It is excluded from 

the spectrum of states, however, on the physical grounds that for it alone is the 

expectation value of the potential energy infinite. We thus recover the familiar 

result that the bound-state eigenvalues are given by Eq. (1.6), where the index p 

runs 0, 1, . . . for K < 0, but runs 1, 2, . . . for y;. > 0. 

Except for @o and @f, all other solutions of h@ = E@ have 0(r) # 0, eigenvalues 

‘E # 5wY and have components which satisfy the differential equations 

c2 - 1 d2 I y(y + 1) 226 
- - - - 

dr2 r2 r a2 I 
by?-) = 0 . (l&, b) 
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For bound states we impose the normalization (+2 + e2) = 1. We note that the 

solutions 0(r) of Eq. (1.8b) are proportional to the solutions 6s(r) of the differential 

equation 

22’ d2 I +kY + 1) 
dr2 r2 

- J- 6,(r) = 2m?,y(r) ) 
I 

(1.9) 

if one makes the-correspondences 2’ = 2~. and (e2 - 1)/02 = 2E. Equation (1.9) 

is the familiar eigenvalue equation for the radial Schrodinger Hamiltonian, for an 
. 

electron in the Coulomb potential of a charge 2’ (which may be positive or neg- 
_. 

ative), and for an artificial noninteger angular momentum equal to y. That the 

only bound states of Eq. (1.9) occur for 2’ > 0 and for eigenvalues Ep given by 

at once establishes, 

.qZ’) = - 2’2 w/ + PI2 ’ p= 1,2,... ) (1.10) 

for example, that the bound states of Eq. (1.8b) must have 

eigenvalues cp given by Eq. (1.6). Equation (1.8b), and the equivalence of the Dirac 

and Schrodinger Coulomb equations, were probably first obtained by Martin and 

Glauber [ll]. We will use the equivalence to establish a minimum principle for the 
.^ 
operator h(~). 

II. THEOREMS ON BOUNDS AND CONVERGENCE 

The following five theorems summarize, for the operator h(~) and therefore for 

our first basis, the principal results of our study of both bounds and completeness 
.e- 

for ‘&&tioiial eigenstates for the Dirac Coulomb Hamiltonian. Parallel theorems 

for the second basis are described in Sec. VI. 
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Theorem 1. Eigenvalue bounds 

Let {w} be a set of N linearly independent functions. Let the functions w and 

dw/dr and w/r be absolutely continuous on [0, 00). For all n, m let the integrals 

($$? Wm) 9 (wnwm) 7 

; r, 
’ (WnF-) 7 

. . 7 
(24 

exist, and let the (absolutely continuous) functions wnwm/r and wn(dwm/dr) van- 
_ _. 

- ish at the origin. Define the basis of 2N two-component functions {Q(K)} by 

Qn e (B(rc)w,,O) for n = 1,“. , N, and QN+n f (0,~~) for n = l,... , N. 

Diagonahzing h(lc)@ = E@ in the basis {Q(K)} produces N positive and N nega- 

tive eigenvalues. For K < 0 the eigenvectors are all normal to the exact state @s. 

For either sign of K the eigenvalues obey proper variational bounds, in that the 

negative eigenvalues lie below -1, and the pth positive eigenvalue lies above the 

corresponding exact bound-state eigenvalue +,, for p = 1, 2, . . . . The upper and 
.- 
lower components $ and 0 of the eigenfunctions are connected by the differential 

-equation (3.5). 

-Theorem 2. Equivalence of problems with opposite signs of K 

Compare the results of diagonalizing, for each sign of lc, the operator h(s) 

in the base Q(K). The N eigenvalues are the same, and the lower component 
. 

fun&&& 0 ;of eigenvectors corresponding to equal eigenvalues are proportional. 

The constant of proportionality is given by Eq. (3.9). 
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I 
: 

- *-’ 

Theorem 3. Completeness of the representation 

Suppose that, in addition to satisfying the assumptions of Theorem 1, 

the set of functions {w} is complete. Then for K > 0, the set {Q(K)} is a com- 

plete set of two-component functions, while for K < 0, the set {Q(K) $ as) is a 

complete set. As N --+ 00, the matrix eigenfunctions @ that have positive eigen- 
; r, 

.values converge ;n mean-square to the corresponding bound-state eigenfunctions. 

. . The positive eigenvalues converge monotonically from above to the exact eigenval- 

_~ ues eP, and the negative eigenvalues converge monotonically from below to -1. 

Theorem 4. Harmless expansion of the basis set 

.!I’0 any base {Q(K)} made of functions {w} which satisfy the require- 
* - 

ments. of Theorem 1, add a number m of new basis vectors of the form 

m. (fj(r),O), for j = 1, . . . , m. Let the N + M functions {fm, B(K)w~} be 

linearly independent. Then the original 2N eigenvalues and eigenfunctions of 

the basis {Q} are unchanged, and there are m new eigenfunctions of the form 

(Fj, 0), for j z 1, . . . , m. The functions F’ are linear combinations of the 

functions fj(r) - C,“=, (filB(K)wn) B(K)wn(r). The new eigenvectors may be 

-distinguished from the old both by their common eigenvalue 77 and by their 

vanishing lower component function 0. 

Theorem 5. Variational representation of @po 

, -- 
Suppose that, corresponding to a sequence of functions wn, of which the first N 

al&$&-satisfy the assumptions of Theorems 1 and 3, there can be found a sequence 

of functions u,, such that the first N+l functions u span both the first N functions 
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J?(K)w and the first N functions B(-K)W. Then /Z(K) and h(-K) may both be 

diagonalized in the common basis of 2N + 1 functions {P}, where Pn z (un, 0) 

for n = l,.. . . , N + 1, and Pn+~+l G (0, wn) for n = 1, . . . , N. According 

to Theorem 4, of the 2N + 1 eigenvalues and eigenvectors, 2N are identical to 

those from a diagonalization of h in the basis Q. For K < 0, provided (ull&) # 0, 

- the_one extra numerical eigenfunction and eigenvalue so introduced may be used to 

complete the basis, instead of the exact eigenfunction @o and its eigenvalue ~0. For 

. . K. > 0, the extra numerical eigenfunction so introduced is not needed to complete 

-~ the basis, does not converge as N + w, and cannot be assigned a meaning. 

III.. PROOFS OF BOUNDS AND CONVERGENCE _ _. 

Let {w} be a set of N linearly independent functions satisfying the require- * 

ments of Theorem 1. Then for either sign of IC, the integrals (B(K)w,lB(K)wm) 

and (wnBt(K)B(n)wm) exist, and a justifiable integration by parts shows that 

they are equal. Indeed the conditions on the functions w in Theorem 1 have been 

chosen mostly to ensure that these integrals will exist and be equal. Consider di- 

agonalizing h(k) .- in the basis of 2N vectors {Q(K)}, where Qn z (B(n)w,,O) 

for n = l,..., N; and Qn+~ G (0, wn) for n = 1, . . . , N. The integral 

m(Qnh(K)Qm) 1 Y a wa s exists; the bases used for opposite signs of K are different 

because B(K) # B(-K). W e note that the solution to the differential equation 

B(&)f = 0 is the function f(r) = r--YeSzT/IE. For neither sign of ~-does (f2/r) 

exist (the function f is square integrable, however, if y < l/2), so we exclude 

the function f from the set (20). The linear independence of the functions {w} 
< -. 

then-G&ures the linear independence of the set of functions {B(K)w}. The al- 

lowed class of functions {w} is quite broad; it may include, for example, functions 
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for which the second derivative is only piecewise continuous, as well as functions 

which do not vary near the origin like ry+l as do all the exact eigenfunctions 8. 

For K < 0, the functions Q are all normal (because B+(K)& = 0 for K < 0) to the 

eigenstate as, which lacks a corresponding state with K > 0 that is degenerate in 

energy. 

;Jn the basis .{Q}, the upper and lower functions $ and 0 of the eigenstates 

Qp = (c),19) may b e expanded in terms of two N-component vectors ~1 and x2 as 

. . 

4 = 2 (Xl>j w+j 7 

j=l 

and 8 = -g (x& wj . (34 
j=l 

The eigenvalue equation h(~)@ = 4 in the basis {Q} is equivalent both to the 
_ -- 

- matrix equa;tion 

*--. (z Yl) (:I)=(: :) (::> ’ (3.2) 

and to the pair of separate equations 

qMx1 + Mxa = ~Mxl , 

(3.3a, b) 
Mxl + (-$2 + A) x2 = d-Jx2 , 

.- 

where Mnm = (B(K)wn(B(IC)wm), km = (WnlAIWm), and Unm = (wnlwm)- The 

matrix M is the overlap matrix of N independent functions Bw, and so is positive 

definite. Therefore, if MX = 0 for some vector X, then X = 0. At least one of the 

vectors x1 and x2 must be nonzero in a valid solution to Eq. (3.2). Equation (3.3b) 

- shows that x2 # 0, and then Eq. (3.3a) that x1 # 0 and E # 7. Therefore, 

the vectors x1 and x2 are proportional, 

x2 
x1 = - 

c-q ’ 
(3-4) 
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and from Eq. (3.1) one finds that the variational wavefunctions satisfy the a 

differential equation 

q$= l [ 1 6 - 77(4 BbP , (3.5) 

which is analogous to Eq. (1.8a) for th e exact states. Eliminating x1 in Eq. (3.3b), 

using Eq. (3.5)) we find that x2 satisfies a matrix equation analogous to Eq. (1.8b): 

--- 
I > 

wm [X2], = 0 - (3.6) 
. . 

_~ This equation does not depend on the sign of K, and one can work backward from 

Eq. (3.6) to construct the matrix eigenvalue equation, Eq. (3.2), for either sign. 

Therefore, the variational states with opposite signs of K: have equal eigenvalues, 
_ _. 

- and have, except for normalization, the same lower component functions 19(r). That 

the exact eigenvalues and eigenfunctions have these properties too is evident from 

an examination of Eq. (1.8b), which like Eq. (3.6) is independent of the sign of K. 

A proof that in a Slater basis the eigenvalues and eigenfunctions must have these 

properties was presented by Goldman [6], but the proof is incomplete [12]. 

The constant of proportionality between 19, and 8-, depends on their common 

eigenvabre E and may be calculated, following Goldman [6], as follows. The eigen- 

value equation (@IL(K)@) = t(C?]@), p ex ressed in terms of the upper and lower 

components 4 and 8, is equivalent to the pair of equations 

(l?(lc) - q44) + (4lw4 0) = 0 7 
~ (BIB(Q) - +I@ + (BA8) = 0 . 

WI 

Using Eq. (3.5) and the normalization condition (p + 8”) = 1 to eliminate 4, we 

, --find that I. 

E = T+c) + h2Z (W) 
l-z(e;) ’ (3.8) 
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from which it follows that 

6-,(r) = f ’ + ‘(K) [ I l/2 6 - 77(4 OK(r) . (3.9) 

The factor under the square root is greater than zero. This follows from the 

integrals (f3:) and (02/r) being both g reater than zero, or independently from 

theVbounds on the eigenvalues E that we shall prove shortly. The overall sign in 

Eq. (3.9) may be set by convention. 

. . Compare now the two different matrix eigenvalue problems 

d2 ( 7tY+ 1) 
dr2 

r2 

WY t 1) Lx5 
-- 

51.2 ’ r2 r [X]m = 2E C (WnIWm) [X]m - 
m=l 

(3.10~) b) 

The first equation is Eq. (3.6) rewritten; the second is an ordinary eigenvalue 

problem in the same basis {w} for N vectors x and eigenvalues E for the radial 

SchrSdinger Hamiltonian of Eq. (1.9). Plainly there exists a solution x2, E, to the 

first, if and only if there exists a solution x, E, to the second, with x = x2 and the 

correspondences 

2’ = 26 ) and 
c2 - 1 
cr,=2E. (3.11~2, b) 

We desire to have the eigenvalues of Eq. (3.10b) bound by the exact 

eigenvalues-and for the eigenfunctions to converge in mean-square to the ex- 

- act eigenfunctions-of the Schrodinger Coulomb problem, Eq. (1.9). It is both 

sufficient and necessary [13] that the integrals (w,wm/r2) and (Wn d2wm/dr2) 
< -- 

and -%$Gn W&j exist for all n, m (which conditions incidentally imply that the 

functions wn vanish at zero and at infinity). For 2’ < 0, the eigenvalues 

13 
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E are therefore greater than zero. For 2’ > 0, if the eigenvalues E are indexed 

1) 2) . ..) in order of increasing energy, then the pth eigenvalue is greater than or 

equal to Ep, for p = 1, 2, . . . . The correspondence in Eq. (3.11) shows that all 

negative kigenvalues E of Eq. (3.10a) are less than -1. To show that the pth posi- 

tive eigenvalue of Eq. (3.10a) is greater than or equal to cP, we use the following 

_ graphical argument. 
; r, 

. . 

The N eigenvalues of Eq. (3.10b), considered as functions of Z’, define N 

continuous curves with continuous first derivatives on the interval --00 < 2’ < 00. 

_~ Label these curves as E(j)( 2’)) for j = 1,. . . , N. Because the matrix of 

r2 _ -d2/dr2 + $7 + I)/ is positive definite, when 2’ = 0 the eigenvalues of (3.10b) 

are all greater than zero. The curves E(j)(&) h ave asymptotes that are straight 
- 

lines.. through the origin; for large 12’1 these asymptotes are approached from 

above, -The correspondence in Eq. (3.11) re q uires that the values of E and 2’ 

for which-there are eigenvalues E are those for which the curves E(j)(F) intercept 

the parabola E(Z') G (2" - Z2)/(2Z~)2. B ecause this parabola is negative for 

2’ = 0 and is concave up, it must cross each of the N curves E(j)(F) at least 

twice. But a Hermitian matrix eigenvalue problem like Eq. (3.2) must have 2N 

linearly independent eigenvectors with precisely 2N corresponding eigenvalues, so 

the parabola must cross each of the curves just twice, once for 2’ > 0 and once 

for 2’ <‘O. The correspondence in Eq. (3.11) shows then that there are then N 

positive and N negative eigenvalues c. 

The matrix of -l/r is negative definite. Each eigenvalue of a Hermitian 

matrix decreases when a negative definite Hermitian matrix is added [14], and so 

each of the functions E(j)(Z) is a strictly decreasing function of 2’. Now sup- 

pose-&&t one found p positive eigenvalues of Eq. (3.10a) all less than the exact 

bound-state eigenvalue eP, with c(l) 5 ~(~1 5 . . . 5 c(P) < cP. The correspondence 

14 



- .-- 

in Eq. (3.11b) requires that all the eigenvalues E be less than I&, and the corre- 

spondence in Eq. (3.11a) that the values of 2’ assigned to the eigenvalues be less 

than or equal to the value 2’ (c(P)) assigned to c(P). But all the curves E(j)(?) are 

strictly decreasing functions of Z’, and so for 2’ = Z’(&‘)) there must be p eigen- 

values of Eq. (3.10b) all less than Ep. That would violate the eigenvalue bounds 

_ for the SchrGdinger problem, and so the pth eigenvalue of Eq. (3.10a) must always 
-” -I 

lie above the corresponding exact eigenvalue ep [15]. 

. . The inclusion theorem [16] of the theory of matrix diagonalization requires 

_~ that if an M x M Hermitian matrix is augmented with a new row and column 

_ to become of dimension (M + 1) x (M + l), then the set of new eigenvalues 

(X-) interleaves with the set of the old eigenvalues {A}, so that the eigenvalues 

may-.be put in the order Xr 5 Ar 5 X2 5 AZ.. . 5 AM 5 XM+~. Because 

there-are always an equal number of positive and negative eigenvalues 6, if a new 

function i is added to {Q}, and so two new rows and columns added to the 

matrix equation in Eq. (3.2), the pth positive eigenvalue cannot increase and the pth 

negative eigenvalue cannot decrease. 

Now suppose the set of functions {w} is complete, so for any function f(r) 

square-integrable on [ 0, oo), an expansion in terms of a set of coefficients a, can be 

found, so that 

(3.12) 

For K. > 0 the set of two-component functions {Q(K)} is complete. For K < 0 the 

set becomes complete if augmented (before or after the matrix diagonalization) 

with the eigenfunction ‘90. As the size of the basis is increased, and so as the curve 
. -- 

E’+@‘) -$ escends ever closer to the curve Ep(Z’), the pth positive eigenvalue 

must -limit to its lower bound, cp. We prove this formally as follows. The exact 
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eigenvalue cp corresponds to the crossing for 2’ > 0 of the decreasing parabola 

Ep(Z’) and the increasing parabola E(2’). Th is crossing occurs at the special 

value of 2’ equal to 2; E 2~~. Because the pth eigenvalue E is always greater than 

or equal to ep, and never increases as N is increased, the values of 2’ corresponding 

to the crossing points are always greater than or equal to ,Z$, and never increase. 

_ La.51 the values of 2’ at the successive crossing points as ZL( N). Pick a value No. 

Because the pih eigenvalue never increases, the correspondence in Eq. (3.1 la) shows 

. . that if N > No, then 2; 5 Z:(N) 5 ZL(No). Let E(p,Z’) denote the pth eigen- 

_~ value [17] of Eq. (3.10b) as a function of 2’. The convergence of the SchrSdinger 

_ problem, Eq. (3.10b), g uarantees that, corresponding to some number S > 0, we 

can. find Nr 2 No, so that if N > Nl, then 0 5 E(p, 2’) - Ep( 2’) < S for all 2’ _ _.. 

in the interval [ZL, Zz(No)]. F rom the formule for the two parabolas E(Z’) and 

Ep(Z!);for all N > Nr we can show that 0 5 Z:(N) - 2; < S/C, where C > 0 

is the-constant C G (dE/dZ’ - dE,/dZ’)[~,=~; = Z~/Zd + Zk/(y + P)~. The 

bound on Z’(N) t ranslates via Eq. (3.11a) to the bound 0 5 E. - cp < S/C2 for all 

N > Nr. Because S is arbitrary, 2: and 6 converge monotonically from above to 

2; and cpp, respectively. That the negative eigenvalues E converge monotonically 

to -1 from below, and that the values of 2’ converge monotonically from below 

to -2, can be proved without a graphical argument. We need only the correspon- 

-dence in Eq. (3.11), and the fact that the eigenvalues E of Eq. (3.10b) for 2’ < 0 

converge monotonically from above to zero. 

We now establish the convergence in mean-square of those matrix eigenfunc- 

tions with positive eigenvalues to the exact bound-state wavefunctions. Unfortu- 

nately this is not guaranteed merely by convergence of each eigenvalue to cp [18], 
< -. 

and %G proof is somewhat long. We need to define some new notation; consider 

now -2’ > 0 only. Let the exact Schrodinger eigenfunction of the bound state 
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that corresponds to the eigenvalue Ep be 0s(r, Z’), where (0:(r, 2’)) = 1. The 

SchrGdinger matrix problem in Eq. (3.10b) has a pth eigenvalue, which has a corre- 

sponding approximate wavefunction, 19s~ (f, Z’), normalized so (fig, (2’)) = 1. As 

N increases, 19s~ (T, 2’) converges in mean-square to 8s(r, 2’). Let the upper and 

lower components of the exact Dirac eigenfunction of the bound state that corre- 

. . 

vsmds to cp be ED and LID, with (4% + ‘3;) = 1. The Dirac matrix problem 

in Eq. (3.10a) has a pth positive eigenvalue, which has a corresponding eigenfunc- 

tion with upper and lower components $DM and I~DM, with ($$M + 0gM> = 1. 
_~ 

we define too the scaled functions e”~ c 6~/(0’$)“” and 80~ E @DM/(~%M)~‘~. 

Consider the integral 

co 

J [Bs(r, 2’) - es(r, z;)] 2 dr . (3.13) 
* - 0 

- . 
The integral exists because Bs(r, 2’) is square integrable. For 2’ = 2’ the integral 

vanishes. Now corresponding to an arbitrary value S > 0, pick an increment 

AZ’ > 0, so that for all 2’ in the interval [ZL, 2; + AZ’] we have 

00 

J [eS(r, 2’) - es@, z;)]” dr < i . (3.14) 
0 

-Because’ 2: (N) converges to 2; as N increases, there exists some value N2 such 

that if N > N2, then 0 5 ZA( N) - 2; 5 AZ’. Because the eigenfunctions 

of the SchrGdinger problem, Eq. (3.10b), converge in mean-square to the exact 

SchrGdinger wavefunctions, there exists a value N3 > N2, so that for all N > N3 

and for all 2’ in the interval [Zk, 2; + AZ’], we have 

J [oSM(z’,V) -k&z+)]” dr < i . (3.15) 
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The correspondences between Eqs. (1.8b) and (1.9), and between Eqs. (3.10a) and 

(3.10b), show respectively that e”D(T) = &@, z;), and e”oM(r) = @sM(r, Z:(N)). 

Therefore for all N > N3, we have 

w 

I[ 
~“DM - B”D] 2 dr 

J 
0 

; r, 

= “” [OSM (Z:(N)) - J 
0 

5 2 O” [OSM (z:(N)) J 
0 

<S. 

e.@(N)) + h@:(N)) - esM(z;)]2 dr - 

- eS(z;)]” dr i- 2 O” [es(z:(N)) - esM(z;)12 dr J 
0 

(3.16) 

As N goes to infinity, 80~ converges in mean-square to 8~. Therefore, except * 

for overall normalization, the lower component function eDM from the matrix 

diagonalization converges in mean-square to the lower component function 80 of 

the exact bound-state wavefunction. 

Consider now the normalization. We no longer need to refer to the eigenvalues 

and eigenfunctions of the SchrGdinger problem, Eq. (3.10b), or to the values of 

ZL( N), and so we can simplify our notation. Label as en, for n = N - p + 1 = 1, 2, 

* * * 7 those eigenvalues that limit to the value cp as N is increased. Label the upper 

and lower components of the corresponding eigenfunctions as &(r) and e,(r). 

These are normalized so that (& + 6:) = 1. Let the symbol “-+” denote a limit 

as N, and therefore n, goes to infinity. Label the upper and lower components of 

the exact eigenstate corresponding to ep as 4( r and e(r). These are normalized ) 
. -- 

so t!&$(&l- e2) = 1. Also define 8, - 0,/ (e$‘” and s” f 0/ (82)1’2. In terms 

of OUT earlier notation, 8 = eD, and e” = 8D, and 8, = eDM (T, zL(n -k p - I)), 
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and & = eDM(r, zL(?Z $ p - 1)). W e need the following four properties of the 

function e”(r), which follow readily from an examination of the exact formulE for 

all the bound-state functions 8: e”(r) is continuous on [0, oo); and o”(r) is square- 

integrabie; and ex2/r has a Riemann integral on the interval [0, a], for a > 0; and 

((J/r)“) exists. 

The convergence in mean-square proved in (3.16) can now be written as 
; r, 

. . 

.( (0, - 8)2) + 0. We need to establish a few other limits, in particular the following 

set: 

_~ ((B, - q2) + 0 ; ((6, - Q2/r) -+ 0 ; 

(B&P) -+o; (e,B/,-P/r) 30; 

.. (eg2) +o; p:/r-P/r) 40. (3.17) 

Because 8, and e” are square-integrable, we can apply the Schwartz inequality to 
. . 

show that 

(3.18) 

and so (8,s”) A (fi2). Expanding ((8, - 8)“) into (8;) - 2(sxnt) + (8”) shows that 

(e”:) + (8”). Next, because 8, and e”/r are square-integrable, we can apply the 

Schwartz inequality to show that 

( (8, - 6) B/r)2 5 ( (8, - e”)2 )( (B/r)2 ) ) (3.19) 

Finally, we show that (ii/r) + (j2/r), thus establishing both remaining 

limits in (3.17). Compute the difference 
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where the integral has been divided into two pieces at a convenient point a > 0. 

The second integral converges to zero because it is smaller in magnitude than 

a -‘(@ - ($2) 7 and the latter integral converges to zero. To prove the vanishing 

of the first integral, we apply the following theorem [19] : if (1) a sequence of 

functions fn converges to a function f everywhere on a finite, closed interval [a, b], 

-and if (2) th e f unctions fn and (3) the function f have Riemann integrals on [a, b], 
; r, 

then the Riemann integral over [a, b] of fn converges to the Riemann integral 

of f. We need to prove that the three assumptions of this theorem are satisfied, . . 
_~ if fn = ez/r and if f = e”‘/r. 

Because 8, converges in mean-square to 8, and because 8, and e” are both 

continuous, J%(r) converges to e”(r) f or all r in [0, a], though this convergence is not 
_ _. 

- necessarily uniform [20]. Therefore e”:(r)/ r + fi2/r, except perhaps at the origin. 

But 42/-r is a linear combination of the functions wnzom/r, all of which vanish at 

the origin, and g2/r also vanishes there. Therefore e”i(r)/r + fi2/r for all r in 

closed interval [0, a]. So the first assumption about fn is satisfied. Again, @Jr is a 

linear combination of the functions w,wm/r, all of which are absolutely continuous, 

so @/r is absolutely continuous. It is therefore continuous on the closed interval 

[0, a], and continuity of a function on a closed interval is sufficient [al] for the 

function to have a Riemann integral over the interval. Therefore, fn = @/r has 

a Riemann integral over [O,a], and the second assumption about fn is satisfied. 

Finally, we know f = g2/r has a Riemann integral on [0, a], so the last assumption 

is satisfied. Therefore all the limits in Eq. (3.17) hold. 

Construct now the lower component functions 8, = A;lfi, and 8 = Am16 by 

evaluating the normalizing constants A, and A, which are given by 

, 
- 

-$jAc j?[T;“‘:] 2+ O” 6; & , and A2= J[ ~ B(K)e 1 2+&j2 d r . 
EP - 77 

(3.21) 
0 0 
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Here Eqs. (3.5) and (1.8a) have respectively been used to express the functions 

& and $ in terms of 0, and 6, and hence in terms of 6, and 6. The function 6, 

converges in mean-square to 8 if and only if A, + A. Expanding the operator B(K), 

and using the eigenvalue equations (3.10a) and (1.8b) to eliminate derivatives, 

yields 

. . 

- -~ (v)iAZ= [;- (9) +I] js2dr++,+j 1 8”2,rdr. 

0 0 
(3.22) 

- --. For‘large n, we have that cn limits to cp, and that the limits in Eq. (3.17) all hold. 

Therefore A, limits to A, and 8, converges in mean-square to 8. Consider next 

the convergence in mean-square of the upper components, 

(3.23) 

-The differential equation (1.8b) and integration by parts have been used to elimi- 

nate terms in d28/dr 2. The remaining integrals vanish as n goes to infinity, so the 

upper components converge in mean-square as well. That the upper components 

- converge properly is somewhat unexpected. The upper component is related to the 

lower by 4 0: B8, and the operator B contains a derivative. The convergence in 
. -. 

mea&$quare of a sequence of functions fn to a function f does not usually imply 

that the sequence of functions dfn/dr converges in mean-square to df/dr. 
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We have shown that the two-component wavefunction an converges in mean- 

square to the exact bound-state wavefunction a. Stronger forms of convergence 

might be proved for specific sets of functions {w}, but convergence in mean-square 

is sufficient for many purposes. For example, if j’~,~ converges in mean-square to 

fl, and if .h+ converges in mean-square to f2, and if F is a function of r such 

_ -that (f~,~F~fl,,) and (f2,nF2.f2,n) exist for all n, then as n, m + co we have that 
; r, 

~(h,nW2,n) -, (fiW2). c onvergence in mean-square appears to be sufficient for 

the evaluation of radial matrix elements. . . 

_~ We now establish some miscellaneous properties of the variational solutions. 

If the eigenvectors ~2 are split into two sets, corresponding to positive and negative 

eigenvalues, then the vectors in each set are linearly independent, a result estab- 
_ _. 

- lished for a S-later basis by Goldman [6]. F or, if f(r) is any function with (f2) = 1, 

and if <p = (f(r),O), then (ah@) = 7. D enote as a+ the normalized eigenfunc- 

tions that have positive eigenvalues E +. If the lower component vectors X: corre- 

sponding to these eigenfunctions were linearly dependent, then there would exist 

a two-component function a’ = C CjQT, with coefficients cj with Cj c; = 1, such 

that a’ has a lower component 13’(r) that is identically zero. But then 

(3.24) 

which is impossible. Therefore, the vectors z z are linearly independent. A similar 

argument shows that the lower component vectors Z; with negative eigenvalues 

are linearly independent. 

By expanding the basis {Q}, we can construct a representation of <PO, as well 

as the other states; Goldman [6] was the first to prove this possible, though only 
. -. 

for &&special set of functions {w}. Suppose to a set of 2N basis vectors Q we add 

m extra linearly independent vectors of the form (f(r), 0), where the functions f 
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are square-integrable. Assume that the new vectors are normal to the old vectors 

and to each other, so that (fIBwn) = 0 for n = 1,. . . , N, and that (falfj) = 0 

for i # j. Now h does not couple the new vectors to the old, so 2N of the 2N + m 

eigenvectors and eigenvalues are just the 2N eigenvectors and eigenvalues found in 

the basis Q. The m new eigenvectors are linear combinations of the m new basis 

v&_ors. Indeed, provided that the N + m functions fr, . . . , fm; Bwl, . . . , BWN 

are merely linearly independent, the 2N original eigenvectors will be unchanged. 

. . The new eigenvectors will have the form (F, 0), where the functions F are linear 

-~ combinations of the m functions fj(r) - Cr==, (fj\Bw,) Bwn(r). The new eigen- 

vectors can be distinguished, easily from the old, both by the vanishing of their 

_ _- lower- component function 8, and by their common eigenvalue q. 
. 

Now suppose we find, for n = 1, 2, . . . , a sequence of functions un, 

corresponding to the sequence of functions wn, such that for any N 2 0, the 

first N + 1 functions u, span the N functions B(tc)w,. For each N there is one 

function fN, a linear combination of the first N + 1 functions un, not spanned. 

Consider diagonalizing h in the basis of 2N + 1 functions P, where P, z (u,, 0) 

for n = 1, . . .., N + 1, and Pn+~+l s (0, w~+N+I) for n = 1, . . . , N. We 

find the same 2N eigenvectors and eigenvalues as from a diagonalization in the 

-basis Q;plus one extra eigenfunction (f~,0), with (fi) = 1 and with eigenvalue 

V(K). If the set of functions {wn) is complete, then u1 like any square-integrable 

function has a unique expansion, which converges in mean-square to ur, of the 

- form ur = as& + C,“=, unB(~)wn. The effect of the matrix diagonalization is 

to force the extra function f~ to be normal to each of the functions Bwn, for 
, -. 

n =-i&-b.. ;-N, SO that fN m a040 + x;=N+l unB(~)wn, while scaling fN to pre- 

serve.the normalization (fi) = 1. Th erefore as N goes to infinity, fN converges 
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in mean-square to 40, and the extra two-component function converges in mean- 

square to as. We need only assume that the function ul is not accidentally normal 

to the function 40. Curiously, the eigenvalue obtained from the matrix diagonal- 

ization gives no sign of the convergence of this eigenfunction to @J, because that 

eigenvalue is locked for all N at the value V(K) (which for K < 0 is accidentally 

equ$l to co). Therefore, for K < 0, we are free to complete the set of 2N eigenfunc- 

tions and eigenvalues with either the exact eigenfunction @o and its eigenvalue ~0, 

. . or with the approximate eigenfunction (fN, 0) and its eigenvalue. 

Consider diagonalizing h( tc), when instead K > 0, in the basis P. When K > 0, 

the function u1 has an expansion, which converges in mean-square to ur, of the 

- --.; form.ur = Cr=, bnB(tc)wn. The extra eigenfunction is still of the form (fN, 0), 

where now fN cc xrZN+1 &B(K)w%, and fN is scaled so (fi) = 1. The sequence 
* 

of functions fl, f2, . . . , doesn’t converge as N is increased (not even to fN(r) = 0, 

because then the 2N + 1 basis vectors P are then not, as has been assumed, 

linearly independent for large N); and when K > 0, no extra eigenfunction is 

needed to complete the basis. While the extra eigenfunction introduced by using 

the basis P instead of the basis Q is meaningless, it can easily be discarded after 

the diagonalization, as it is marked both by its eigenvalue ~(6) and by its vanishing 

-lower component. 

Now suppose we find a sequence of functions un so that the first Nfl functions 

span the N functions B(K)w~, for both signs of K. Then we can diagonalize h(K) 

- for both signs of K in the same basis P and get sensible results, provided that we 

remember that for K > 0 the extra eigenfunction is meaningless, and that for K < 0 
, -. 

the-&L&a ejgenfunction may serve to complete the basis of 2N functions instead 

of the exact eigenfunction @o. 
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We have shown how to establish a variational basis for the Dirac Coulomb 

Hamiltonian using virtually any complete set of functions {w}, augmented when 

K < 0 with the exact wavefunction @J or with an approximation to it. The 

functions {w} may be functions not only of r, but also of a set of arbitrary 

nonlinear parameters that may be tuned to optimize the representation of the 

wavefunctions-for example, by minimizing the smallest positive eigenvalue E. 
; r, 

. . 

.Thus the comhlete method of Rayleigh and Ritz [8], so useful for the Schrijdinger 

Coulomb Hamiltonian, may be applied to the Dirac Coulomb Hamiltonian. We 

_~ emphasize that it is not necessary (though it may speed convergence) for the basis 

functions {w} to vary near the origin as rY+’ as do all the exact lower components 

8, or for the functions {w} to have continuous second derivatives when r > 0. 
_ _- _ 

We conjecture that we may obtain a useful representation of the eigenstates 

of an-electron bound in the potential of a nucleus of finite size by treating the 

difference between the potentials of the finite and of the point nucleus as a small 

perturbation. We may also directly diagonalize the Hamiltonian for the potential 

of the finite nucleus, instead of the Hamiltonian for the pure Coulomb potential, 

provided we use a basis of type Q for K > 0 and of type P for K < 0. The 

essential point is to avoid using for K > 0 a basis of type P, and so to avoid mixing 

a meaningless eigenfunction (fN, 0) with the other 2N eigenfunctions. Whether 

the positive eigenvalues for the new potential will lie above the exact bound-state 

eigenvalues is unknown. (The positive eigenvalues will indeed lie above, if we use 

-instead the minimum principle developed in Sec. VIII.) 

IV. RELATIVISTIC STURMIAN BASES 

_ 
-i&y set of b asis functions of the form wn - rr+’ e -Xr Lzw;l+P Wr), 

for n-= l,... , N, where LL is a Laguerre polynomial [22], p a positive integer, 
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and X a number greater than zero, yields in the eigenvalue equation, Eq. (3.2), 

narrow-band matrices M, A, and U. This follows readily from the recursion and 

orthogonal&y relations of the Laguerre polynomials [22]. The most narrow appear 

for p = 0, and we find the following relativistic generalization of the well-known 

Sturmian functions [l] : 

; r, 

tn(r,y, z) = 

[ 

1- (n - ‘I! 

2 r(2y + 1 + n) 
] 1’2 ( +Jil e-4cr+l> La.;1 ( ;yl) . (4*1) 

. 
The relativistic Sturmian functions < are the solutions to the differential equation 

_~ 

2 + Yb + 1) 22 
dr2 r2 - pn + (+/ + 1)2] &I = 0 ) (4.2) 

- with.dgenvalues C& = (y + n)/(r + 1) , and normalization ([n12/rj&) = S,,. The 

overlap-matrix is tridiagonal, with 

2(n + r> 7 

(mI<m> E Tn, = $$ 

n=m, 

-[p(p + 27 + 1)11j2 , In - ml = 1 , p = min(n, m) , 

0, In-ml > 1 . 
(4.3) 

For a proof of the completeness of the functions t see Szegij [23]; for their connec- 

tion to the conventional Sturmian functions see Appendix A. 

The functions t make the matrices AI, A, and U in Eq. (3.2) tridiagonal. 

However, it is possible to simplify that equation further. Equation (3.6), which is 

-equivalent to Eq. (3.2), ’ 1s of the form [Jc2 + Kc + L] 22 = 0, where J, i7, and L are 

- N x N matrices. A shift of eigenvalue to c’ - c - c, where c is constant, produces 

an equation of the same form, [ J’cr2 + I(‘& + L’] x2 = 0, with new matrices J’ = J, 
< -. 

and--&= 2~ + K, and L’ = Jc2 + Kc + L. Now we know that x2 # 0, so E’ 

can equal zero if and only if the determinant of L’ is equal to zero. Therefore, 
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[ J’cr2 + I(‘& + L’]x2 = 0 has the same eigenvalues c’ and vectors 22 as the ordinary 

eigenvalue problem 

(1’ :‘)(f2)=q: -Y’)(,); (4.4) 

where y is a dummy vector. If c’ = 0, then the vector y so defined is not unique, 
; -- 

and it may be tricky to solve Eq. (4.4) numerically. 

. . The matrix L’ becomes diagonal, L’ cc D, where D,, G (.z& - Zc/)Snm, 

-~ if the value of c is set to c(z) = a[1 - (zo/(y + 1))2]1’2, where 0 = fl is an 

- arbitrary sign. We need c to be a real number and therefore restrict z so that 

_ _- _ zo ‘2 y + 1. After rearranging Eq. (4.4), we find the matrix equation 

&2 qzp -( D Y 

D )( ) -z/z x2 
= [e+ c(z)] 

(: i)(z)7 
(4.5) 

where the matrix in the place of the matrix M  in Eq. (3.2) is now diagonal. We 

remark that if we set the value of z to (1 +r),Z’/l~l, and set the sign (T to -K/[K[, 

then we recover Eq. (3.2), with the dummy vector y becoming equal to xl. The 

-matrix ~1M in Eq. (3.2) is accidentally diagonal for this value of z, which equates 

the exponent of the 5 functions to the exponent of the bound state aa. 

If y is to be unique, D nn must never be zero, and so we must avoid having at 

-thesametimec < 0, andz = Z(y+1)/[(y+n)2+(Za)2]1’2 for somen.= 1,. . . , N; 

_ the parameter z will equal one of these values only if one of the first N (exact) 

bound-state wavefunctions (corresponding to one of the eigenvalues ~1,. . . , EN) is 
. -- 

a li&$?r combination of the 2N basis vectors Q. Most numerical algorithms for 

the extraction of the eigenvalues of Eq. (4.5) require the matrix appearing on the 
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right-hand side to be positive definite, and so all the elements of D to be positive; 

we will therefore impose on z the bounds 

(o<zcr<l+y, c<o, 

IJ 
(1+ -Y)Za 

(1 + -/)2 + pa)2 <za<l+y, c>o, 
(4.6) 

which are also sufficient to keep y unique. 
; -- 

The vectors x2 for one sign of K determine the normalized eigenfunctions for 

both signs of K, according to Eq. (3.5) and the proportionality in Eq. (3.9). The 

upper and lower components are given by 

b~(r> = i V(K)-’ IE -.~(~)l-l’~ 16 T v(~)l-“~ C [xca(~)]~ B(zt~)~n(r) , 

‘%3c(?-) = V(K)-’ IE - 77(“)lv1’2 IE ‘f 77(n)l+1’2 5 [x2(K)ln &(r) , 
I  n 

(4.7) 

where the normalization constant V(K) is given in terms of zp(lc) by 

V2(4 

a!‘2 
= x2 Dx2 + 2 [c - q(lc)] x2 - x2 

(4.8) 

To~solve Eqs. (4.5), (4.7) and (4.8) numerically for eigenvalues and eigen- 

vectors requires only O(N2) computer operations and, if each eigenvector can be 

overwritten by the next, only O(N) 1 ocations in memory. To solve the original 

-matrix problem, Eq. (3.2), in all other known Slater bases-even Goldman’s or- 

thogonal Laguerre basis [3]-otherwise requires O(N3) computer operations and 

O(N2) locations in memory [24]. The eigenvectors may be found rapidly by in- 

verse iteration; after scaling the vectors in (4.5) so that the matrix in place of D 
. -. 

is ju&Xhe &it matrix, we need solve per pass but one N x N matrix equation in- 

volving one symmetric tridiagonal matrix. Inverse iteration is particularly easy to 
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apply because the 2N eigenvalues of Eq. (3.2) are all distinct, as we will prove in 

Sec. V. Numerical tests show the positive eigenvalues converge from above, as ex- 

pected, to the exact bound state eigenvalues. In double precision FORTRAN, we 

find that. C(K) and I44 + NI ‘i2x2(“), evaluated for both signs of 6, agree with 

each other, and with the results of a quadruple-precision calculation, to parts in 

1013, even for 2N as large as 4800. This basis is a hundred times larger than the 
; r, 

. . 

basis used in Ref. [3]. A sample of the numerical results for 2N = 400 is shown in 

Table 1. 

_~ 
V. ANALYTIC SOLUTION IN THE [ BASIS 

The eigenvalues and lower component functions 8 of the matrix problem for 

the Dirac Coulomb Hamiltonian [Eq. (3.10a)l are related, by the correspondence 

in Eq: (3.1-l), to the eigenvalues and eigenfunctions of the matrix problem for 

the Schrijdinger Coulomb Hamiltonian [Eq. (3.10b)l. Yamani and Reinhardt [26] 

showed that in the [ basis, and for integer values of y, that the solutions to 

Eq. (3.10b) may be expressed analytically in terms of the Pollaczek polynomials 

and their zeros. Their solution was extended over noninteger (positive) y in part 

of the work of Dank and Ismail [27]. T o d erive the corresponding analytic solu- 

tions for the Dirac problem, it is convenient to follow the notation of Yamani and 

ileinhardt, and work not with the functions t but with the set of functions 

&(r,-y,X) = (Xr)‘+l emxri2 Lc+l(Xr), n=O,l,... ,N-1, (5-l) 

- where y > 0 and X > 0 are parameters. These functions are related to the func- 

tions < by 
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Consider the Schrodinger problem H,& = E$, with 

Hs = -;-&  + “‘,f ‘) _ z’. 
r (5.3) 

Following Yamani and Reinhardt [26], with some change of notation [28], we ex- 

pand the functions I) according to 

; -- 
N-l N-l 

1c, = C bn w&9 = C bn r(n +:y + 2) 4n . 
n=O n=O 

. . The matrix eigenvalue problem (wmlHSJwn)bn = E(wmJwn)b, requires that the 

_~ coefficients b, satisfy the recurrence 

(n + l)bn+l - 2 [(n + 7 + 1 - 22//X) II: +JZ’/X] bn + (n + 27 + l)bn-1 , (5.5) 

- 
for 72. = 0, 1; . . . , N - 1, with the boundary conditions b-l = 0 and bN = 0. Here 

the quantity x and the eigenvalue E are related by 
. _ 

x21+x E=-- 
81-x’ Or 

E - X2/8 
x = E + X2/8 * (5.6) 

The Pollaczek polynomials Pt (x; a, b) are polynomials of degree n in z which 

depend on three parameters ~1, a, and b. They may be defined by the recurrence 

(n + l)P~+&; a, b) - 2[(n + p + a)x + b] Pl(x; a, b) 

+ (n + 2~ - 1) P~F1(x;a,b) = 0 , 
(5.7) 

for n = O,l,..., with the initial conditions P-1 = 0 and PO z 1. Comparing the 

_ two recurrences, we have 

b, 0; P,‘+’ x; -F 

That bN must vanish requires that _ 
.&-- .; 

pr+l X '- 
( 

22’ 22’ 
N 7 Y-,+x =o. 

) 

(5.8) - - 

P-9) 
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.The N eigenvalues E are selected by the requirement that x be one of the N zeros 

of this polynomial. The eigenvalues e and lower component functions 13 for the 

Dirac problem, Eq. (3.10a), f o 11 ow by solving Eq. (5.9) for the 2N pairs of values 

of z and ?-or equivalently, using Eq. (5.6), the 2N pairs of values E and Z’- 

such that the correspondences (3.11a) and (3.11b) are satisfied. That there are 

_ precisely 2N such pairs follows from the graphical argument used in Sec. III. 
; r, 

For an introduction to the Pollaczek polynomials, see Szegij [23]. For the 

. . Coulomb problems, we need deal only with the special case Pn(x; u) - Pl(x; a, -u) 

_~ [28] and only with the range of parameters ~1 > 1 and a # 0. While these poly- 

nomials are orthogonal with respect to a positive weight function when a < 0, or 

when a > 0 and a > p, no such weight function exists if a > 0 and a 5 p [29]. For 
- 

the Coulomb problems, the weight function does not exist when the potential is 

attractive (2’ > 0) and when X is small (so that the basis functions 4 fall slowly 

as r + co). The classic theory of orthogonal polynomials [23,29] is not applicable 

to polynomials that lack a weight function, and we have to derive the properties 

of the polynomials, and of their zeros, from scratch. 

That the polynomials have N real zeros follows from their association with 

-the eigenvalues of an Hermitian matrix eigenvalue problem of dimension N x N. 

We prove that the N zeros are all distinct. We remark that x = 1 is never a zero 

of P,“(x; a) because the explicit formula [31] for the Pollaczek polynomial reduces 

for x = 1 to 

which is never zero for ‘Y > 1. Consider the function FM defined by 

(5.10) 

..- 
- _ 

--"-&(;, a, b, y, A) - Mc1 n! 

n=o rcn + 27 + 2) 
P?F1(x; a, b) 4n(r, 7, A) . (5.11) 
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The eigenfunction 1c, is a special case of FM, evaluated with a = -b = -22//X, - 

with M = N, and with x equal to a special value. We can evaluate the following 

set of integrals: 

2 
(FMIFM) = 1 [(l - x)Sl - (a + b)SzI ; 

(FkflrvlIFhf) = s2 ; (5.12) 

= ; [(I + x)Sl - (a - b)Sz] . 

. . 
Here the sums Sr and S2 are defined by 

M-l 

& s c P;+‘(x; a, b) P,y+l(x; u, b) n! (n + ‘Y + ’ + u) , 
n=O r(n + 27 + 2) 

M-l 
(5.13) 

- 

.‘- 2%. E c P,y+‘(x;u, b) Pz+l(,;.,b) n! 
n=O r(n+2y+2) - 

_- 

Consider-what happens when u = -b. Then we have 0 < (F&) = S1 .2(1- x)/X. 

If x is a zero of PN(x; a), then x # 1, and so Sl(x) # 0. From the recursion relation 

(5.7), we can derive [29] the Christoffel-Darboux sum formula, 

N-1 n! (n + y + 1 + a) 
c rcn +2-Y + 1) 

Pky+l(x; a, b) P,y+l(x; a, b) = 
N! 

n=o 2qN + 27 + 1) 

. . 

[ 
P;t;(x; a, b) 

dPy+’ 
-23 

x; a, b) - P;+‘(x; a, b) 
dPy+’ 

X ---=(x;u,b) . 
dx 1 

(5.14) 

-From this, for b = -a, we have 

M-1 n! (n + y + 1 + u) 
Sl = c 

r(n + 27 + 1) 
Pn(X; U) Pn(X; U) 

n=O 

&-1(x; a) 2 (X;U)- PM(X;U) dpi-' (X;U) ] . 

(5.15) 
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Suppose a polynomial PM( Z; a) has a multiple root. Then we must have both 

PM (2; u) = 0 and dP~/dz (IC; a) = 0 for some Z. That would make the right- 

hand side of Eq. (5.15) vanish, so we would have 5’1 = 0, which is impossible. 

Therefore all the A4 real zeros of PM(x, u) are distinct [30]. We can conclude that 

the Schrodinger matrix eigenvalue problem in the basis &-and by the graphical 

argument presented in Sec. III, the corresponding Dirac matrix eigenvalue problem 

-in’lZI. (3.1Oa)=-d oes not have degenerate eigenvalues. Equation (5.15) also shows 

that PM-~(Z) and PM( x cannot have a common zero. The interleaving of the ) 
. . 

eigenvalues for the Dirac problem, proved for an arbitrary basis in Sec. III, now 
_~ 

ensures that as N is increased, the pth positive eigenvalue cannot stay the same 

but must decrease, and the pth negative eigenvalue cannot stay the same but must 

. increase. 

%‘was shown by Yamani and Reinhardt [26], th e normalized eigenvectors for 
_- 

the Schrodinger problem are 6s = AS’+, with 

A2 = 2(1 - x:> N! 
S x 2I?(N + 27 + 1) 

(5.16) 

where x is a zero of PN(x; -22//A). For the D irac problem, we also have e” = A-‘$, 

where we must choose both 2’ and x so that Eq. (5.9) and Eq. (3.11) hold. To get 

the correctly normalized lower component, 8, we see from Eq. (3.22) that we need 

not only the integral (T+!J”), but also ($J~/T). Th e second integral involves the sum 

S2, which unfortunately has no known closed form, even for the restricted range 

.of parameters required. 

We can try to extract S2 from the matrix eigenvalue equation, ($Hs$) = 

- E(IW). That P g ro ram fails, because the functions 1c, have an odd property. 

Consider FM as a trial function and calculate the trial energy EF defined by 

E 
F 

=- tFMHSFd 

( > FL * 
(5.17) 
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. . 

_ _ 

This can be rewritten in terms of 5’1 and S2 as 

[(I +x) - $1 - x)] S1 - [2 (u + y) - (u + b) (l+ $1 S2 = 0 . (5.18) 

For a = -2Z’/X, and b = --a, which hold for the eigenstates $J of the Schrodinger 

Cc&omb problem, the dependence on S2 cancels, so we cannot extract the value 

of S2. For F M  E F M (x; -2Z’/X, +2Z’/X, y, A) we have the relation 

(FMHsFM) x21+x -- 
( > FlL = 81-x’ 

(5.19) 

For M  = N and for the appropriate value of x, Eq. (5.19) expresses the 
r . 

expected relation between an eigenstate 1c, and its eigenvalue E. What is surprising 
- . 

is that the right-hand side of this equation is independent of M , and so the left-hand 

side must be also. Therefore, if we find an eigenstate 1c, for the SchrSdinger problem, 

with eigenvalue E and with 1c, oc Cfz,r bn&, and if we define a new function f 

equal to the sum of the first Ic 5 N terms of the sum, then (fHsf)/(flf) = E for 

all Ic. The eigenstates of the Dirac problem have a sim ilar property. If we find an 

-eigenstate <p, with eigenvalue E and B c( Crzi [upLB(n> &, u;$~], where a, and 

.a’, are coefficients, and if we define a new function f equal to the sum of the first 

k 5 N terms of the sum, then (fhf) = c(flf) for all k. In a basis of type P for _ 

K < 0, this property is also possessed (trivially) by the eigenvector corresponding 

-. to @&4n both the Schrodinger and the Dirac problems, the expectation value of 

the energy is unexpectedly independent of the number of terms kept in the sum. 
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VI. A SECOND BASIS 

We now consider the second simple basis in which variational solutions for the 

Dirac Coulomb problem can be constructed. Much of the work closely parallels 

that of Sets. I through V, and we omit the obvious formal proofs. In this section, 

symbols without a caret [e.g., K, y, Q(K), V(K), and B+(K)] have the same meaning as 

in-earlier sections, while symbols marked with a caret (e.g., $) are merely analogs 

of similar quantities (e.g., 4) used in the earlier sections, but are not identical. 

. . Choosing sin 2c,o = &Z/K. with cos 2~ = +T/K, the Dirac Coulomb Hamiltonian in 

-~ Eq. (1.3) t ransforms to ?% = ~6, with 6 = (&$), and 

rl(-4 -By -fc) 
’ _ _- a(-K) -+c)+A 

In terms of its components, the equation X(K)~ = ~6 reads 

[77(--K) - L] J- By-K) s^= 0 , 

-B(-K) T+ [ - T&K) - E + A] e^= 0 . 

(64 

(6.2u, b) 

The system of equations (6.2) h as f or c = q( - K) no solutions that are nor- 

malizable and that have a finite expectation value of l/r. Solving Eq. (6.2a) for 3 

and substituting into Eq. (6.2b), we find the new equations 

d2 
-- 

dr2 
+ (Y- l>r 2zc 

,2 --- r 

(6.3u, b) 

L Equation (6.3b) h as a solution 6f = rY exp(-Zr/K) when E has the illegitimate 

- value q(-K) and when the function $ given by Eq. (6.3a) is undefined. For K > 0 

the function & happens to be normalizable, but it and its eigenvalue must be 
. . 

dele&from the spectrum of solutions of Eq. (6.3b) to get the spectrum of the 

legitimate solutions of the actual eigenvalue problem, Eq. (6.2). 
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We solve Eq. (6.3b) by comparing it to the Schrodinger equation for a charge 

in the Coulomb potential of a charge 2’: 

d2 Z(Z+ 1) 22’ -- 
dr2 + r2 - f @s(r) = 2E84r) ) 1 (6.4) 

There is a solution to Eq. (6.4), with 2 = y - 1 and 2’ = Zc, for every solution to 

Eq. (6.3b). The bound states of Eq. (6.4) have 2’ < 0 and eigenvalues 

Ep(Z’) = -.f2/2(y + P)2, p= OJ,... . (6.5) 
. . 

_~ The eigenvalues of Eq. (6.3b) are consequently 

EP = [1 + ((~42/(r + P))] -1’2 , (6.6) 

- for p-V?: 0, 1, . . . . The‘ solution to Eq. (6.3b) that has E = q(-K) occurs when 

p = 0 and K > 0. Deleting this solution, we find that for K > 0, the index p of the - 

discrete eigenvalues cp of Eq. (6.2) runs, as expected, p = 1, 2, . . . . 

Now consider what happens if we return to the original eigenvalue problem, 

Eq. (6.2), and expand 3 and $ each in the basis of functions 

iJ =: - &)j By-K)Wj ) and (6.8) 
j=l j=l 

Assume that the function that solves Bt(-~)f = 0 does not belong to the set 

-w, so all the basis vectors are linearly independent. Assume the functions w are 

well-enough behaved that for all n, m, 

(~twwnl~t(-+m) = (w,p(-n)Bt(-K)lWm) . (6.9) _ 

Then we find the matrix eigenvalue equation 
. -. 

7](--K)iM^ 

ii? 
(6.10) 
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and the equivalent pair of separate equations 

(6.11a, b) 

i?Zl + [ - +K) U + A] $1 = dE2 , 

where %&, = (By-K)wnpt(-K)wm). B ecause the N functions Bt(--K)W are 

linearly independent, the matrix M^ is positive definite. At least one of the vectors 
; r, 

Zr and ZiZ2 must be nonzero. Then Eq. (6.11b) shows that 22 # 0, and Eq. (6.11a) 

shows that 21 # 0 and E # q(-K). Th ere ore Zr and 22 are proportional, f 
. . 

and the variational wavefunctions satisfy the differential equation 
_ -. _ 

(6.13) 

Eliminating & in Eq. (6.11b) yields the matrix equation 

(6.14) 

Comparing, as in Sec. III, Eq. (6.14) to the corresponding Schrodinger problem 

now yields that there are N positive and N negative eigenvalues E. The negative 

eigenvalues are bounded from above by -1, and the pth positive eigenvalue, p = 

-1,2,... ,N, is bounded from below by cp-r (not, in this basis, by cp). Let the 

set {w} be complete. Then for K < 0, as N + oo the pth positive eigenvalue 

converges from above to cpp-r, and its eigenfunction converges in mean-square to the 

- corresponding exact bound-state wavefunction. For K: > 0, the (p+ l)th eigenvalue 

and eigenfunction converge similarly. The lowest eigenvalue converges, however, to 
< -. 

~0, a&the-corresponding eigenfunction is an approximation to the extra solution 

of Eq. (6.3b), in that &v/($$)“” converges in mean-square to &/($f)“2. Just 
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as the corresponding exact solution of Eq. (6.3b) must be discarded to get a valid 

set of exact eigenstates, this numerical solution of Eq. (6.14) must be discarded to 

get a valid.set of approximate eigenstates. 

We .may harmlessly expand the basis for 3 by adding m extra basis func- 

tions of the form (fj, 0), where the functions fj are themselves linearly indepen- 

dent and are also linearly independent of the N functions Bt(--K)w. The original 
; r, 

2N eigenvalues and eigenfunctions are unchanged, and there are m new eigen- 

. . vectors with a common eigenvalue c = q(-K), with lower components that are 

_~ zero, and with upper components that are linear combinations of the functions 

. fjCr) - IELi (fjIWn)wnO~, Th ese new eigenvectors do not converge as N + 00 

and are wholly meaningless, so there is no point in so expanding the basis. 

.&.uppose the functions {w} are well-enough behaved so that, for both signs 

of +Eq. (6.9) h o Id s and the solution of Bt(~)f = 0 does not belong to {w}. 
- . 

Then the eigenvalues calculated for opposite signs of K are equal, and the lower 

component functions corresponding to equal eigenvalues are proportional, with 

If we expand the functions s^in the basis tn(r, y - 1, Z) [see Eq. (4.1)], we can 

construct a sparse matrix eigenvalue problem along the lines shown in Sec. IV. 

-If we instead use the functions &(r,+y - 1, A) [see Eq. (5.1)], we can express the 

matrix eigenvalues and eigenfunctions analytically in terms of the Pollaczek poly- 

nomials and their zeros. To get the resulting formulE, we need only substitute 

y + y - 1 everywhere in Sets. IV and V. The only formula not obtained by this 

simple translation is the one that gives the expectation value of the energy in the 
. -- 

Stm&i?&n basis; this takes the following form. If we find an eigenstate 6 with 

eigen=lue c and with g cx CfL: [ un Bt(-K) q&(r) y - I, A), a; q&(r) 7 - I, A)], 

38 



where a, and a; are coefficients, and if we define a new function f equal to the 

sum of the first k < N terms of the sum, then (fIXIf) = c(flf) for all k. 

The Slater bases used most often by Goldman and Drake [2-4,6] are examples 

of this second basis. It is possible to find a set of N independent functions for 

.whi& {w}, {@t(-n)w), and {Bt(+~)w} d escribe the same set. Then the same 

eigenfunctions and eigenvalues are obtained by expanding both g and f in Eq. (1.3) 
. . 

_~ directly in the basis {w}, and by diagonalizing H(K), as are obtained by using 

the second basis in its usual, form. (This trick is not available in the first basis, 

_ _.. 
- because it is. impossible’to find N functions for which {w} and {B(n)w} describe c . 

the same set, and which are all square-integrable and have a finite expectation 
. . 

value for the potential l/r.) The set of Slater functions they used, wn 0: ry+ne-Xr, 

for n = O,... , N - 1, is one example of such a set, and is moreover complete. 

The multi-exponential set {r7e-‘jT}, or the Gaussian set {r7e-x~T2 $ rY+‘eBXjr2}, 

both oft which are complete for an appropriate set of values { Xj > 0}, are other 

-possibilities. Using the Slater set Drake and Goldman have observed that (1) the 

numerical eigenvalues calculated for opposite signs of K are degenerate; (2) for 

K > 0 the numerical eigenstate whose eigenvalue converges to co is spurious; and 

(3) sum rules depending on the completeness of the numerical eigenstates become 

C-. sen.s$e once the spurious state is discarded. We have proved that the numerical 

eigenstates must have these properties. 
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VII. RADIAL INTEGRALS USEFUL FOR MATRIX ELEMENTS 

For the evaluation in a Sturmian basis of matrix elements involved in the emis- 

sion or absorption of radiation [32], we draw attention to the following expression 

[33] of the key characteristic integral over a spherical Bessel function, j,: 

e -Tcosp jL(r sin/?)? dr = 

Here P,” ( XL:> is a Legendre function [22]. I n a sum over 2N intermediate states, typ- 
. . 

ically we need 2 N integrals where the (noninteger) parameter X increases succes- 

sively by one; these can easily be evaluated using the upwardly stable recursion [34] 

(c- ps 1) p,“,,<,, = (2~ + 1) zP/(z) - (v + p) P,“_,(x) , 0 5 z < 1 , (7.2) _ _.. 

starting from only a pair of initial values calculated, for example, by [34] 
* - 

Iyi q.4) PF(cos p) = [an:]-’ F[-v,v+l; I-p;sin2(f)] . (7.3) t 

The nth term of this hypergeometric series diminishes asymptotically no slower 

than ( l/2)n. The Legendre function PLL-1’2 (XL’> for integer L 2 0 is equal to 

various finite sums of elementary functions. There results, for example, the evalu- 

ation [34] 

00 
- J e 

-TCOSp . JL(r sin@) rx dr = (sin p) L r(A + L + 1) sin(AP) 

(2L + l)!! 
0 

-where KL is defined by the recursion 

I<0 = 1 ) 

Ii-1 = -L 
( > 

x cot(xp) - cot p 
1 - x2 sin p , 

* - 

(74 

(7.5) 
-G-- -.- n2 - X2 

( ) 4n2 - 1 
I(, = - COS /3li;L-l + Ii;t-2 , n>2. 
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This recursion is numerically unstable for small /3 because the desired solution, 

which is O(l), is overrun by the other solution which grows as 0(2Lp-2L). 

Fortunately the series in Eq. (7.3) is rapidly convergent for small ,B. 

VIII. VARIATIONAL EIGENSTATES FOR ANY POTENTIAL 

;r There exists a minimum principle for the solutions to the Dirac equation 

for any potential, not for just the Coulomb potential. This principle uses an 

. . r-dependent unitary transformation to decouple the equations for the traditional 

-~ large and small radial wavefunctions; the transformed equations correspond to a 

Sturm-Liouville equation whose minimum principle provides the bounds on the 

eigenvalues and the convergence of the wavefunctions. The radial Dirac equa- _ _- 

tion-for the potential corresponding to a charge distribution of total charge 2 is 

H+ = i$, where 
. _ 

H= W) 

For a point nucleus the function zI(r) is equal to o/r. The radial Dirac equation 

-H~+!I = c1c, is an example of a singular equation, both because it is defined on an 

unbounded interval, 0 < r < 00, and because the function It/r is singular at one 

-end of this interval even if the potential o(r) is not. We content ourselves with 

proving that our minimum principle works for any regular Dirac equation; our 

experience with the Coulomb problem will allow us to judge that it will work for 

- any singular Dirac equation. Consider the equation H(z)Y = XY, where H(z) is 

defined by 
. -- 

-eG? pii p12(~) 

-( PZlb) P22(4 ) (ii) y (: -;)iq;:) =A(;:) . (8.2) 
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A solution is sought on the closed interval [0,x]; we assume the functions p are 

bounded and continuous, and that ~12 = ~21. The boundary conditions for this 

regular problem are given by 

yl(0) sina + y2(0) cos a = 0 , 
(84 

yl(r) sinp + y2(a) cos p = 0 , 

- .fof some values of cx and p. The eigenvalues X are known [36] to be real and simple, 

and form a numerable set over -oo < X < 00. 
. . 

Use the unitary transformation 2 = UY defined by _~ 
21 0 ( cos $0 sin cp Yl E 
22 -sin+0 cos $7 >( > Y2 

(8.4) 

- -- I to get the new equation’ hZ = X2. Here, h = Q + (y-i) d/&r, and the matrix Q F . 

has elements -. 
. _ 

dv 
&II = -- + PI~COS~ cp + ~12 sin 2~ + p22 sin2 v , dx 

dv Q22 = - - + pll sin2 ‘p - ~12 sin 29 + ~22 cos2 cp . 
dx 

Suppose we choose v(x) so that Qrr = C, a constant [37]. Then there is a 

solution to the differential equation hZ = XZ that has X = C and 2’ = (O,Z~), 

where 

22(x) = exp ’ p12(x) ~0s [29(x)] + i[pzz(x) - pll(x)] sin [2v(x)]-dx , 
s (8.6) 
0 

and there is a corresponding solution to the equation HT./J = C$ for which 

.- 
.-qy -, $1(O) = -sincp(O) , 

(8.7) 
f/72(0> = cosp(0) . 
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The system of equations H1C, = C+ has a unique solution [36] for this boundary 

condition for any value of ~(0). All the solutions (p(x) to the (apparently in- 

tractable) .nonlinear differential equation Qrr = C may be found by finding the 

solutions T,/J to the linear differential equation Ht,h = C+, with this boundary condi- 

tion on I+!,. Of all the solutions p(x), pick one for which C is equal to an eigenvalue 

and_ 1c, is equal to an eigenfunction of Eq. (8.2), with the new boundary conditions 

-+1(O) sin a! + $9(O) cos a = 0 , 
. 

-50) sinp + &+r) CO@ = 0 . (8.8) 

_ _.. _ Unless a and p are zero, 1c, will not be an eigenfunction of Eq. (8.2) with the 

boundary conditions in Eq. (8.3). (It is assumed that C cannot accidentally be 

equal to an eigenvalue of that problem, unless CY and ,B are zero.) The equations - . 

for ~1 and 22 are now 

2) = &(&12--3 22, 

- [ 

d2 d&la 
--@ + &?2 + --&- + (A - C>(C + Q22) - (x2 - c2) 1 z2 = o , (8.8a, b) 

and the. boundary conditions are 

z2(0) = 0 ) 

47r) = 0 . 
(8.10) 

._ 

We chose the boundary conditions on + in Eq. (8.8) so that the boundary conditions 

on 22 would be independent of X [38]. 
. -. 

--&lie equation [-d2/dx2+q(x)]z2 = Az2, t g th o e er with the boundary conditions 

of Eq. (8.10)) d fi e nes a regular Sturm-Liouville problem; the function a(x) need 
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only be summable. This problem has an infinite set of real, distinct eigenvalues A, 

bounded from below [36]. Th ere ore, f one can solve Eq. (8.8b) by solving instead 

the regular. Sturm-Liouville problem 

d2 
-a+Q:2+ y + z”(C + Q22)] 22 = *z2 9 (8.11) 

. . 

subj,ct to the boundary conditions of Eq. (8.10), and to the constraints A = 

.X2 - C2 and .?’ = X - C. Meeting these constraints is equivalent to plotting the 

curves A(jl( 2”) and seeking the points where they cross the parabola A(2”) 3 

_~ Pr2 + 22°C. This parabola is zero when 2” = 0, and is concave up. Because the 

_ interval [0, K] is finite, the eigenvalues of Eq. (8.11) are discrete, and the curves 

A(J?(Z”) are continuous for all 2”; when 2” = 0, the eigenvalues are greater than _ _- _ 

zeros. end they are asymptotically linear with 2” as 2” --f foe. Therefore, to 

each. curve A(j) (2”) th ere correspond at least two solutions of Eq. (8.8), one with 
- . 

2” > 0 and X > C, and one with 2” < 0 and X < C. 

Consider diagonalizing hZ = X2 in the basis of N functions: 

21 = &dj [&12(4 - --$I wj(x) , and 22 = 52)j wj(z) . (8.12) 
j=l j=l 

We let the N functions wj vanish at II: = 0 and II: = r. As in Sec. III, we find the 

following equations for the vectors 21 and x2: 

x2 
Xl = - 

X-C’ 

N 

CC 
Wn 

m=l 

d2 d&n 
-2 + Qf2 + dz + Z”(C + Q22) - (X2 - C2) wm 

I > 
[x2]m = 0 . 

(8.13a, b) 
, -. .- 

A grwh ica ar 1: g ument similar to that in Sec. III establishes that there are N nu- 

merical eigenvalues X less than C, and N greater than C. Now suppose we found 
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p numerical eigenvalues X with C < X(l) 5 Xc21 2 . . . 5 X(P) < X,, where X, 

is the pth exact eigenvalue greater than C. Then, corresponding to the value of 

Z”(X(J’)) assigned to X(P), there must be p numerical eigenvalues A of Eq. (8.13b), 

all less than the value A, assigned to the exact eigenvalue X,. But the numeri- 

cal eigenvalues of Eq. (8.13b) must lie above the exact eigenvalues of Eq. (8.11), 

because the latter is a Sturm-Liouville equation whose eigenvalues obey a mini- 
; r, 

. . 

.mum principle. Therefore for 2” = 2” (X(P)), th ere must be p exact eigenvalues 

A of Eq. (8.11) less then A,. The curves A(j)(Z”) corresponding to these eigen- 

_. values must cross the parabola A(Z”) such that there are p exact eigenvalues X 

of Eq. (8.8b) less than X,. This is a contradiction, because there cannot be more 

than p - 1 eigenvalues less than X,, so all the numerical eigenvalues greater than 
_ _. _ 

C must lie above their corresponding exact eigenvalues. Similarly, all those less 

than C-must lie below their corresponding exact eigenvalues. The proof that the 
- . 

numerical eigenvalues converge to the corresponding exact eigenvalues, and that 

the eigenfunctions converge in mean-square, follows the same lines as the proof in 

Sec. III for the Coulomb potential. 

We have thus established a minimum principle for the regular case. Proofs 

for then singular case require more training in mathematics than we possess, 

but we have no doubt that, at least for physically meaningful potentials that 

are finite at the origin, they can be obtained as limits as the finite interval over 

which the regular case is defined tends toward infinity. We can, however, make 

l some general remarks. The principle is in fact easier to apply in the singular case, 

- because the boundary conditions on the function $ are relaxed. For example, 

for any value of C, the Coulomb equation has two linearly independent solutions, 
. -. 

onefiPFcWhi-Gh g and f are bounded at the origin, and one for which they are singu- 

lar. A linear combination of these solutions may diverge strongly at the origin and 
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at infinity; nonetheless any linear combination will define an acceptable function 

v(r), with sincp(r) and cos (P(T) continuous on 0 5 r < 00. 

All our work with the Coulomb potential amounts to choosing, as func- 

tions $. for a given IC, particular solutions of H1C, = C+, with C = fy/~. 

The plus sign leads to our first basis and the minus sign to the second. We 

. . 

chose solutions such that the functions 22(r) for the two bases were respectively 
; r, 

z2 - ,w ,*w. Notice that when K > 0 and C = +y/~, the function z2(r) 

(and therefore the function $) diverges both at the origin and at infinity, but 

_~ still defines a useful unitary transformation. For an arbitrary potential in an un- 

bounded interval there will be similar freedom. 

One eigenvector can always be meaningless or missing, because the upper _ _- _ 

function--$ is expanded in the set resulting from operating on {w} with the operator 

J ~-(&12-- d/dr). When Jif = 0 h as a normalizable solution f(r), as in the 
- . 

first basis for K < 0, we exclude an exact eigenvector with eigenvalue C. This 

eigenvector must be added back in to complete the basis. When Jf = 0 has 

a normaliaable solution, as in the second basis for K > 0, we insert a spurious 

eigenvector. This eigenvector is associated with numerical eigenvalues converging 

to C, and it must be deleted from the numerical spectrum. When neither Jtf = 0 

nor Jf = 0 has a normalizable solution, as in the first basis for K: > 0 or in the 

second basis for K < 0, we neither lose nor gain an eigenvector, and the set of 

numerical eigenvalues and eigenvectors may be used without any patching. 

The variational method we have outlined might seem difficult to work, in that 

we need one exact solution of Eq. (8.1), or equivalently, of hrr = C, in order to 

obtain the function P(Y). We can, however, pick a simple analytic function v(r), 
. -. 

andave &rr = C for the corresponding function v(r) and separation constant 

C. By tuning v(r), we can construct a minimum principle for a function v(r) that 
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is close to some potential of interest. Inasmuch as most physical potentials-for 

example, the potential of a distributed nuclear charge or the effective potential 

of a many-.electron atom-are only approximately known, this seems an adequate 

method.. 

Finally, the unitary transformation that makes the Qrr constant may have 

some purely mathematical use, as it reduces the spectral theory [36] of at least some 

Dirac operators to the established spectral theory of Sturm-Liouville operators. 

. . 
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A: THE RELATIVISTIC STURMIAN FUNCTIONS 

As originally defined by Rotenberg [39] and as used by most practitioners 

1401, the- Coulomb Sturmian functions, usually called merely the Sturmian func- 

tions, are the functions 

; r, (A-1) 

There are defined for real Ic > 0, integer 1 2 0, and n = 1+1, Z+2, . . . . They satisfy 

_- the orthogonality relation (S,I]~/T]S,~) = S,m. The quantity ,! is a Laguerre 

polynomial according to an definition obsolete among mathematicians and almost 

obsolete among physicists. We have chosen to use the modern standardization 
_ -. 

- [22] -of the..L _.l-. aguerre polynomials, for which L:(x) for any Q > 0, integer or 

noninteger, is a polynomial of degree n in x and for which the coefficient of xn has + 

the vaiue7(-l)n/n !. The relation between the two definitions for integer 1 is 

(A.3 

Once this difference is understood the relation between our function [, as defined 

in eq. (4.1), and Rotenberg’s Sturmian function Snl is seen to be 

c&&y = 1, z = qz + 1)) = -1 x S&, Ic) . (A4 

The sign can be tracked back to the sign in Eq. (A.2). The functions [ are all 

positive in the neighborhood of the origin. 

Because of the identity in Eq. (A.3) we have chosen to refer to our functions 

< as relativistic Sturmian functions, or where no confusion is possible, simply as 

Stur&Gn functions. We refer to a set of functions [n, for n = 1,. . . , N, as a 

Sturmian basis set or a Sturmian basis. Such a set is obviously equivalent to a 

48 



particular set of Slater functions with a non-integer leading power, ~Y+~e-~r, for 

n= ,..., 0 N - 1. For the Dirac equation we need functions with two components; 

a basis set one of whose two components is expanded in a Sturmian or Slater basis 

we will also call a Sturmian or Slater basis, though this description does not define 

such a basis uniquely. 

; r, 
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Table 1 

Column 2 shows a sample of the 200 positive energy eigenvalues, indexed in Col- 

umn 1 in order of increasing energy, from a solution in double precision of Eqs. (4.5), 

(4.7), and (4.8) for 2 = z = 92, Q = l/137.0360, K = 1, and 2N = 400. The under- 

lined digits in Column 2 are the first contaminated by round-off error. Column 3 

shp_ws the eigenvalues from another inverse iteration routine, written in quadruple 

precision. C 1 o umn 4 shows the fractional error between the double and quadru- 

. . ple precision results. Column 5 shows the fractional error between the quadruple 

- 

precision eigenvalues for bound states and the corresponding Sommerfeld values; a 

positive error means the variational eigenvalue lies (correctly) above the Sommer- 

_ -. _ feld. Some values are negative because of round-off error. 
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Table 1 

1 9.33041968794953-01 

2 9.71292550467083-01 

3 9.842771204050~3-01 

4. 9.90122662600623-01 

-5 ; r 9.93232091769433-01 

6 9.95077iO2975133-01 

. . 7 9.962603960609tjE-01 

$- .- 9.97063537386493-01 

? 9.97633462298363-01 

9.33041968794953-01 4.33-17 1.73-33 

9.71292550467083-01 2.7E-15 2.93-33 

9.84277120405023-01 7.63-15 -6.23-33 

9.90122662600623-01 2.83-15 -1 .OE-32 

9.93232091769423-01 6.53-15 -l.lE-32 

9.95077402975113-01 1.3E-14 -1.33-32 

9.96260396060943-01 1.6E-14 -1.43-32 

9.97063537386473-01 1.4E-14 -1.83-32 

9.97633462298343-01 1.2E-14 -2.03-32 

lo- 9.98052373015373-01 9.980523’73015363-01 l.lE-14 3.33-30 
_ _.. _ 

- ll- 9 983692296271$01 ,.L -. 9.98369229627163-01 l.lE-14 1.93-24 

12 9.9861465831169E-01 9.9861465831168E-01 9.OE-15 * l.lE-19 

13 9.98808608599543-01 9.98808608599533-01 7.4E-15 9.1E-16 

14 9.98964525216433-01 9.98964525216423-01 6.7E-15 1.6E-12 

15 9.990917363337&E-01 9.99091736333743-01 6.33-15 6.5E-10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

196 ~. 8.200974656866fjE+OO 8.20097465686673+00 l.OE-14 

197 .- 9.88264174220653+00 9.88264174220653+00 3.63-15 

198 _ 1.24854884171023+01 1.24854884171023+01 1.5E-14 

199 1.70963218587823+01 1.70963218587883+01 7.63-14 

200 - 2.789298798283JE+Ol 2.78929879828423+01 1.6E-13 
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