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Abstract
We present methods for evaluating the Feynman parameter integrals associated with the pen-

tagon diagram in 4 − 2ε dimensions, along with explicit results for the integrals with all masses
vanishing or with one non-vanishing external mass. The scalar pentagon integral can be expressed
as a linear combination of box integrals, up to O(ε) corrections, a result which is the dimensionally-
regulated version of a D = 4 result of Melrose, and of van Neerven and Vermaseren. We obtain and
solve differential equations for various dimensionally-regulated box integrals with massless internal
lines, which appear in one-loop n-point calculations in QCD. We give a procedure for constructing
the tensor pentagon integrals needed in gauge theory, again through O(ε0).
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1. Introduction

The search for new physics at current and future hadron colliders demands that we first refine

our understanding of events originating in known physics, most importantly in QCD and QCD-

associated processes. To date, the matrix elements for all pure QCD processes with up to seven

external legs are known exactly at tree-level [1] allowing the computation of events with up to five

jets in the final state. (Various techniques [2] allow one to approximate cross sections with more

jets.) Because the perturbation expansion for jet physics in QCD is not an expansion strictly in

the coupling constant, but is rather an expansion in the coupling constant times various infrared

logarithms, radiative corrections play an important role in matching theoretical expectations to

experimental data. The calculation of radiative corrections requires of course the computation of

loop corrections to the basic tree-level partonic processes. Thus far, the one-loop corrections are

known only for the most basic processes, matrix elements with four external partons [3]. To go

beyond these basic processes in the computation of radiative corrections in pure QCD (for example,

to calculate the next-to-leading order corrections to three-jet production at hadron colliders), one

must calculate five-point one-loop amplitudes in a theory with massless particles; and these in turn

require the computation of one-loop Feynman parameter integrals with five external legs, within

the dimensional regularization method. To discuss one-loop corrections to five-point amplitudes

with external W and Z bosons, at least one of the external legs must be massive. In the present

paper we address the computation of such dimensionally-regulated pentagon (and higher-point)

integrals. Recently the techniques described in this paper have been used in the calculation of the

one-loop helicity amplitudes for five external gluons [4].

Various authors [5,6,7,8] have discussed the computation of pentagon integrals that can be

carried out in dimension D = 4 (i.e. that have neither soft nor collinear infrared divergences).

In particular, Melrose [5] and independently van Neerven and Vermaseren [7] were able to express

pentagon integrals as linear combinations of five different loop integrals with four external legs. Such

box integrals (which, with external masses but no internal masses, are also required in radiative

calculations in QCD) can be calculated readily in dimensional regularization, by direct integration

or in terms of hypergeometric functions, if the number of masses is not too large.

The techniques of Melrose and of van Neerven and Vermaseren do not apply directly to

dimensionally-regulated integrals, however, and the required pentagon integrals have not yet been

presented in a closed and useful form, which is to say with all poles in ε = (4−D)/2 manifest, and

with all functions of the kinematic invariants expressed in terms of logarithms and polylogarithms.∗

Here we will provide such an expression for the basic scalar integral. We employ a set of equations

∗ We have been informed that R. K. Ellis, W. T. Giele, and E. Yehudai [9] have recently evaluated the pentagon
integrals by an independent technique.
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derived in a separate paper [10]. These equations actually apply more generally to dimensionally-

regulated one-loop n-point integrals; they can be used as a starting point for the reduction of an

(n ≥ 5)-point integral to a linear combination of boxes. For the pentagon integral (n = 5), the

equations are the dimensionally-regulated analogs of equations derived in references [5,7]. In this

paper we will use the equations to obtain explicit expressions for the pentagon with all lines mass-

less, and for the pentagon with one massive external line, up to O(ε) corrections. Such integrals

are of use in the calculation of next-to-leading-order contributions to processes such as gg → ggg

and Z → qq̄gg.

Besides the scalar pentagon integral, in QCD one requires tensor integrals — loop integrals

with up to five powers of the loop momentum inserted. In the string-based technique [11,4] for

evaluating QCD amplitudes, one obtains directly integrals over Feynman parameters rather than

loop momenta. Tensor integrals correspond in this framework to the insertion of polynomials in the

Feynman parameters into the numerator of the integrand. In order to construct an integral table

that meshes well with this technique, we choose to work in terms of the Feynman-parametrized

integrals. This approach also lets us take advantage of an observation that appropriate derivatives

of the scalar pentagon insert Feynman parameters into the numerator of the integrand. Thus the

scalar pentagon may be used as a generating function for all the tensor integrals.

In the more usual momentum-space approach to tensor integrals, one performs a Brown-

Feynman [12] or Passarino-Veltman [13] reduction, solving a system of algebraic equations for the

tensor integrals. For example, integrals with just one loop-momentum inserted in the numerator

are reduced to a linear combination of scalar integrals [14]. The counterparts of these equations

exist for Feynman parameter integrals. In particular, integrals with just one Feynman parameter

inserted in the numerator can be expressed as a linear combination of scalar integrals. If one

now equates these expressions to the above-mentioned derivative representations of the same one-

parameter tensor integrals, one obtains a set of first-order partial differential equations for the

scalar integral. Thus an alternate approach to determining the scalar pentagon is to solve a set of

differential equations. The differential equations are also an efficient way to obtain various infrared

divergent scalar box integrals, with massless internal lines but with 0, 1, 2 or 3 external masses.

(Most of these box integrals have been obtained previously by other techniques.) Together with

the infrared finite box integral with four external masses [6], for which a compact form has recently

been provided by Denner, Nierste, and Scharf [15], these constitute the set of box integrals required

for computing one-loop n-point amplitudes in QCD without quark masses, for any n. (These box

integrals will appear both in the recursive determination of higher-point diagrams [5,7,10], and as

diagrams in their own right.)
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The partial differential equation approach just described is reminiscent of similar procedures

for performing two-loop and higher-loop integrals (usually with fewer external legs) [16]. However,

the latter manipulations have generally been carried out in terms of either a momentum-space

or a configuration-space representation of the integrals, in contrast to the Feynman parameter

representation used here.

The rest of the paper is organized as follows: in section 2, we introduce the Feynman-

parametrized n-point integrals, in particular the pentagon and box integrals, and we make a change

of integration variables and kinematic variables that allows the tensor integrals to be expressed as

derivatives of the basic scalar integral. In section 3 we present an alternative derivation of the set of

algebraic equations derived in ref. [10]. One of these equations can be used to determine the general

n-point scalar one-loop integral recursively, as a linear combination of (n− 1)-point integrals. (For

n ≥ 7 there are some subtleties, as explained in appendix VI.) The other two equations are useful in

the calculation of tensor integrals, given the scalar integral. Also, in combination with the results

of section 2 they give partial differential equations for the scalar integral. In section 4 we begin by

illustrating the general derivation of the partial differential equation in section 3, using the simple

example of the box integral with all massless external legs. We then solve the differential equations

for box integrals with 0, 1, 2 or 3 massive external legs. In section 5 we use one of the algebraic

equations derived in section 3 to obtain explicit formulae for the pentagon with all massless exter-

nal legs, and with one massive external leg. In section 6, we describe how to obtain the (tensor)

pentagon integrals with Feynman parameters in the numerator, through O(ε0).

For the reader’s convenience, we have collected our results for the scalar box integrals and

for the scalar and tensor massless pentagon integrals in appendix I. In appendix II we show that

when the integrals are infrared finite, our results for the scalar pentagon integral reduce to the

non dimensionally-regulated result of van Neerven and Vermaseren [7]. Appendix III presents an

argument (verifying an observation of Ellis, Giele and Yehudai) which shows that the approach

of section 6 generates all tensor pentagon integrals needed in gauge theory calculations. In ap-

pendix IV, we compute an integration constant for two- and three-mass boxes. In appendix V, as

another illustration of the partial differential equation technique, we obtain a manifestly symmetric

expression for the triangle integral with all three external legs massive, to all orders in ε. (To O(ε0),

such a formula has been obtained in ref. [17].) In appendix VI, we discuss subtleties that arise in

obtaining scalar integrals for n ≥ 7, and in appendix VII, we derive and discuss formulæ for tensor

integrals for both the pentagon and hexagon diagrams.
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2. Properties of Feynman Parameter Integrals

In this section, we shall show that Feynman parameter integrals with Feynman parameters

inserted in the numerator of the integrand (which arise from tensor integrals) are given by appro-

priate derivatives of the basic scalar integral. We present the particular cases of the massless box

and pentagon integrals in more detail.

For convenience, we assume here that the masses for all internal lines vanish. (The extension

to nonvanishing internal masses is entirely straightforward [10].) Then the n-point scalar one-loop

integral in 4− 2ε dimensions is

In = µ2ε

∫
d4−2εp

(2π)4−2ε

1
p2(p− k1)2(p− k1 − k2)2 · · · (p− k1 − k2 − · · · − kn−1)2

, (2.1)

where ki, i = 1, . . . , n, are the external momenta and µ is the usual dimensional regularization

scale parameter. Performing the usual Feynman parametrization, and integrating out the loop

momentum, we obtain

In [1] = Γ(n− 2 + ε)
∫ 1

0

dnai δ(1−
∑
iai)

1[∑n
i,j=1 Sijaiaj − iε

]n−2+ε , (2.2)

where

In [1] ≡ (−1)n+1 i (4π)2−ε
µ−2ε In (2.3)

is the basic n-point parameter integral, the symmetric matrix Sij is defined by

Sij = −1
2(ki + · · ·+ kj−1)2, i 6= j; Sii = 0; (i, j are mod n); (2.4)

and where we have put in the iε explicitly. The poles in In produced by the Γ function prefactor

are ultraviolet ones; the remaining poles represent infrared divergences. In explicit calculations

of cross-sections, they will ultimately cancel corresponding poles arising from soft and collinear

emission of particles in (n+ 1)-point tree-level processes.

We shall use the notation In [P ({ai})] to denote an integral in which the polynomial P appears

in the numerator of the integrand,

In [P ({ai})] = Γ(n− 2 + ε)
∫ 1

0

dnai δ(1−
∑
iai)

P ({ai})[∑n
i,j=1 Sijaiaj − iε

]n−2+ε
. (2.5)

In QCD calculations, one encounters integrals of this form, where the degree of P is less than or

equal to n.

For the box (four-point) integral, the “scalar denominator” is

4∑
i,j=1

Sijaiaj = −sa1a3 − ta2a4 −m2
1a1a2 −m2

2a2a3 −m2
3a3a4 −m2

4a4a1 , (2.6)
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where s ≡ (k1 + k2)2 and t ≡ (k2 + k3)2, and m2
i are the masses of the external legs (some or all of

which may vanish). For the all-massless pentagon integrals,

5∑
i,j=1

Sijaiaj = −s12a1a3 − s23a2a4 − s34a3a5 − s45a4a1 − s51a5a2 , (2.7)

where si,i+1 ≡ (ki + ki+1)2. A nonzero mass for external leg 5 would add a term −m2
5a5a1

to (2.7). All external indices are understood to be taken mod n for the n-point function. We

will present our results for kinematics in the Euclidean region, where all momentum invariants sij ,

m2
i are negative. In this region, the scalar denominator is always positive, and the integrals are

purely real, which simplifies the resulting expressions. We define the integral for physical values

by analytic continuation from the Euclidean region; the analytic continuation back to the physical

region should be understood implicitly in all formulæ presented below, and we shall henceforth

leave the iε implicit.

Following ’t Hooft and Veltman [6], we make the change of integration variables in (2.2),

ai =
αiui∑n
j=1 αjuj

, no sum on i,

an =
αn
(

1−
∑n−1
j=1 uj

)
∑n
j=1 αjuj

.

(2.8)

Assuming that all αi are real and positive, the integral becomes

In [1] = Γ(n− 2 + ε)
∫ 1

0

dnu
δ (1−

∑
ui)

(∏n
j=1 αj

) (∑n
j=1 αjuj

)n−4+2ε

[∑
i,j Sijαiαjuiuj

]n−2+ε
. (2.9)

This form for the integral is most useful if we can also define the αi in such a way that all of

the dependence on the αi-variables is scaled out of the denominator. Let us define the αi, and

simultaneously a matrix ρ, through

Sij =
ρij
αiαj

. (2.10)

The elements of the matrix ρij are to be thought of as additional kinematic variables, independent

of the αi. (In specific cases many of the elements ρij may be taken to be pure numbers.)

For the four-point integral described by the denominator (2.6), we can choose

s = − 1
α1α3

, t = − 1
α2α4

, m2
1 = − m̂2

1

α1α2
, m2

2 = − m̂2
2

α2α3
, m2

3 = − m̂2
3

α3α4
, m2

4 = − m̂2
4

α4α1
.

(2.11)

(Other choices are also possible; see section 4.) Equations (2.11) do not have a unique solution in

terms of the αi. One simple solution is α1 = α3 = 1/
√
−s, α2 = α4 = 1/

√
−t. However, we would
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like all four αi variables to be independent of each other, so that we can use the scalar integral as

a generating function for integrals with insertions of all four Feynman parameters ai. Therefore we

consider the αi to be general solutions to equations (2.11), with no other constraints on them. The

set of independent kinematic variables corresponding to the choice (2.11) is then {αi; m̂2
i}.

For the all-massless pentagon integral, the unique solution to

si,i+1 = − 1
αiαi+2

(2.12)

is

α1 =
√
− s23s34

s45s51s12
, α2 =

√
− s34s45

s51s12s23
, α3 =

√
− s45s51

s12s23s34
,

α4 =
√
− s51s12

s23s34s45
, α5 =

√
− s12s23

s34s45s51
.

(2.13)

Because we have taken the sij to be negative, the αi are real. No additional kinematic variables

are necessary for the massless pentagon.

With these choices of αi, the four and five point scalar integrals become

I4 [1] = Γ(2 + ε)
( 4∏
j=1

αj

)∫ 1

0

d4u
δ (1−

∑
ui)

(∑4
j=1 αjuj

)2ε

[u1u3 + u2u4 + m̂2
1u1u2 + m̂2

2u2u3 + m̂2
3u3u4 + m̂2

4u4u1]2+ε
,

I5 [1] = Γ(3 + ε)
( 5∏
j=1

αj

)∫ 1

0

d5u
δ (1−

∑
ui)

(∑5
j=1 αjuj

)1+2ε

[u1u3 + u2u4 + u3u5 + u4u1 + u5u2]3+ε
.

(2.14)

Further examples of the {αi; ρij} change of variables are to be found in sections 4,5 and

appendix V.

It will be helpful to define the reduced integrals

În [P ({ai})] =
( n∏
j=1

αj

)−1

In [P ({ai/αi})] . (2.15)

As we will see, dividing out the factors of αi connects the tensor integrals more simply to the

scalar integral. For the scalar integrals (that is when the polynomial is simply 1), we will use the

abbreviated notation În ≡ În [1].

We can use the ’t Hooft-Veltman form of the tensor integrals (2.15) to obtain derivative rela-

tions for them. Let Pm({ai}) denote a homogeneous polynomial of degree m. Then for the massless

box integral, the change of variables (2.8) gives

Î4 [Pm({ai})] = Γ(2 + ε)
∫ 1

0

d4u δ(1−
∑
iui)

Pm({ui})
(∑4

j=1 αjuj
)−m+2ε

[u1u3 + u2u4]2+ε
, (2.16)
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which we can rewrite in terms of derivatives acting on Î4,

Î4 [Pm({ai})] =
Γ(1−m+ 2ε)

Γ(1 + 2ε)
Pm

({
∂

∂αi

})
Î4 [1] . (2.17)

Similarly, the change of variables (2.8) leads in the five-point case to

Î5 [Pm({ai})] = Γ(3 + ε)
∫ 1

0

d5u δ(1−
∑
iui)

Pm({ui})
(∑5

j=1 αjuj
)1−m+2ε

[u1u3 + u2u4 + u3u5 + u4u1 + u5u2]3+ε , (2.18)

which we can write as follows,

Î5 [Pm({ai})] =
Γ(2−m+ 2ε)

Γ(2 + 2ε)
Pm

({
∂

∂αi

})
Î5 [1] . (2.19)

These equations hold when there are external masses as well, provided that one holds fixed the

matrix ρ defined in (2.10) when differentiating with respect to αi. The result for the general n-point

integral is

În [Pm({ai})] =
Γ(n− 3−m+ 2ε)

Γ(n− 3 + 2ε)
Pm

({
∂

∂αi

})
În [1] . (2.20)

Equation (2.20) allows one to obtain tensor integrals by differentating the basic scalar integral.

Certain subtleties do arise in this approach; they will be dealt with in section 6 and in appendix VII.

Using equations such as (2.17), (2.19), and (2.20), one can translate an algebraic system of

equations for integrals with Feynman parameters inserted, into a system of partial differential

equations for the basic scalar integral; in principle one can then solve the equations for the latter

quantity. This effectively turns a problem of definite integration into one of indefinite integration

(in a different set of variables). We shall use this approach to give concrete expressions for all the

box integrals. It is also possible, as we shall see in the next section, to derive a purely algebraic set

of equations for the n-point integrals În, in which a new unknown quantity enters only at O(ε).

3. Algebraic Equations for n-Point One-Loop Integrals

In this section we will derive a set of algebraic equations for the general n-point one-loop

integrals. Some of the equations are of use in the partial differential equation approach of section 4;

others can be used to determine the n-point scalar integrals for n ≥ 5 in terms of box integrals,

in an entirely algebraic fashion (subject to some subtleties for n ≥ 7, which are explained in

appendix VI). The equations have been derived in ref. [10] using a momentum-space representation

of the loop integrals. Here we will derive the same general equations using the Feynman parameter

representation; in this derivation the equations arise from the consideration of integrals of total

8



derivatives of the Feynman parameters.∗ For a specific, simple example of the following general

derivation, we refer the reader to the beginning of section 4.

The total derivatives we will consider are

Jn;m ≡ Γ(n− 3 + ε)
∫ 1

0

dan−1

∫ 1−an−1

0

dan−2 · · ·
∫ 1−a1−a2−···−âm−···−an−1

0

dam

× d

dam

1[∑n
i,j=1 Sijaiaj

]n−3+ε

∣∣∣∣∣
an=1−a1−a2−···−an−1

.

(3.1)

There are two ways to evaluate Jn;m. First, one can carry out the differentiation with respect to

am, to get

Jn;m = −2 Γ(n− 2 + ε)
∫
dnai δ(1−

∑
iai)

∑n
j=1(Smjaj − Snjaj)[∑n
i,j=1 Sijaiaj

]n−2+ε

= −2

(
n∏
`=1

α`

)
n∑
j=1

În
[
(Smj − Snj)αj aj

]
.

(3.2)

Second, one can perform the integral over am. At the lower integration endpoint, am is set to 0.

The remaining (n− 1)-point integral corresponds to removing the propagator parametrized by am

— i.e., the propagator between lines (m− 1) and m — from the original n-point (scalar) integral;

we denote such a “daughter” integral of In (În) by I(m)
n−1 (Î(m)

n−1).† Similarly, at the upper integration

endpoint an is set to 0, yielding the (n− 1)-point integral I(n)
n−1. It is always possible to choose the

αi variables for the integrals Î(j)
n−1 so that they are the same as those for the parent integral În.

Having made this choice, the second evaluation of Jn;m gives

Jn;m = I
(n)
n−1[1]− I(m)

n−1 [1] =

(
n∏
`=1

α`

)[
Î

(n)
n−1

αn
−
Î

(m)
n−1

αm

]
. (3.3)

Equating (3.2) and (3.3), using Sij = ρij/(αiαj) and the definitions (2.15) of the reduced integrals,

and relabelling the index m→ i, we have

n∑
j=1

(
ρij
αi
− ρnj
αn

)
În[aj] =

1
2

[
Î

(i)
n−1

αi
−
Î

(n)
n−1

αn

]
, i = 1, 2, . . . , n− 1. (3.4)

∗ The motivation for considering such objects arose from the observation that the field-theory limit of integrals
of total derivatives in string theory yields expressions that are sums of loop integrals with differing numbers of
external legs (multiplied by various coefficients); these sums must necessarily vanish because the world-sheets in
the string loop expansion have no boundaries, when appropriate analytic continuations of the external momenta
are used.

† For more explicit examples of this notation, see the beginning of subsection 4.2.
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We would like to solve for the n one-parameter integrals În[aj]. To do so we supplement the n− 1

equations (3.4) with the equation that follows from the constraint on the Feynman parameters,∑
j=1 aj = 1, namely

n∑
j=1

αj În[aj ] = În[1] = În. (3.5)

Before solving equations (3.4), (3.5), we introduce a little more notation and some “kinematic”

results from ref. [10]. We define the Gram determinant of the (n−1)-vector system associated with

the n-point integral by

∆n ≡ det′(2ki · kj), (3.6)

where the prime signifies that one of the n vectors ki is to be omitted before taking the determinant;

due to momentum conservation,
∑
ki = 0, any one of the vectors may be omitted.‡ Next we

introduce the rescaled Gram determinant,

∆̂n ≡
( n∏
`=1

α2
`

)
∆n, (3.7)

which has a simple bilinear representation in terms of the variables αi:

∆̂n =
n∑

i,j=1

ηijαiαj . (3.8)

Here ηij is independent of the αi; in fact η is proportional [10] to the inverse of the matrix ρ defined

in equation (2.10):

ρ = Nn η
−1, η = Nn ρ

−1, Nn ≡ 2n−1 det ρ. (3.9)

We also define the variables γi by

γi ≡
n∑
j=1

ηijαj =
1
2
∂∆̂n

∂αi

∣∣∣∣
ρij fixed

. (3.10)

They are in a sense conjugate to the αi variables:

n∑
j=1

ρijγj = Nnαi . (3.11)

If we define

Rki = ηki −
γkγi

∆̂n

, (3.12)

‡ The notation for, and normalization of, the Gram determinant in equation (3.6) differ from other conventions
in the literature, e.g. references [5,18].
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then we may note the following identity,
n∑
i=1

αiRki = 0 , (3.13)

which follows from equations (3.8) and (3.10). Thus if we multiply both sides of equation (3.4) by

αiRki, and then sum over i, the terms not containing αi will drop out, leaving us with
n∑

i,j=1

(
ηkiρij −

γk

∆̂n

γiρij

)
În[aj ] =

1
2

n∑
i=1

RkiÎ
(i)
n−1 , (3.14)

or

NnÎn[ak] =
1
2

n∑
i=1

RkiÎ
(i)
n−1 +

γk

∆̂n

Nn

n∑
j=1

αj În[aj ] . (3.15)

Performing the sum on the right-hand side with the help of (3.5), dividing by Nn, and writing

out the definition of Rki, we obtain

În[ai] =
1

2Nn

n∑
j=1

(
ηij −

γiγj

∆̂n

)
Î

(j)
n−1 +

γi

∆̂n

În . (3.16)

Combining this set of equations with the derivative representation (2.20) for m = 1, we obtain a

system of partial differential equations for the n-point scalar integral,

1
n− 4 + 2ε

∂În
∂αi

=
1

2Nn

n∑
j=1

(
ηij −

γiγj

∆̂n

)
Î

(j)
n−1 +

γi

∆̂n

În . (3.17)

Section 4 is devoted to solving these equations for various scalar box integrals.

In ref. [10] a momentum-space representation was used to derive an algebraic equation that

involved only scalar integrals, at the expense of introducing a new object, ÎD=6−2ε
n . The object

ÎD=6−2ε
n comes from an integral in D = 4− 2ε with two loop-momenta inserted in the numerator,

but it can also be interpreted as the n-point scalar integral in two higher dimensions. The latter

interpretation is helpful for understanding the properties of ÎD=6−2ε
n as ε→ 0, which are needed in

order to use the “dimension-changing” equation to obtainD = 4−2ε scalar integrals through O(ε0).

We shall now re-derive this equation using Feynman parameter representations of the integrals.

The integral ID=6−2ε
n [1] is most easily obtained from the D = 4− 2ε equation (2.2) by letting

ε→ ε− 1,

ID=6−2ε
n [1] = Γ(n− 3 + ε)

∫ 1

0

dnai δ(1−
∑
iai)

1[∑n
i,j=1 Sijaiaj

]n−3+ε
, (3.18)

It may also be obtained by inserting one power of the scalar denominator of the D = 4−2ε integral

into the numerator (summations are implicit in the following derivation):

ID=6−2ε
n [1] =

Γ(n− 3 + ε)
Γ(n− 2 + ε)

ID=4−2ε
n [Sijaiaj ] =

1
n− 3 + ε

ρij I
D=4−2ε
n [(ai/αi)(aj/αj)] . (3.19)
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In terms of the reduced integrals (2.15), and using the derivative representation (2.20), we have

ÎD=6−2ε
n =

1
(n− 3 + ε)(n− 4 + 2ε)(n− 5 + 2ε)

ρij
∂2În
∂αi∂αj

. (3.20)

We may now evaluate the right-hand-side of (3.20) using equation (3.17) to replace the deriva-

tives, and also using the relations between ρ, η and γ to simplify the expressions:

1
n− 4 + 2ε

ρij
∂2În
∂αi∂αj

= ρij
∂

∂αi

(
1

2Nn

[
ηjk −

γjγk

∆̂n

]
Î

(k)
n−1 +

γj

∆̂n

În

)
=

1
2Nn

ρij

[
2
γiγjγk

∆̂2
n

− (ηijγk + ηikγj)
∆̂n

]
Î

(k)
n−1 +

1
2Nn

[
ηjk −

γjγk

∆̂n

]
ρij

∂Î
(k)
n−1

∂αi

+
ρij

∆̂n

[
ηij − 2

γiγj

∆̂n

]
În + (n− 4 + 2ε)

ρijγj

∆̂n

(
1

2Nn

[
ηik −

γiγk

∆̂n

]
Î

(k)
n−1 +

γi

∆̂n

În

)
= −n− 1

2
γk

∆̂n

Î
(k)
n−1 +

1
2

[
∂

∂αk
− γk

∆̂n

αi
∂

∂αi

]
Î

(k)
n−1 +

(
(n− 2) + (n− 4 + 2ε)

)Nn
∆̂n

În .

Now Î
(k)
n−1 is actually independent of αk (since ak has been set to 0 in Î(k)

n−1); also

αi
∂

∂αi
Î

(k)
n−1 = (n− 5 + 2ε) Î(k)

n−1 . (3.21)

So we obtain

1
n− 4 + 2ε

ρij
∂2În
∂αi∂αj

= (n− 3 + ε)

[
−

n∑
k=1

γk

∆̂n

Î
(k)
n−1 +

2Nn
∆̂n

În

]
, (3.22)

which can be solved for În using equation (3.20),

În =
1

2Nn

[
n∑
i=1

γi Î
(i)
n−1 + (n− 5 + 2ε) ∆̂n Î

D=6−2ε
n

]
. (3.23)

In ref. [10] it is shown how to use this equation to obtain n-point integrals with n ≥ 6. However,

for n ≥ 7 there are some complications, which are discussed in appendix VI. In this paper our main

interest is the pentagon integral (n = 5). For the scalar pentagon integral it suffices to note that

the integral ÎD=6−2ε
5 is finite as ε→ 0, because the D = 6 scalar pentagon integral possesses neither

ultraviolet nor infrared divergences (soft or collinear), and also that the coefficient of ÎD=6−2ε
5 in

equation (3.23) is of order ε. Therefore to O(ε0) the general scalar pentagon integral is given by

the sum of five scalar box integrals,

Î5 =
1

2N5

5∑
i=1

γi Î
(i)
4 + O(ε). (3.24)
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A schematic depiction of this equation, with the coefficients suppressed, is given in fig. 1. For the

tensor pentagon integrals we have to keep the ÎD=6−2ε
5 term around a while longer (see section 6).

One further equation for all n can be obtained by eliminating În from equation (3.16) using

equation (3.23), with the result

1
n− 4 + 2ε

∂În
∂αi

= În[ai] =
1

2Nn

[
n∑
j=1

ηij Î
(j)
n−1 + (n− 5 + 2ε) γi ÎD=6−2ε

n

]
. (3.25)

Since the D = 6 scalar box is also finite, setting n = 4 in equation (3.25) yields a simple set of

partial differential equations for the box integrals, through O(ε):

∂Î4
∂αi

=
ε

N4

[
4∑
j=1

ηij Î
(j)
3 + (−1 + 2ε) γi ÎD=6−2ε

4

]
=

ε

N4

4∑
j=1

ηij Î
(j)
3 + O(ε) . (3.26)

The right-hand-side depends only on the infrared singular pieces of the triangle integrals.

This completes our re-derivation of general all-n results presented in ref. [10]; we now apply

these results to various box and pentagon integrals.

4. Partial Differential Equation Technique

In this section, we solve the partial differential equations (3.17), (3.26) for scalar box integrals

with all internal lines massless, but with 0, 1, 2 or 3 massive external lines.

4.1 The Massless Box Integral

We begin with the box integral with all external lines massless,

I4 [1] = Γ(2 + ε)
∫ 1

0

d4ai δ(1−
∑
iai)

1
[−sa1a3 − ta2a4]2+ε . (4.1)

This integral is simple enough to perform directly after the following change of variables [19] which

factorizes the integrand†

a1 = y(1− x), a2 = z(1− y), a3 = (1− y)(1− z), a4 = xy. (4.2)

However, our purpose here is to illustrate the partial differential equation technique, including the

derivation of the equations, via this simple example.

† J. Vermaseren has pointed out to us that the factorization of the integrand in terms of x, y, z arises naturally
if one combines pairs of propagators using Feynman parameters, and then combines the two resulting factors
using another Feynman parameter. See also ref. [19].

13



As noted above, algebraic equations for Feynman parameter integrals can be obtained by

considering integrals of total derivatives. Here we consider the box integral I4[1], with the parameter

a4 eliminated, and with the integrand differentiated with respect to a1:

J4;1 ≡ Γ(1 + ε)
∫ 1

0

da3

∫ 1−a3

0

da2

∫ 1−a2−a3

0

da1
∂

∂a1

1
[−sa1a3 − ta2(1− a1 − a2 − a3)]1+ε

. (4.3)

Observe that J4;1 can be evaluated in two ways, either by explicit differentiation, or by evaluating

the integrand at the boundaries a4 = 1− a1 − a2 − a3 = 0 and a1 = 0. The boundary terms yield

Γ(1 + ε)
∫ 1

0

da1da2da3
δ(1−

∑3
i=1ai)

[−sa1a3]1+ε
− Γ(1 + ε)

∫ 1

0

da2da3da4
δ(1−

∑4
i=2ai)

[−ta2a4]1+ε
, (4.4)

which is the difference of two triangle integrals, each with one massive external leg, as depicted in

fig. 2. These integrals are easily evaluated,

I1m
3 (s) ≡ Γ(1 + ε)

∫ 1

0

d3ai
δ(1−

∑3
i=1ai)

[−sa1a3]1+ε
=

rΓ

ε2
(−s)−1−ε , (4.5)

where

rΓ ≡
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

is a ubiquitous prefactor. Thus

J4;1 =
rΓ

ε2

(
(−s)−1−ε − (−t)−1−ε

)
. (4.6)

The other way of evaluating equation (4.3), explicit differentiation, yields

J4;1 = −Γ(2 + ε)
∫ 1

0

d4a δ(1−
∑4
iai)

−sa3 + ta2

[−sa1a3 − ta2a4]2+ε

= I4[sa3 − ta2] =
1
2ε

(
4∏
i=1

αi

)[
− 1
α1

∂

∂α3
+

1
α4

∂

∂α2

]
Î4 ,

(4.7)

where we have used equations (2.11), (2.15) and (2.17) in the last step.

Equations (4.6) and (4.7) together constitute one differential equation for Î4. In fact, due to

the symmetries of the original integral, total derivatives in other Feynman parameters do not yield

independent equations. Instead, we recognize at this stage that Î4 is really a function of s and t

alone, not of all four αi,

Î4 = Î4(s, t) = Î4
(
−(α1α3)−1,−(α2α4)−1

)
, (4.8)

so that
1
α1

∂Î4
∂α3

= s2 ∂Î4
∂s

,
1
α4

∂Î4
∂α2

= t2
∂Î4
∂t

. (4.9)
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Combining equations (4.6), (4.7) and (4.9), we see that Î4(s, t) satisfies the partial differential

equation

s2 ∂Î4
∂s
− t2

∂Î4
∂t

= −2rΓ

ε
st
[
(−s)−1−ε − (−t)−1−ε] . (4.10)

We still need one additional equation, which comes from the fact that the dimension of Î4 is equal

to −ε× dimension(s, t), so that

s
∂Î4
∂s

+ t
∂Î4
∂t

= −ε Î4 . (4.11)

Equations (4.10) and (4.11) form a complete set of partial differential equations.

If we consider instead of Î4 the dimensionless quantity Î0
4 , defined by

Î0
4 (s, t) ≡

(
−s + t

st

)−ε
Î4(s, t) , (4.12)

we see that it is a function only of the ratio χ ≡ t/s, and that

s2 ∂Î
0
4

∂s
− t2

∂Î0
4

∂t
= −t(1 + χ)

dÎ0
4

dχ
. (4.13)

In terms of χ, the first equation (4.10) becomes

dÎ0
4

dχ
= −2rΓ

ε

(χε − χ−1)
(1 + χ)1+ε

. (4.14)

One can solve this differential equation to all orders in ε as follows. We observe that the

transformation χ → χ−1 interchanges the two terms on the right-hand side. Taking the second

term, shifting χ→ χ− 1, using the hypergeometric function formulæ∫
dz zc pFq ({ai}; {bi}; z) =

zc+1

c+ 1 p+1Fq+1 ({ai}, c+ 1; {bi}, c+ 2; z) (4.15)

and

1F0(ξ; z) = (1− z)−ξ , (4.16)

the hypergeometric function identity

2F1(1,−ε; 1− ε; 1 + χ) = (−χ)ε 2F1(−ε,−ε; 1− ε; 1 + χ−1) , (4.17)

and using the interchange of χ and χ−1 to furnish the first term, we obtain (note that χ should be

thought of as having a small imaginary part in order to avoid difficulties with branch cuts)

Î0
4 =

2rΓ

ε2

[(
1 + χ−1

)−ε
2F1

(
1,−ε; 1− ε; 1 + χ−1

)
+ (1 + χ)−ε 2F1 (1,−ε; 1− ε; 1 + χ)

]
=

2rΓ

ε2
(
1 + χ−1

)−ε [
(−χ−1)ε 2F1 (−ε,−ε; 1− ε; 1 + χ) + (−χ)εχ−ε 2F1

(
−ε,−ε; 1− ε; 1 + χ−1

)]
.

(4.18)
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The constant of integration may be determined by evaluating the integral (4.1) directly at some

convenient value of χ, say χ = t/s = 1 (s = t = −1),

Î0
4 (χ = 1) = 2−ε I4[1] = 2−εΓ(2 + ε)

∫ 1

0

d4ai
δ(1−

∑
ai)

[a1a3 + a2a4]2+ε

= 2−εΓ(2 + ε)
∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz y−1−ε(1− y)−1−ε[(1− x)(1− z) + xz
]−2−ε

,

(4.19)

where we have made the change of variables (4.2). The y and z integrals are elementary and leave

us with a standard hypergeometric integral,

Î0
4 (χ = 1) = −21−εrΓ

ε

∫ 1

0

dx
x−1−ε − (1− x)−1−ε

1− 2x

= −21−εrΓ

ε

Γ(−ε)Γ(1)
Γ(1− ε) lim

δ→0

(
2F1(1,−ε; 1− ε; 2 + iδ)− 2F1(1, 1; 1− ε; 2 + iδ)

)
=

21−εrΓ

ε2
lim
δ→0

(
2F1(1,−ε; 1− ε; 2 + iδ) + 2F1(1,−ε; 1− ε; 2− iδ)

)
.

(4.20)

Comparing with the first line of equation (4.18), we see that the constant of integration vanishes.

Alternatively, we may solve equation (4.14) order by order in ε. Observe that Î0
4 must con-

tain 1/ε2 poles from the overlap of collinear and soft singularities. As the right-hand side of the

differential equation only contains a single power of 1/ε, this leading pole should be multiplied by

something to the ±ε power, so that one power of ε is cancelled upon differentiation. Through O(ε0),

we then have

Î0
4 = rΓ

{
2
ε2
[
(1 + χ)−ε + (1 + χ−1)−ε

]
− ln2 χ− π2

}
+ O(ε)

= rΓ

{
2
ε2

[(s+ t

s

)−ε
+
(s + t

t

)−ε]
− ln2

( t
s

)
− π2

}
+ O(ε) ,

(4.21)

where the constant of integration can be fixed as in the all-orders solution.

Restoring the prefactor (−(s+ t)/st)ε, and expressing the result in terms of the αi, we have

Î4[1] =
2rΓ

ε2

[
(−α2α4)ε 2F1

(
−ε,−ε; 1− ε; 1 +

α1α3

α2α4

)
+ (−α1α3)ε 2F1

(
−ε,−ε; 1− ε; 1 +

α2α4

α1α3

)]
= rΓ

[
2
ε2

((α1α3)ε + (α2α4)ε) − ln2

(
α1α3

α2α4

)
− π2

]
+ O(ε) .

(4.22)

In this form, the differentiation formula (2.17) may be applied to the scalar integral Î4 to obtain

the integrals with arbitrary Feynman parameter polynomials inserted. Because of the Γ(1−m+2ε)

prefactor in (2.17), the O(ε) terms in Î4 contribute to the polynomial integrals at O(ε0). Instead

of displaying the O(ε) terms in Î4 explicitly, we quote the reduced integrals with one parameter

16



inserted, Î4[ai], to O(ε0):

α1 Î4[a1] = α3 Î4[a3] = rΓ

{
1
ε2

(α2α4)ε − 1
2

(
α1α3

α1α3 + α2α4

)[
ln2

(
α1α3

α2α4

)
+ π2

]}
+ O(ε),

α2 Î4[a2] = α4 Î4[a4] = rΓ

{
1
ε2

(α1α3)ε − 1
2

(
α2α4

α1α3 + α2α4

)[
ln2

(
α1α3

α2α4

)
+ π2

]}
+ O(ε).

(4.23)

The latter integrals may be differentiated further to obtain through O(ε0) the integral with any

polynomial of the Feynman parameters inserted.

As mentioned previously, the branch cuts can be obtained by inserting the iε associated with

each kinematic variable,
(−s)−ε → |s|−εe+iπεΘ(s) ,

ln(−s) → ln |s| − iπΘ(s) ,
(4.24)

where Θ(x) is the usual Heavyside function: Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0. For the

massless scalar box we therefore obtain

I4[1] = i
rΓ

(4π)2

1
st

{
2
ε2

[( |s|
4πµ2

)−ε
eiπεΘ(s) +

( |t|
4πµ2

)−ε
eiπεΘ(t)

]
− ln2

∣∣∣s
t

∣∣∣+ 2πi (Θ(s)−Θ(t)) ln
∣∣∣s
t

∣∣∣− π2
[
1− (Θ(s) −Θ(t))2

]}
+O(ε) ,

(4.25)

where s and t are the Mandelstam variables defined below equation (2.6).

4.2 The Box Integral with One External Mass

Following the same techniques, we can obtain partial differential equations for boxes with one

external massive leg (or equivalently, one external leg off-shell),

I1m
4 (s1, s2, m

2
4) = Γ(2 + ε)

∫ 1

0

d4a δ(1−
∑
iai)

1

[−sa1a3 − ta2a4 −m2
4a4a1]2+ε

. (4.26)

(This integral could also be evaluated using the same change of variables (4.2) as for the massless

box.) By analogy with equation (4.4), such integrals will clearly arise in the consideration of

massless pentagon integrals. Following the conventions of section 3, we label these boxes by I
(i)
4

when the momentum invariant si−1,i for the adjacent legs (i− 1) and i of the pentagon diagram

serves as the “mass” of the massive leg of the box. For example,

I
(5)
4 [1] = I1m

4 (s12, s23, s45)

= Γ(2 + ε)
∫ 1

0

d4a δ(1−
∑
iai)

1
[−s12a1a3 − s23a2a4 − s45a4a1]2+ε

(4.27)

is the box integral arising from the diagram depicted in fig. 3, in which a tree with external legs 4

and 5 is attached to a four-point loop. Note that the scalar denominator for the integral (4.27)
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can be obtained from the massless pentagon denominator by setting the parameter a5 to zero.

Similarly, I(i)
4 can be obtained by setting ai → 0 in the massless pentagon.

From these remarks it is clear that the change of integration variables described earlier for

the pentagon can be used here to remove the kinematic factors from the denominator of the box

integral,

I
(5)
4 [1] = Γ(2 + ε)

( 4∏
j=1

αj

)∫ 1

0

d4u
δ (1−

∑
ui)

(∑4
j=1 αjuj

)2ε

[u1u3 + u2u4 + u4u1]2+ε , (4.28)

where αi are given by equation (2.13). (These variables αi should not be confused with the corre-

sponding αi for the massless box.) The other integrals that will arise,

I
(1)
4 = I1m

4 (s23, s34, s51), I
(2)
4 = I1m

4 (s34, s45, s12),

I
(3)
4 = I1m

4 (s45, s51, s23), I
(4)
4 = I1m

4 (s51, s12, s34),
(4.29)

can be obtained from I
(5)
4 by cyclic permutation of the αi. We define the reduced integral, Î(i)

4 or

Î1m
4 , via equation (2.15).

We can now apply the general results of section 3 to the example of equation (4.27). The

matrix ρ defined in equation (2.10) is now given by

ρ1m =
1
2


0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

 , (4.30)

so that N1m
4 = 1

2
, and the rescaled Gram determinant is given, using eqs. (3.8) and (3.9), by

∆̂1m
4 = 2(α1α3 + α2α4 − α2α3) . (4.31)

Using equations (3.8) and (3.10), the explicit values of the quantities γ1m
i and η1m

ij can be read off

from (4.31):

γ1m
1 = α3, γ1m

2 = α4 − α3, γ1m
3 = α1 − α2, γ1m

4 = α2,

η1m
13 = η1m

24 = −η1m
23 = η1m

31 = η1m
42 = −η1m

32 = 1, remaining η1m
ij = 0.

(4.32)

In terms of these quantities, the differential equations (3.16) read

∂Î1m
4

∂αi
= 2ε

 4∑
j=1

(
η1m
ij −

γ1m
i γ1m

j

∆̂1m
4

)
Î

(j)
3 +

γ1m
i

∆̂1m
4

Î1m
4


= 2ε

 4∑
j=1

√
∆̂1m

4

∂2

√
∆̂1m

4

∂αi∂αj
Î

(j)
3 +

1√
∆̂1m

4

∂
√

∆̂1m
4

∂αi
Î1m
4

 .

(4.33)
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The triangle integrals appearing on the right-hand-side of (4.33) include both the triangle integral

with one external massive leg, I1m
3 , defined in equation (4.5), and the triangle with two external

masses,

I2m
3 (s1, s2) =

rΓ

ε2
(−s1)−ε − (−s2)−ε

(−s1)− (−s2)
. (4.34)

Explicitly, the following reduced triangle integrals appear (defined again via (2.15)):

Î
(1)
3 =

1
α2α3α4

I1m
3

(
−1
α2α4

)
=

rΓ

ε2
αε4α

ε
2

α3
,

Î
(2)
3 =

1
α1α3α4

I2m
3

(
−1
α1α3

,
−1
α4α1

)
= −rΓ

ε2
αε1
αε4 − αε3
α4 − α3

,

Î
(3)
3 =

1
α1α2α4

I2m
3

(
−1
α2α4

,
−1
α4α1

)
= −rΓ

ε2
αε4
αε1 − αε2
α1 − α2

,

Î
(4)
3 =

1
α1α2α3

I1m
3

(
−1
α1α3

)
=

rΓ

ε2
αε1α

ε
3

α2
.

(4.35)

The differential equations (4.33) have the solution,

Î1m
4 =

2rΓ

ε2

[
(−α3(α1 − α2))ε 2F1

(
−ε,−ε; 1− ε; α1α3 + α2α4 − α2α3

α3(α1 − α2)

)
+ (−α2(α4 − α3))ε 2F1

(
−ε,−ε; 1− ε; α1α3 + α2α4 − α2α3

α2(α4 − α3)

)
− ((α1 − α2)(α4 − α3))ε 2F1

(
−ε,−ε; 1− ε;−α1α3 + α2α4 − α2α3

(α1 − α2)(α4 − α3)

)]

=
2rΓ

ε2

[(
−γ1m

1 γ1m
3

)ε
2F1

(
−ε,−ε; 1− ε; ∆̂1m

4

2γ1m
1 γ1m

3

)

+
(
−γ1m

2 γ1m
4

)ε
2F1

(
−ε,−ε; 1− ε; ∆̂1m

4

2γ1m
2 γ1m

4

)

−
(
γ1m

2 γ1m
3

)ε
2F1

(
−ε,−ε; 1− ε;− ∆̂1m

4

2γ1m
2 γ1m

3

)]

= 2rΓ

[
(α2α3)ε

ε2
+ Li2

(
1− α1

α2

)
+ Li2

(
1− α4

α3

)
− π2

6

]
+O(ε) ,

(4.36)

where Li2 is the dilogarithm [20], which satisfies

d

dx
Li2(1− x) =

ln(x)
1− x , (4.37)

and also the identity

Li2(1− x) + Li2(1− x−1) = −1
2

ln2(x), x > 0. (4.38)
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In principle, one could also add any solution of the homogeneous equations, (4.33) with Î(j)
3 set to

zero. The coefficient of such a solution vanishes, as may again be demonstrated by evaluation at a

special kinematic point.

In terms of momentum invariants, the unreduced integral is

I
(5)
4 = rΓ

2
s12s23

(−s12)−ε(−s23)−ε

(−s45)−ε

[
1
ε2

+ Li2
(

1− s12

s45

)
+ Li2

(
1− s23

s45

)
− π2

6

]
+O(ε), (4.39)

or alternatively, after using the dilogarithm identity (4.38) and rearranging the terms

I
(5)
4 =

rΓ

s12s23

{
2
ε2

[
(−s12)−ε + (−s23)−ε − (−s45)−ε

]
− 2 Li2

(
1− s45

s12

)
− 2 Li2

(
1− s45

s23

)
− ln2

(
s12

s23

)
− π2

3

}
+ O(ε).

(4.40)

This second form is appropriate for studying the limit s45 → 0 as we do at the end of this section.

Including the overall normalization factors appropriate for the momentum-space integral (2.1)

yields

I(5)
4 =

irΓ

(4π)2

2
s12s23

(−s12

4πµ2

)−ε(−s23

4πµ2

)−ε(−s45

4πµ2

)ε[ 1
ε2

+Li2
(

1− s12

s45

)
+Li2

(
1− s23

s45

)
− π

2

6

]
+O(ε),

(4.41)

in agreement with the results of refs. [21]. The correct analytic continuation to the physical region

can be obtained from this expression by taking sij → sij + iε.

As with the massless box, it is useful to quote the integrals Î1m
4 [ai] to O(ε0); further differ-

entiation of them will give any desired integral to O(ε0) as well. The Î1m
4 [ai] may be read off

from equations (4.33) and (4.36). We rewrite them in terms of a combination of dilogarithms and

logarithms that will reappear in the massless pentagon tensor integrals:

Î
(5)
4 [a1] = rΓ

[
− 1
ε2
αε4(αε1 − αε2)
α1 − α2

+
α3 L5

α1α3 + α2α4 − α2α3

]
,

Î
(5)
4 [a2] = rΓ

[
1
ε2

(
αε1α

ε
3

α2
+
αε4(αε1 − αε2)
α1 − α2

)
+

(α4 − α3)L5

α1α3 + α2α4 − α2α3

]
,

Î
(5)
4 [a3] = rΓ

[
1
ε2

(
αε4α

ε
2

α3
+
αε1(αε4 − αε3)
α4 − α3

)
+

(α1 − α2)L5

α1α3 + α2α4 − α2α3

]
,

Î
(5)
4 [a4] = rΓ

[
− 1
ε2
αε1(αε4 − αε3)
α4 − α3

+
α2 L5

α1α3 + α2α4 − α2α3

]
,

(4.42)

where

Li ≡ Li2

(
1− αi+1

αi+2

)
+ Li2

(
1− αi−1

αi−2

)
+ ln

(
αi+1

αi+2

)
ln
(
αi−1

αi−2

)
− π2

6
. (4.43)

Note that Li vanishes as αi+1αi−2 + αi+2αi−1 − αi+2αi−2 → 0, so the Î(i)
4 [aj ] are not singular in

that limit.
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4.3 Box Integrals with Two External Masses

In order to evaluate the pentagon integral with one external mass, or the all-massless hexagon

integral, one needs box integrals with two external masses, of which there are two types, which

we will call ‘easy’ and ‘hard’. Both of these integrals have been performed previously [22,9]. The

‘easy’ box, with external masses at diagonally opposite corners, can be done with the same change

of variables (4.2) described in section 4. We will not discuss it further, but merely quote the result,

I2me
4 [1] ≡ Γ(2 + ε)

∫ 1

0

d4ai
δ
(
1−

∑
ai
)[

−sa1a3 − ta2a4 −m2
1a1a2 −m2

3a3a4

]2+ε

=
2 rΓ

st−m2
1m

2
3

{
1
ε2
(
(−s)−ε + (−t)−ε − (−m2

1)−ε − (−m2
3)−ε

)
+ Li2

(
1− m2

1m
2
3

st

)
−Li2

(
1− m2

1

s

)
− Li2

(
1− m2

1

t

)
− Li2

(
1− m2

3

s

)
− Li2

(
1− m2

3

t

)
− 1

2
ln2
(s
t

)}
+O(ε) .

(4.44)

The ‘hard’ box, with external masses at adjacent corners (legs 3 and 4),

I2mh
4 [1] = Γ(2 + ε)

∫ 1

0

d4a
δ(1−

∑
iai)

[−sa1a3 − ta2a4 −m2
3a3a4 −m2

4a4a1]2+ε , (4.45)

cannot be easily done this way; but it is amenable to the partial differential equation technique.

We change to αi variables defined by

s = − 1
α1α3

, t = − 1
α2α4

, m2
3 = − 1

α3α4
, m2

4 = − 1
α4α1

.

Then the matrix ρ is given by

ρ2mh =
1
2


0 0 1 1
0 0 0 1
1 0 0 1
1 1 1 0

 , (4.46)

we have N2mh
4 = 1

2 , and the rescaled Gram determinant is

∆̂2mh
4 = 2(α1α3 + α2α4 − α1α2 − α2α3 + α2

2) , (4.47)

from which γ2mh
i and η2mh

ij can be obtained via equations (3.8) and (3.10).

To obtain the box integral to O(ε0), we can use the simple partial differential equations (3.26),

which are sensitive only to the pieces of the triangle integrals that are singular as ε → 0. In

particular, the three-mass triangle does not contribute, because it is finite as ε→ 0. We find that

to O(ε0),

∂Î2mh
4

∂αi
= 2ε

4∑
j=1

η2mh
ij Î

(j)
3

= 2 rΓ

[
1
ε
η2mh
i4

1
α2
− η2mh

i1

ln(α2/α3)
α2 − α3

− η2mh
i3

ln(α1/α2)
α1 − α2

+ η2mh
i4

ln(α1α3)
α2

]
.

(4.48)

21



Writing

Î2mh
4 = rΓ

[
1
ε2

+
1
ε
X−1 +X0 + c0

]
, (4.49)

and solving the differential equations for X−1 and X0, we find

X−1 = 2 lnα2,

X0 = 2 Li2

(
1− α1

α2

)
+ 2 Li2

(
1− α3

α2

)
+ 2 ln2 α2,

(4.50)

or

Î2mh
4 = rΓ α

2ε
2

[
1
ε2

+ 2 Li2

(
1− α1

α2

)
+ 2 Li2

(
1− α3

α2

)
+ c0

]
+ O(ε). (4.51)

The constant c0 may be determined by computing the function at a specific point, say where

all the αi are equal; the resulting integral is evaluated explicitly in appendix IV, whence we find

c0 = 0. Finally, rewriting the result (4.51) back in terms of the conventional kinematic variables

yields

I2mh
4 [1] = rΓ

(−m2
3)ε(−m2

4)ε

(−t)1+2ε(−s)1+ε

[
1
ε2

+ 2 Li2

(
1− t

m2
3

)
+ 2 Li2

(
1− t

m2
4

)]
+ O(ε). (4.52)

Using the dilogarithm identity (4.38) and rearranging the terms this can be written in the

alternative form

I2mh
4 [1] =

rΓ

st

{
2
ε2

[
(−s)−ε + (−t)−ε − (−m2

3)−ε − (−m2
4)−ε

]
+

1
ε2

(−m2
3)−ε(−m2

4)−ε

(−s)−ε

− 2 Li2

(
1− m2

3

t

)
− 2 Li2

(
1− m2

4

t

)
− ln2

(s
t

)}
+ O(ε),

(4.53)

which is more convenient for studying the massless limit, as we do at the end of this section.

4.4 The Box Integral with Three External Masses

Here we compute the three-mass scalar box integral,

I3m
4 [1] = Γ(2 + ε)

∫
d4ai

δ
(
1−

∑
ai
)[

−sa1a3 − ta2a4 −m2
2a2a3 −m2

3a3a4 −m2
4a4a1

]2+ε
. (4.54)

We again use the partial differential equations (3.26), with the change-of-variables

s = − 1
α1α3

, t = − 1
α2α4

, m2
2 = − λ

α2α3
, m2

3 = − 1
α3α4

, m2
4 = − 1

α4α1
, (4.55)

which is the same as that used for the hard two-mass box, except that now λ 6= 0. The matrix ρ

becomes

ρ3m
4 =

1
2


0 0 1 1
0 0 λ 1
1 λ 0 1
1 1 1 0

 , (4.56)
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the normalization factor in (3.26) is N3m
4 = 1

2
(1− λ)2, and the matrix η used to construct ∆̂3m

4 is

η3m =


2λ −1 − λ 1− λ −λ(1− λ)

−1− λ 2 −(1− λ) 1− λ
1− λ −(1− λ) 0 0

−λ(1− λ) 1− λ 0 0

 . (4.57)

We expand Î3m
4 as

Î3m
4 = rΓ

[c1(λ)
ε

+ X0(αi, λ) + c0(λ)
]

+O(ε). (4.58)

(We will see below that there is no 1/ε2 singularity.) To solve the partial differential equations

order-by-order in ε we need to first know c1(λ). We know that c1(λ) is independent of the αi

because the daughter triangles here are of the two-mass and three-mass varieties; the two-mass

triangle has a 1/ε pole, which feeds into X0(αi, λ), while the three-mass triangle is finite and can

be ignored altogether. So we may compute c1(λ) by doing the integral Î3m
4 for the special choice

of all αi = 1. We should compute the finite part of the integral while we’re at it, since this result

will fix the constant of integration c0(λ). This computation is done in appendix IV, where we find

c1(λ) =
lnλ

1− λ . (4.59)

Next we solve the partial differential equations (3.26). Plug the expansion of Î3m
4 (equa-

tion (4.58)) and the divergent pieces of the 2-mass triangles Î(3)
3 and Î(4)

3 ,

Î
(3)
3 = −rΓ

ε

ln(α1/α2)
α1 − α2

+ O(ε0) ,

Î
(4)
3 = −rΓ

ε

ln(λα1/α2)
λα1 − α2

+ O(ε0) ,
(4.60)

into the far right-hand-side of (3.26) and use the result (4.57) for ηij, to get

∂X0

∂α1
=

2
1− λ

[
− ln(α1/α2)

α1 − α2
+ λ

ln(λα1/α2)
λα1 − α2

]
,

∂X0

∂α2
=

2
1− λ

[
ln(α1/α2)
α1 − α2

− ln(λα1/α2)
λα1 − α2

]
,

∂X0

∂α3
= 0 ,

∂X0

∂α4
= 0 .

(4.61)

Solving these equations for X0(αi, λ), and fixing the constant c0(λ) using equation (IV.6), yields

Î3m
4 =

rΓ

1− λ

[
lnλ
ε

+ 2 Li2

(
1− α1

α2

)
− 2 Li2

(
1− λα1

α2

)
+ 2 Li2(1− λ) + 2 lnλ lnα2 −

1
2

ln2 λ

]
+O(ε) .

(4.62)
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Returning to the original kinematic variables, and using dilogarithm identities [20], we get

I3m
4 (s, t, m2

i ) =
rΓ

st−m2
2m

2
4

{
2
ε2

[
(−s)−ε + (−t)−ε − (−m2

2)−ε − (−m2
3)−ε − (−m2

4)−ε
]

+
1
ε2

(−m2
2)−ε(−m2

3)−ε

(−t)−ε +
1
ε2

(−m2
3)−ε(−m2

4)−ε

(−s)−ε

− 2 Li2

(
1− m2

2

s

)
− 2 Li2

(
1− m2

4

t

)
+ 2 Li2

(
1− m2

2m
2
4

st

)
− ln2

(s
t

)}
+O(ε) .

(4.63)

4.5 The Box Integral with Four External Masses

The four-mass box integral is infrared finite and has been performed in D = 4 in ref. [6]; a

compact expression is given in ref. [15]. Amusingly, the partial differential equations (3.26) for it

are trivial, because the three-mass triangles appearing on the right-hand-side are non-singular as

ε → 0. In other words, through O(ε), the reduced four-mass box cannot depend on the αi, but

only on the two other, dimensionless variables, say λ1 and λ2, where we define

s = − 1
α1α3

, t = − 1
α2α4

, m2
1 = − λ1

α1α2
, m2

2 = − λ2

α2α3
, m2

3 = − 1
α3α4

, m2
4 = − 1

α4α1
.

(4.64)

One can check that the answer D0(s, t, m2
i ) given in ref. [15] does have this property — when the

integral is divided by α1α2α3α4 it depends only on λ1 and λ2. Indeed,

Î4m
4 =

D0∏
αi

=
1
r

{
Li2
(

1
2
(1− λ1 + λ2 + r)

)
− Li2

(
1
2
(1− λ1 + λ2 − r)

)
+ Li2

(
−1
2λ1

(1− λ1 − λ2 − r)
)
− Li2

(
−1
2λ1

(1− λ1 − λ2 + r)
)

+
1
2

ln
(
λ1

λ2
2

)
ln
(

1 + λ1 − λ2 + r

1 + λ1 − λ2 − r

)}
+O(ε) ,

(4.65)

where

r ≡
√

1− 2λ1 − 2λ2 + λ2
1 − 2λ1λ2 + λ2

2 . (4.66)

4.6 The Massless Limit of Massive Boxes

In general there is no reason for the massless limits to be smooth. The limit of taking a mass

to zero does not necessarily commute with the 1/ε expansion of dimensional regularization, which

has been truncated at O(ε0). For ε < 0 (as is required to regulate the infrared divergences in the

box integrals), we see that the single external mass box I1m
4 (s, t, m2

4) (given in equation (4.40) with

s = s12, t = s23, m2
4 = s45) goes over smoothly to the massless box I0m

4 (s, t) as m4 → 0, and

the easy two-mass box I2me
4 (s, t, m2

3, m
2
4) goes over smoothly to the one-mass box I1m

4 (s, t, m2
4) as

m3 → 0. On the other hand, the limits, I2mh
4 → I1m

4 , I3m
4 → I2me

4 , and I3m
4 → I2mh

4 , are not

smooth: in each of these cases there are “missing” dilogarithms.
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The fact that some of the above limits happen to be smooth, with only the exponentiation

of the logarithms (−s)−ε, (−t)−ε, (−m2
i )
−ε, can be understood from the representation (3.23) (for

n = 4) of the D = 4 − 2ε box integral as the sum of D = 4 − 2ε triangles and a D = 6 − 2ε box

integral. The D = 6 − 2ε box integral is infrared (and ultraviolet) convergent for any choice of

mass, so it has a smooth limit as any mass goes to zero. The D = 4− 2ε triangles appearing in the

representations (3.23) for I0m
4 , I1m

4 and I2me
4 have either one or two nonvanishing external masses;

these integrals can be written in closed form to all order in ε merely by exponentiating logarithms.

(See equations (4.5) and (4.34).) In contrast, the representations (3.23) of the box integrals I2mh
4

and I3m
4 require the triangle with three external masses, I3m

3 , whose all-orders-in-ε form (V.11) is

considerably more complicated, involving hypergeometric functions. One should not expect that

these latter box integrals, truncated to O(ε0), could be made to have smooth limits simply by

exponentiating logarithms.

5. Algebraic Approach to Pentagon Integrals

It is possible to solve the partial differential equations (3.17) for the massless scalar pentagon

through O(ε0). However, a simpler approach, which works equally well for arbitrary pentagon

kinematics, is to use the general algebraic equation (3.23) derived in section 3 to express the scalar

pentagon integral Î5 as a sum of five scalar box integrals, up to O(ε) corrections:

Î5 =
1

2N5

[
5∑
i=1

γi Î
(i)
4 + 2ε ∆̂5 Î

D=6−2ε
5

]
. (5.1)

(See also fig. 1.) To give an explicit expression for the pentagon, we need only collect the relevant

scalar box integrals from section 4, and compute the kinematic coefficients N5, ∆̂5, γi and ηij.

(The ηij are relevant for computing tensor integrals.) We now do this for the all-massless pentagon

integral, and for the pentagon with one external mass.

5.1 The Massless Pentagon Integral

For the massless pentagon, equation (2.7) for the scalar denominator, with the change of

variables (2.12), leads to a matrix ρ given by

ρ =
1
2


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

 . (5.2)
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We find that N5 = 1, and

∆̂5 =
5∑
i=1

(
α2
i − 2αiαi+1 + 2αiαi+2

)
,

γi = αi−2 − αi−1 + αi − αi+1 + αi+2 ,

ηij = 1− 2 δi,j−1 − 2 δi,j+1 .

(5.3)

Plugging the one-mass box integrals (4.36) into equation (3.24), and using the dilogarithm iden-

tity (4.38), we obtain

Î5[1] = rΓ

5∑
j=1

α1+2ε
j

[
1
ε2

+ 2 Li2
(

1− αj+1

αj

)
+ 2 Li2

(
1− αj−1

αj

)
− π2

6

]
+ O(ε). (5.4)

In terms of momentum invariants, the unreduced integral is

I5 =
rΓ (−s51)ε(−s12)ε

(−s23)1+ε(−s34)1+ε(−s45)1+ε

[
1
ε2

+ 2 Li2
(

1− s23

s51

)
+ 2 Li2

(
1− s45

s12

)
− π2

6

]
+ cyclic +O(ε).

(5.5)

From this expression we can obtain the value in any region by using the usual iε prescription and

observing that I5 is manifestly real in the region where all sij < 0.

For the tensor integrals, we do need some information about the O(ε) parts of the scalar

pentagon. It turns out that leaving the six-dimensional pentagon ÎD=6−2ε
5 in equation (5.1) leaves

us with enough information about these terms that we can use the scalar pentagon as a generating

function for the tensor integrals to O(1), without having to evaluate ÎD=6−2ε
5 explicitly. (The

explicit solution for ÎD=6
5 involves a rather long combination of Li3’s, Li2’s, and logarithms whose

arguments are complicated solutions of various quadratic equations.) We show how to do so in the

next section.

5.2 The Pentagon Integral with One External Mass

For the pentagon with one external mass, m5 6= 0, we use the same change of variables (2.12),

(2.13) as in the massless case, except that we also define the rescaled mass m̂2
5 ≡ −α5α1m

2
5, which is

taken to be a variable independent of the αi. We find that the normalization factor is N5 = 1−m̂2
5,

while the rescaled Gram determinant is given by

∆̂1m
5 = ∆̂0m

5 + m̂2
5(−2α1α3 + 2α2α3 − 2α2

3 − 4α2α4 + 2α3α4 − 2α3α5) + α2
3(m̂2

5)2 , (5.6)

where ∆̂0m
5 is given in equation (5.3). Using these values in the general expression for the scalar

pentagon (3.24), and collecting the box integrals with one and two external masses from section 4,
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we get

I1m
5 [1] = rΓ

(∏
α`
){ 1

ε2

[
α1+2ε

2 + α1+2ε
3 + α1+2ε

4 +
[
(α1 − m̂2

5α2)α2ε
1 + (α5 − m̂2

5α4)α2ε
5

] 1− (m̂2
5)−ε

1− m̂2
5

]
+ 2α2

[
Li2

(
1− α1

α2

)
+ Li2

(
1− α3

α2

)]
+ 2α4

[
Li2

(
1− α5

α4

)
+ Li2

(
1− α3

α4

)]
+ 2α3

[
Li2

(
1− α2

α3

)
+ Li2

(
1− α4

α3

)]
+

α1 − α2 + (1− m̂2
5)α3 − α4 + α5

1− m̂2
5

Li2
(
1− m̂2

5

)
+ 2

α1 − m̂2
5α2

1− m̂2
5

[
Li2

(
1− α2

α1

)
− Li2

(
1− α2

α1
m̂2

5

)]
+ 2

α5 − m̂2
5α4

1− m̂2
5

[
Li2

(
1− α4

α5

)
− Li2

(
1− α4

α5
m̂2

5

)]
− π2

3
α3

}
+ O(ε),

(5.7)

or in terms of more conventional kinematic variables

I1m
5 [1] = − rΓ

s12s23s34s45s51

{
1
ε2

[
(−s34)1+ε(−s45)1+ε

(−s51)ε(−s12)ε(−s23)ε
+

(−s45)1+ε(−s51)1+ε

(−s12)ε(−s23)ε(−s34)ε
+

(−s51)1+ε(−s12)1+ε

(−s23)ε(−s34)ε(−s45)ε

+
s45s51

s45s51 −m2
5s23

[
s23s34

(
1− m2

5

s51

)
(−s23)ε(−s34)ε

(−s45)ε(−s51)ε(−s12)ε

+ s12s23

(
1− m2

5

s45

)
(−s12)ε(−s23)ε

(−s34)ε(−s45)ε(−s51)ε

](
1−

(m2
5s23

s45s51

)−ε)]
+ 2s34s45

[
Li2

(
1− s23

s45

)
+ Li2

(
1− s51

s34

)]
+ 2s51s12

[
Li2

(
1− s23

s51

)
+ Li2

(
1− s45

s12

)]
+ 2s45s51

[
Li2

(
1− s34

s51

)
+ Li2

(
1− s12

s45

)]
+ s45s51

s23s34 − s34s45 + s45s51 −m2
5s23 − s51s12 + s12s23

s45s51 −m2
5s23

Li2

(
1− m2

5s23

s45s51

)
+ 2

(s51 −m2
5)s23s34s45

s45s51 − s23m
2
5

[
Li2

(
1− s45

s23

)
− Li2

(
1− m2

5

s51

)]
+ 2

(s45 −m2
5)s51s12s23

s45s51 − s23m
2
5

[
Li2

(
1− s51

s23

)
− Li2

(
1− m2

5

s45

)]
− π2

3
s45s51

}
+ O(ε).

(5.8)

Observe that it has the expected symmetry under flipping external legs 1↔ 4 and 2↔ 3. The limit

of the expression (5.8) as m5 → 0 does not yield the massless pentagon integral (5.5), for similar

reasons as explained at the end of section 4 for box integrals. The single mass pentagon I1m
5 , which

is given through O(ε0), should not be expected to have a smooth limit onto the massless pentagon

as m5 → 0, because I1m
5 incorporates the box integral I2mh

4 , and through it the triangle integral

I3m
3 which does not have a smooth limit.
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6. Feynman Parameters in the Numerator

In this section, we explain how to use the scalar pentagon Î5, when expressed in terms of box

integrals and ÎD=6−2ε
5 via equation (5.1), as a generating function for the tensor integrals Î5[P (ai)]

throughO(ε0). The general discussion applies to the pentagon integral with any number of external

(or internal) masses; we shall also give explicit formulæ for the massless pentagon at the end of the

section.

The only complication in applying the differentiation formula (2.19) is the appearance of

ÎD=6−2ε
5 and its derivatives at O(ε0) when the degree of P (ai) is two or higher. It is easy to

eliminate the derivatives of ÎD=6−2ε
5 in favor of ÎD=6−2ε

5 itself and the D = 6 − 2ε scalar box

integrals ÎD=6−2ε (j)
4 . We just let ε→ ε− 1 in equation (3.17), whence

∂ÎD=6−2ε
5

∂αi
= (−1 + 2ε)

 5∑
j=1

1
2N5

(
ηij −

γiγj

∆̂5

)
Î
D=6−2ε (j)
4 +

γi

∆̂5

ÎD=6−2ε
5

 . (6.1)

Since each term in this equation is nonsingular as ε→ 0, and since we need ÎD=6−2ε
5 only to O(ε0),

we can set ε = 0 in ÎD=6−2ε
5 and ÎD=6−2ε (j)

4 , and use in place of (6.1) the slightly simpler equation

∂ÎD=6
5

∂αi
= −

∑
j

1
2N5

(
ηij −

γiγj

∆̂5

)
Î
D=6 (j)
4 − γi

∆̂5

ÎD=6
5 . (6.2)

The D = 6 scalar box integrals can be worked out directly, or they can be determined from

the D = 4− 2ε box integrals and triangle integrals, using equation (3.25) with n = 4. For the box

with one external mass, needed for the massless pentagon, the explicit result is

Î
D=6 (j)
4 = − 4Lj

∆̂5 − γ2
j

, (6.3)

where Lj is defined in equation (4.43).

Having eliminated its derivatives, we still have to deal with the appearance of ÎD=6
5 itself in the

integrals Î5[P (ai)], for m ≥ 2. The way to proceed is suggested by an argument due to Ellis, Giele

and Yehudai [23]. They work in terms of loop-momentum integrals directly, and use the Brown-

Feynman or Passarino-Veltman procedure to solve for the tensor pentagon integrals in terms of

lower-order tensor integrals (pentagons and boxes), all evaluated in D = 4 − 2ε. The quantity

ÎD=6
5 does not appear at O(ε0) in any momentum-space tensor integral. This fact suggests that

in our approach, ÎD=6
5 will cancel out of the integral of any Feynman parameter polynomial that

is the Feynman parametrization of some tensor integral in momentum-space. In appendix III, we

show explicitly that this is indeed true for integrals with up to three loop-momenta inserted. It is

straightforward to extend the argument to five loop-momenta, the maximum number encountered in
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any gauge theory amplitude. (Beyond five insertions of the loop momentum, ultraviolet divergences

of the integrals complicate matters.)

While ÎD=6
5 disappears from the final answer in any gauge theory calculation, it is still useful

to know with what coefficient it appears in any particular term. One may use the vanishing of its

coefficient in the final expression as a check on the complete calculation. Also, it is simple to write

recursive formulæ for the integrals of monomials in the Feynman parameters using this information.

Let us work out the coefficient of ÎD=6
5 in Î5[ai1 . . . aim ]. Define di1...im by

Î5[ai1 . . . aim ] ≡ di1...im
N5 ∆̂m−1

5

ÎD=6
5 + . . . , (6.4)

where ‘. . .’ denotes scalar box integrals (in D = 4− 2ε and in D = 6) and their derivatives. Notice

from equations (6.2), (3.8), and (3.10) that
√

∆̂5Î
D=6
5 satisfies a simple equation,

∂
(√

∆̂5Î
D=6
5

)
∂αi

= − 1
2N5

5∑
j=1

(
ηij −

γiγj

∆̂5

) √
∆̂5 Î

D=6 (j)
4 . (6.5)

Now write the term (ε/N5) ∆̂5 Î
D=6
5 in equation (5.1) as

ε

N5

√
∆̂5 ×

(√
∆̂5 Î

D=6
5

)
, (6.6)

and apply the differentiation formula (2.19) to get

di1...im =
(−1)m ∆̂m−1/2

5

2(m− 2)!
∂m∆̂1/2

5

∂αi1 . . . ∂αim
. m ≥ 2. (6.7)

We have taken the limit ε → 0 in the Γ-function prefactor in (2.19), since we are working only to

O(ε0). Carrying out the differentiations explicitly for the cases of interest, m = 2, 3, 4, 5, we get

dij = 1
2

[
ηij ∆̂5 − γiγj

]
,

dijk = 1
2

[
(ηij γk + ηjk γi + ηki γj)∆̂5 − 3 γiγjγk

]
,

dijkl = −1
4

[
(ηijηkl + ηikηjl + ηilηjk)∆̂2

5

− 3(ηijγkγl + ηikγjγl + ηilγjγk + ηjkγiγl + ηjlγiγk + ηklγiγj)∆̂5 + 15 γiγjγkγl
]
,

dijklm = −1
4

[(
ηijηklγm + perms of ijklm (15 terms)

)
∆̂2

5

− 5
(
ηijγkγlγm + perms of ijklm (10 terms)

)
∆̂5 + 35 γiγjγkγlγm

]
.

(6.8)

In some calculational schemes for gauge theory amplitudes, the D = 6− 2ε pentagon integral

will itself appear with Feynman parameter polynomials of degree m ≤ 3 inserted. It is then useful

to know the coefficient dD=6
i1...im

defined by

ÎD=6
5 [ai1 . . . aim ] ≡

dD=6
i1...im

∆̂m
5

ÎD=6
5 + . . . , (6.9)
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where again ‘. . .’ denotes scalar box integrals (in D = 6) and their derivatives. Writing ÎD=6
5 =

∆̂−1/2
5 × (∆̂1/2

5 ÎD=6
5 ) and repeating the above steps we find

dD=6
i1...im

=
(−1)m ∆̂m+1/2

5

m!
∂m∆̂−1/2

5

∂αi1 . . .∂αim
. m ≥ 2. (6.10)

The explicit values for the cases of interest are

di = γi ,

dij = −1
2

[
ηij ∆̂5 − 3γiγj

]
,

dijk = −1
2

[
(ηij γk + ηjk γi + ηki γj)∆̂5 − 5 γiγjγk

]
.

(6.11)

Now we shall give explicit formulæ for the massless pentagon integrals with up to two Feynman

parameters inserted, along with a simple recursion relation for generating the remainder of the

integrals.

For a single parameter insertion, equation (2.19) gives

Î5 [ai] =
1

1 + 2ε
∂Î5
∂αi

. (6.12)

Thus we may differentiate the O(ε0) expression (5.4) for Î5, using also equation (4.37), to get

Î5 [ai] = rΓ

[
α2ε
i

ε2
+ 2 Li2

(
1− αi+1

αi

)
+ 2 Li2

(
1− αi−1

αi

)
− π2

6

]
+ O(ε). (6.13)

In the case of two Feynman parameter insertions, we have

Î5 [aiaj ] =
1

2ε(1 + 2ε)
∂2Î5
∂αi∂αj

, (6.14)

which must now be applied to the expression (5.1) for Î5. The O(1) terms in Î5 [aiaj ] receive

contributions both from ÎD=6
5 and from the O(ε) terms in the box integrals Î(j)

4 . Since γi is linear in

the αi, only derivatives of the Î(j)
4 appear on the right-hand side of (6.14). The derivatives ∂Î(j)

4 /∂αi

at O(ε) are nothing but the single insertions Î(j)
4 [ai] at O(1), thanks to the box differentiation

formula

Î
(j)
4 [ai] =

1
2ε
∂Î

(j)
4

∂αi
. (6.15)

These integrals are tabulated in equation (4.42). Carrying out the differentiations in (6.14), we find

Î5[aiaj ] = rΓ

{
δi,j
ε2

(
αεi+1α

ε
i−1

αi
+
αεi−2(αεi − αεi+1)

αi − αi+1
+
αεi+2(αεi − αεi−1)

αi − αi−1

)
−

δi+1,j α
ε
i−2 + δj+1,i α

ε
j−2

ε2
αεi − αεj
αi − αj

+
5∑
k=1

[
ηikγj + ηjkγi − ηikηjkγk −

γiγjγk

∆̂5

]
Lk

∆̂5 − γ2
k

+
dij

∆̂5

ÎD=6
5

}
+ O(ε).

(6.16)
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For a generalization of this formula to arbitrary pentagon kinematics, and also to hexagon (n = 6)

integrals, see equation (VII.8) in appendix VII.

For more than two parameters inserted, we can proceed recursively. Define some new quantities

Îphys
5 [ai1 . . .aim ] to be the “non-ÎD=6

5 ” terms in Î5[ai1 . . .aim ], i.e.

Î5[ai1 . . .aim ] ≡ Îphys
5 [ai1 . . .aim ] +

di1...im
∆̂m−1

5

ÎD=6
5 . (6.17)

Then the differentiation formula (2.19) along with (6.2) generates the following recursion relation

for Îphys
5 [ai1 . . . aim ]:

Îphys
5 [ai1 . . . aim ] =

(
−1

m− 2− 2ε

)∂Îphys
5 [ai1 . . . aim−1]

∂αim
+ 4

di1···im−1

∆̂m−1
5

5∑
j=1

dimj Lj

∆̂5 − γ2
j

 . (6.18)

In applying this formula, it is convenient to have a differentiation formula for the Lj , in terms of

logarithms:

∂Lj
∂αi

=
1
αi

(δi,j+1 − δi,j+2)
[
−αj+1 ln(αj+1/αj+2)

αj+1 − αj+2
+ ln(αj−1/αj−2)

]
+

1
αi

(δi,j−1 − δi,j−2)
[
−αj−1 ln(αj−1/αj−2)

αj−1 − αj−2
+ ln(αj+1/αj+2)

]
.

(6.19)

This completes our prescription for evaluating massless pentagon integrals with Feynman pa-

rameters inserted, in terms of dilogarithms and logarithms. The same basic procedure also works

when external and/or internal masses are present, provided that the relevant box and triangle in-

tegrals are known through O(ε0). (The triangles appear through equation (6.15) in combination

with (3.16).) If all internal lines are massless, then all the requisite boxes and triangles can be

found in section 4, except for the three-mass triangle. This triangle may be computed in D = 4;

see for example refs. [6,17]. In appendix V it is computed in D = 4−2ε for arbitrary ε, as a further

illustration of the partial differential equation approach to scalar integrals.
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Appendix I. Collection of Massless Pentagon and Scalar Box Results

In this appendix we collect those results that are useful in an explicit calculation. The massless

pentagon integral of interest is

I5[Pm({ai})] = Γ(3 + ε)
∫ 1

0

d5ai
δ (1−

∑
i ai)Pm({ai})

[−s12a1a3 − s23a2a4 − s34a3a5 − s45a4a1 − s51a5a2 − iε]3+ε ,

(I.1)
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where Pm({ai}) is a polynomial in the ai of degree m. For use in differentiation formulae we define

the reduced integrals

În
[
P̂ ({ai})

]
=
( n∏
j=1

αj

)−1

In [P ({ai/αi})] . (I.2)

where si,i+1 = −1/(αiαi+1) mod 5. The basic differentiation formula for the pentagon is given by

Î5
[
P̂m({ai})

]
=

Γ(2−m+ 2ε)
Γ(2 + 2ε)

Pm

({
∂

∂αi

})
Î5 [1] . (I.3)

Through O(1) the scalar pentagon is given by

Î5[1] = rΓ

5∑
j=1

α1+2ε
j

[
1
ε2

+ 2 Li2
(

1− αj+1

αj

)
+ 2 Li2

(
1− αj−1

αj

)
− π2

6

]
+ O(ε) . (I.4)

where rΓ ≡ Γ(1 + ε)Γ2(1 − ε)/Γ(1 − 2ε). The case of one Feynman parameter in the numerator

may be obtained by directly applying the differentiation formula (I.3).

Beyond one Feynman parameter it is best to use the explicit value of the two Feynman pa-

rameter integral as a generating function for integrals with three or more Feynman parameters in

the numerator. The two parameter integral is given by

Î5[aiaj ] = rΓ

{
δi,j
ε2

(
αεi+1α

ε
i−1

αi
+
αεi−2(αεi − αεi+1)

αi − αi+1
+
αεi+2(αεi − αεi−1)

αi − αi−1

)
−

δi+1,j α
ε
i−2 + δj+1,i α

ε
j−2

ε2
αεi − αεj
αi − αj

+
5∑
k=1

[
ηikγj + ηjkγi − ηikηjkγk −

γiγjγk

∆̂5

]
Lk

∆̂5 − γ2
k

+
dij

∆̂5

ÎD=6
5

}
+ O(ε),

(I.5)

where

∆̂5 ≡
5∑
j=1

(
α2
j − 2αjαj+1 + 2αjαj+2

)
γi ≡

1
2
∂∆̂5

∂αi
= αi−2 − αi−1 + αi − αi+1 + αi+2 ,

ηij ≡
∂γi
∂αj

=
1
2
∂2∆̂5

∂αi∂αj
=
{
−1, i = j ± 1,
+1, otherwise,

dij = 1
2

[
ηij ∆̂5 − γiγj

]
(I.6)

and

Li ≡ Li2

(
1− αi+1

αi+2

)
+ Li2

(
1− αi−1

αi−2

)
+ ln

(
αi+1

αi+2

)
ln
(
αi−1

αi−2

)
− π2

6
. (I.7)

In calculations there is no need to know the explicit value of the six-dimensional pentagon

ÎD=6
5 since it cancels from all quantities arising from loop momentum integrals. However, when
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applying the differentiation formula (I.3) the terms containing ÎD=6
5 cannot be dropped since they

generate D = 6 box integrals via the equation

∂ÎD=6
5

∂αi
= −

5∑
j=1

1
2

(
ηij −

γiγj

∆̂5

)
Î
D=6 (j)
4 − γi

∆̂5

ÎD=6
5 . (I.8)

Useful formulæ when applying the differentiation formula (I.3) are

∂Lj
∂αi

=
1
αi

(δi,j+1 − δi,j+2)
[
−αj+1 ln(αj+1/αj+2)

αj+1 − αj+2
+ ln(αj−1/αj−2)

]
+

1
αi

(δi,j−1 − δi,j−2)
[
−αj−1 ln(αj−1/αj−2)

αj−1 − αj−2
+ ln(αj+1/αj+2)

]
.

(I.9)

and

Î
D=6 (j)
4 = − 4Lj

∆̂5 − γ2
j

, (I.10)

where Lj is defined in equation (I.7).

We collect here the dimensionally-regulated scalar box integrals with massless internal lines,

but 0, 1, 2 or 3 nonzero external masses, which appear in the process of evaluating (n ≥ 5)-

point integrals, and in subdiagrams in QCD loop calculations. The integrals are defined through

equations (2.5) and (2.6).

I0m
4 (s, t) =

rΓ

st

{
2
ε2

[
(−s)−ε + (−t)−ε

]
− ln2

(s
t

)
− π2

}
+ O(ε), (I.11)

I1m
4 (s, t, m2

4) =
rΓ

st

{
2
ε2

[
(−s)−ε + (−t)−ε − (−m2

4)−ε
]

− 2 Li2

(
1− m2

4

s

)
− 2 Li2

(
1− m2

4

t

)
− ln2

(s
t

)
− π2

3

}
+ O(ε),

(I.12)

I2me
4 (s, t, m2

2, m
2
4) =

rΓ

st−m2
2m

2
4

{
2
ε2

[
(−s)−ε + (−t)−ε − (−m2

2)−ε − (−m2
4)−ε

]
− 2 Li2

(
1− m2

2

s

)
− 2 Li2

(
1− m2

2

t

)
− 2 Li2

(
1− m2

4

s

)
− 2 Li2

(
1− m2

4

t

)
+ 2 Li2

(
1− m2

2m
2
4

st

)
− ln2

(s
t

)}
+ O(ε),

(I.13)

I2mh
4 (s, t, m2

3, m
2
4) =

rΓ

st

{
2
ε2

[
(−s)−ε + (−t)−ε − (−m2

3)−ε − (−m2
4)−ε

]
+

1
ε2

(−m2
3)−ε(−m2

4)−ε

(−s)−ε

− 2 Li2

(
1− m2

3

t

)
− 2 Li2

(
1− m2

4

t

)
− ln2

(s
t

)}
+ O(ε),

(I.14)
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I3m
4 (s, t, m2

i ) =
rΓ

st−m2
2m

2
4

{
2
ε2

[
(−s)−ε + (−t)−ε − (−m2

2)−ε − (−m2
3)−ε − (−m2

4)−ε
]

+
1
ε2

(−m2
2)−ε(−m2

3)−ε

(−t)−ε +
1
ε2

(−m2
3)−ε(−m2

4)−ε

(−s)−ε

− 2 Li2

(
1− m2

2

s

)
− 2 Li2

(
1− m2

4

t

)
+ 2 Li2

(
1− m2

2m
2
4

st

)
− ln2

(s
t

)}
+ O(ε).

(I.15)

Appendix II. Connection with the Work of van Neerven and Vermaseren

Melrose [5] and Van Neerven and Vermaseren [7] were able to represent the general scalar

pentagon integral inD = 4 as a sum of five D = 4 box integrals. On the other hand, equation (3.23)

expresses the pentagon integral in D = 4 − 2ε as a linear combination of five box integrals (also

in D = 4 − 2ε), plus the pentagon in D = 6 − 2ε dimensions, so it can be thought of as the

dimensionally-regulated version of the equations in refs. [5,7]. Indeed, the D = 4 equation in

ref. [7] was our motivation to find an algebraic D = 4 − 2ε equation. (Similar relations have

recently been found using momentum-space, rather than Feynman parameter, techniques by Ellis,

Giele and Yehudai [9].) We would like to verify that the D = 4 − 2ε and D = 4 equations

are consistent with each other, or in other words that the (D-independent) coefficients of the

box integrals in equation (3.24) are equal to the corresponding coefficients in refs. [5,7] (up to

normalization conventions for the integrals). To do this, it is simplest to rewrite equation (3.24) in

terms of unreduced integrals as

I5[1] =
1
2

5∑
i=1

ci I
(i)
4 [1] + O(ε) (II.1)

where

ci =
αiγi
N5

=
5∑
j=1

S−1
ij . (II.2)

The second form of the ci, in terms of more conventional kinematic variables (the matrix S is

defined in (2.4)), is the form in which the ci were obtained in ref. [10]. In this form the ci are

manifestly the same as those found by Melrose.

The coefficients found by van Neerven and Vermaseren involve the D = 4 Levi-Civita tensor,

and are not manifestly equal to (II.2). Expressed in our notation, they are given by

c1 = −4∆5 − 2
∑4
i=1 vi ·w

w2 − 4∆5M
2
1

, ci+1 = − 2vi ·w
w2 − 4∆5M

2
1

, i = 1, 2, 3, 4. (II.3)

34



Here the “axial vectors” vi are the D = 4 duals of the vectors pi appearing in the momentum-space

version of the pentagon integral

vµ1 ≡ εµp2p3p4 , vµ2 ≡ εp1µp3p4 , vµ3 ≡ εp1p2µp4 , vµ4 ≡ εp1p2p3µ,

pµi ≡
i∑

j=1

kµj , pµ5 = 0,
(II.4)

where εµp2p3p4 is short for εµµ2µ3µ4p
µ2
2 pµ3

3 pµ4
4 , etc. The Gram determinant of the vectors pi is

∆5 ≡ εp1p2p3p4εp1p2p3p4 , and wµ is defined by

wµ ≡
4∑
i=1

riv
µ
i , ri ≡ p2

i +M2
1 −M2

i+1, i = 1, 2, 3, 4, (II.5)

where Mi are the masses on the internal lines. The definition of the ci in (II.3) may seem to be

tied to D = 4, because of the presence of the axial vectors. However, the inner products vi · vj can

be eliminated in favor of the inverse of the matrix tij ≡ 2pi · pj , according to

vi · vj = 2∆5 (t−1)ij , i, j = 1, 2, 3, 4. (II.6)

Thus the ci can be written in a D-independent form:

c1 =
−2 + 2

∑4
i,j=1(t−1)ij rj∑4

k,l=1 rk (t−1)kl rl − 2M2
1

,

ci+1 =
−2
∑4
j=1(t−1)ij rj∑4

k,l=1 rk (t−1)kl rl − 2M2
1

, i = 1, 2, 3, 4.

(II.7)

To show that the ci in (II.7) agree with those in (II.2), it suffices to show that they obey
5∑
j=1

Sijcj = 1, i = 1, . . . , 5, (II.8)

since S is generically invertible for n = 5. When internal masses are also present, S is given by

Sij = 1
2
(M2

i +M2
j − (pi−1 − pj−1)2) = 1

2
(2M2

1 − ri−1 − rj−1 + ti−1,j−1) , (II.9)

and rj−1 = ti−1,j−1 = 0 for j = 1, so that
5∑
j=1

Sijcj =
1
2

(2M2
1 − ri−1)

( 5∑
j=1

cj

)
+

1
2

4∑
j=1

(−rj + ti−1,j)cj+1) . (II.10)

Plugging in the values of ci from equation (II.7), we get
5∑
j=1

Sijcj =

(
−2M2

1 + ri−1

)
+
(∑4

j,k=1 rj (t−1)jk rk − ri−1

)∑4
k,l=1 rk (t−1)kl rl − 2M2

1

= 1, (II.11)

as required.

In the same fashion, an equation obtained by van Neerven and Vermaseren, relating hexagon

integrals to pentagon integrals, can be shown to be equivalent to equation (3.23) for n = 6 (and

D = 4 external kinematics).
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Appendix III. Proof That ID=6
5 Drops Out

An explanation of why an explicit computation of ID=6
5 is not needed for the evaluation of

pentagon integrals near D = 4 comes from the momentum-space representation of tensor integrals;

when performing a Passarino-Veltman decomposition ID=6
5 never appears [23] and therefore it

can be expected to cancel from amplitudes evaluated using the Feynman parameter techniques

discussed in this paper. In this appendix, we will demonstrate that ID=6
5 cancels when summing

over contributions which reconstruct the loop momentum integrals appearing in dimensionally-

regulated four-dimensional field theory amplitudes. Thus, there is no need to explicitly evaluate

ID=6
5 . (In this appendix we treat ID=6

5 as equivalent to ID=6−2ε
5 ; since ID=6

5 is completely finite

the difference between the two is of O(ε).) The argument holds for general kinematics (arbitrary

external or internal masses), though here we suppress internal masses.

Define the general pentagon integral by

I5[P (pµ)] ≡i (4π)2−ε4!
∫

d4−2εp

(2π)4−2ε

∫
d5ai

δ
(
1−

∑
ai
)
P (pµ)(

a1p2 + a2(p− p1)2 + a3(p− p2)2 + a4(p− p3)2 + a5(p− p4)2
)5

(III.1)

where pi ≡
∑i
j=1 kj and P (pµ) is some polynomial in the loop momentum pµ. The normalization

factor in front ensures that the integral, when Feynman-parameterized, is normalized in the same

way as the integrals I5[P (ai)] defined in section 2.

In order to relate the integral (III.1) to Feynman-parametrized integrals of the form (2.5), we

complete the square and integrate out the loop momentum in the usual fashion. To complete the

square in the denominator, we shift the loop-momentum variables to

p = q +
4∑
i=1

ai+1pi . (III.2)

Integrating out the loop momentum, for up to three powers of loop momentum in the numerator,

then gives

I5[pµ] =
4∑
i=1

I5[ai+1] pµi ,

I5[pµpν ] = −1
2
ID=6
5 [1] δµν

[4−2ε]
+

4∑
i,j=1

pµi p
ν
j I5[ai+1aj+1] ,

I5[pµpνpρ] = −1
2

(
δµν[4−2ε]

∑
i

pρi I
D=6
5 [ai+1] + δµρ[4−2ε]

∑
i

pνi I
D=6
5 [ai+1] + δνρ[4−2ε]

∑
i

pµi I
D=6
5 [ai+1]

)
+
∑
ijk

pµi p
ν
j p
ρ
kI5[ai+1aj+1ak+1] .

(III.3)
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Here we will explicitly consider only up to three loop momenta; the other cases follow similarly.

For the case with one loop momentum inserted, since the explicit value for I5[ai+1] given in

equation (6.13) does not contain ID=6
5 , there is nothing to check. Beyond this, we have from

section 6 that the coefficient of ID=6
5 in the explicit value for I5[a1 · · ·ak] is given by

ci1i2···im =
(−1)m∆̂1/2

5

2N5 (m− 2)!
αi1αi2 · · ·αim

∂m∆̂1/2
5

∂αi1∂αi2 · · ·∂αim
(m ≥ 2), (III.4)

so that for m = 2, 3,

cij =
αiαj

2N5 ∆̂5

[
ηij ∆̂5 − γiγj

]
,

cijk =
αiαjαk

2N5 ∆̂2
5

[
(ηij γk + ηjk γi + ηki γj)∆̂5 − 3 γiγjγk

]
,

(III.5)

where γi and ηij are defined in equations (3.8) and (3.10).

The identity that we will use to show that ID=6
5 cancels is

cij =
αiαj

2N5 ∆̂5

(
ηij ∆̂5 − γiγj

)
= (t−1)i−1,j−1 , i, j = 2, 3, 4, 5, (III.6)

where tij = 2pi · pj . To verify the identity, we multiply it on the right by tj−1,k−1 , which can be

written [10] in terms of the matrix ρ = Nnη
−1 using

pi−1 · pj−1 =
ρij
αiαj

− ρi1
αiα1

− ρ1j

α1αj
+
ρ11

α2
1

, i, j = 2, 3, . . . , n. (III.7)

Thus we have (using the equations (3.9)–(3.13) that relate ρ, η, γi and αi)

5∑
j=2

cijtj−1,k−1 =
5∑
j=1

αiαj

N5 ∆̂5

(
ηij∆̂5 − γiγj

)( ρjk
αjαk

− ρj1
αjα1

− ρ1k

α1αk
+
ρ11

α2
1

)
= δik, i, k = 2, 3, 4, 5.

(III.8)

Equation (III.6) implies that

4∑
i,j=1

pµi p
ν
j ci+1,j+1 =

4∑
i,j=1

pµi p
ν
j (t−1)i,j =

1
2
δµν[4] , (III.9)

since the four vectors pµi span D = 4 Minkowski space.

Using this identity and keeping only the ID=6
5 content we then have

I5[pµpν ] = −1
2
ID=6
5 [1] δµν[4−2ε] +

4∑
i,j=1

pµi p
ν
j ci+1,j+1I

D=6
5 [1] + boxes

= −1
2
δ[−2ε]I

D=6
5 [1] + boxes +O(ε)

= boxes +O(ε),

(III.10)
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so that ID=6
5 drops out as claimed. To arrive at the last line, we used the finiteness of ID=6

5 and

that δµν[−2ε] can yield only O(ε) contributions. This shows that there are no ‘left-over’ pieces of ID=6
5

remaining when all the pieces are combined to form an amplitude derived from a loop momentum

integral with up to two powers of momenta in the numerator.

The three Feynman parameter case is similar. Again applying the identity (III.6) we have

I5(pµpνpρ) = −1
2

(
δµν
[4−2ε]

∑
i

pρi I
D=6
5 [ai+1] + cyclic

)
+
∑
ijk

pµi p
ν
j p
ρ
kcijkI

D=6
5 [1] + boxes

= −1
2

(
δµν[−2ε]

∑
i

pρi
αi+1γi+1

∆̂5

ID=6
5 [1] + cyclic

)
+ boxes +O(ε)

= boxes +O(ε),

(III.11)

where we used

cijk =
αkγk

∆̂5

cij + cyclic (III.12)

and

ID=6
5 [ai] =

αiγi

∆̂5

ID=6
5 [1] + boxes, (III.13)

from equation (6.11).

It is straightforward to continue in this way, demonstrating that ID=6
5 drops out from the loop

momentum integrals encountered in relativistic field theories. For gauge theories, up to five factors

of the loop momentum in the numerator can appear.

Appendix IV. Constants of Integration for Box Integrals

In this appendix we evaluate the constant of integration for the box with two adjacent massive

legs, or with three massive legs, by performing the integral at the point where all the αi are equal.

The constant of integration for the adjacent two-mass box is a special case of that for the three-mass

box, with λ = 0. We have

Î0 ≡ Î3m
4 (αi = 1, λ) = Γ(2 + ε)

∫
d4ui

δ
(
1−

∑
ui
)[

(u1 + λu2)u3 + u4(1− u4)
]2+ε . (IV.1)

We let

u1 = z(1− y), u2 = (1− z)(1− y), u3 = y(1− x), u4 = xy. (IV.2)

The z integral is elementary and leads to

Î0 = −Γ(1 + ε)
1− λ

∫ 1

0

dx

∫ 1

0

dy
y−1−ε

1− x

{[
(1−x)(1−y)+x(1−xy)

]−1−ε−
[
λ(1−x)(1−y)+x(1−xy)

]−1−ε
}
.

(IV.3)

38



The y integral can be done in terms of hypergeometric functions,

Î0 =
Γ(1 + ε)
ε (1− λ)

∫ 1

0

dx

1− x

{
2F1(1 + ε,−ε; 1− ε; 1− x+ x2)

−
(
x+ λ(1− x)

)−1−ε
2F1

(
1 + ε,−ε; 1− ε; λ(1− x) + x2

λ(1− x) + x

)}
.

(IV.4)

For λ 6= 0, the integrand has no singularities as ε → 0, so we may expand it in ε; the

hypergeometric functions have the following expansion for small ε,

2F1(1 + ε,−ε; 1− ε; v) = 1 + ε ln(1− v) + ε2
[
−2 Li2(v)− 1

2
ln2(1− v)

]
+ O(ε3) (IV.5)

(we only need the first two terms here), which leads to

Î0 = rΓ

∫ 1

0

dx

[−1
ε
− lnx− ln(1− x) + 2 ln(λ+ (1− λ)x)

λ+ (1− λ)x
+

2 ln(λ+ (1− λ)x)
(1− λ)(1− x)

]
=

rΓ

1− λ

{
lnλ
ε

+
∫ 1

λ

du

u

(
− ln(u− λ)− ln(1− u) + 2 lnu+ 2 ln(1− λ)

)
+ 2

∫ 1−λ

0

dv

v
ln(1− v)

}

=
rΓ

1− λ

[
lnλ
ε
− 1

2
ln2 λ

]
.

(IV.6)

In the case λ = 0, we add and subtract terms in (IV.4) to obtain

Î0(λ = 0) =
Γ(1 + ε)

ε

∫ 1

0

dx

1− x

{
2F1(1 + ε,−ε; 1− ε; 1− x+ x2)− x−ε 2F1 (1 + ε,−ε; 1− ε; x)

}
− Γ(1 + ε)

ε

∫ 1

0

dx x−1−ε ( 2F1(1 + ε,−ε; 1− ε; x)− 1)− Γ(1 + ε)
ε

∫ 1

0

dx x−1−ε .

(IV.7)

In the first and second integrals, the integrand is again nonsingular everywhere, and we can expand

in ε; the third is elementary:

Î0(λ = 0) = 2 Γ(1 + ε)
∫ 1

0

dx
lnx

1− x − Γ(1 + ε)
∫ 1

0

dx
ln(1− x)

x
+

Γ(1 + ε)
ε2

=
Γ(1 + ε)

ε2

(
1− π2

6
ε2
)

=
rΓ

ε2
,

(IV.8)

so that c0(0) = 0.

Appendix V. The Triangle with Three External Masses

The differential equations approach also provides an easy way to derive a compact expression

for the three-mass triangle integral to all orders in ε. (The integral is in fact finite, so only the
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leading order is needed in practical calculations; but in order to examine explicitly the limit in

which one of the external masses vanishes, it is convenient to have the forms derived here, or ones

equivalent to them [24].)

The three-mass triangle with massless internal lines satisfies the following system of equations

(using N3 = 1):

∂
(

∆̂1/2−ε
3 Î3

)
∂αi

= −1
2 (1− 2ε)∆̂1/2−ε

3

3∑
j=1

(
ηij −

γiγj

∆̂3

)
Î

(j)
2 , (V.1)

where

∆̂3 = −α2
1 − α2

2 − α2
3 + 2α1α2 + 2α2α3 + 2α3α1, (V.2)

so that

γi =
3∑
j=1

αj − 2αi,

∆̂3 = γ1γ2 + γ2γ3 + γ3γ1.

(V.3)

Also, the two-point integrals Î(i)
2 are very simple,

Î
(i)
2 = Γ(ε) (αi+1αi−1)ε−1

∫ 1

0

dx x−ε(1− x)−ε

=
rΓ

ε(1− 2ε)
(αi+1αi−1)ε−1 .

(V.4)

Notice that a function of

δj ≡
γj√
∆̂3

obeys
∂F (δj)
∂αi

= ∆̂−1/2
3

(
ηij −

γiγj

∆̂3

)
F ′(δj), (V.5)

and that

αi+1αi−1 = 1
4
(γi + γi−1)(γi + γi+1) = 1

4
∆̂3 (1 + δ2

i ). (V.6)

Therefore we may solve the differential equations (V.1) by

Î3 = ∆̂−1/2+ε
3 [F (δ1) + F (δ2) + F (δ3) + C] , (V.7)

where F (δ) satisfies

F ′(δ) = −1
2
(1− 2ε) ∆̂1−ε

3

[
rΓ

ε(1− 2ε)
(

1
4

∆̂3 (1 + δ2)
)ε−1

]
= −21−2εrΓ

ε
(1 + δ2)ε−1, (V.8)

and C is a constant of integration.
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We need the integral∫ δ

0

dz (1 + z2)ε−1 =
∫ δ

0

dz (1 + iz)ε−1(1− iz)ε−1

= −i
∫ 1+iδ

1

dw wε−12ε−1(1− w/2)ε−1

= −2ε−1i

ε

[
(1 + iδ)ε 2F1

(
1− ε, ε; 1 + ε;

1 + iδ

2

)
− 2F1

(
1− ε, ε; 1 + ε;

1
2

)]
= −22ε−1i

ε

[(
1 + iδ

1− iδ

)ε
2F1

(
2ε, ε; 1 + ε;−1 + iδ

1− iδ

)
− 2F1 (2ε, ε; 1 + ε;−1)

]

=
4ε−1

ε

1
i

[(
1 + iδ

1− iδ

)ε
2F1

(
2ε, ε; 1 + ε;−1 + iδ

1 − iδ

)

−
(

1− iδ
1 + iδ

)ε
2F1

(
2ε, ε; 1 + ε;−1− iδ

1 + iδ

)]
,

(V.9)

where we have symmetrized the result in the last line. Alternatively, we may do the integral as∫ δ

0

dz (1 + z2)ε−1 =
∫ δ

0

dz
∞∑
m=0

(ε− 1)(ε− 2) · · ·(ε−m)
z2m

m!

=
∞∑
m=0

(ε− 1)(ε− 2) · · ·(ε−m)
δ2m+1

m!(2m+ 1)

= δ
∞∑
m=0

(1− ε)(2− ε) · · ·(m− ε)(1
2
)(3

2
) · · ·(m− 1

2
) (−δ2)m

(3
2
) · · ·(m− 1

2
)(m+ 1

2
) m!

= δ 2F1(1− ε, 1
2 ; 3

2 ;−δ2).

(V.10)

The two expressions for the integral can be related using a variety of hypergeometric identities.

Thus we have

Î3(αi) = −1
2
rΓ

ε2
∆̂−1/2+ε

3

[
f(δ1) + f(δ2) + f(δ3) + c

]
, (V.11)

where

f(δ) = ε 41−ε δ 2F1(1− ε, 1
2 ; 3

2 ;−δ2)

=
1
i

[(
1 + iδ

1− iδ

)ε
2F1

(
2ε, ε; 1 + ε;−1 + iδ

1 − iδ

)
−
(

1− iδ
1 + iδ

)ε
2F1

(
2ε, ε; 1 + ε;−1− iδ

1 + iδ

)]
.

(V.12)

To fix the constant c, it is easiest to consider the integral at the following, somewhat asym-

metric, kinematic point:

s12 =
−1
α3α1

= −1
2
, s23 =

−1
α1α2

= −1
2
, s31 =

−1
α2α3

= −1, (V.13)
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or

α1 = 2, α2 = α3 = 1; ∆̂3 = 4; δ1 = 0, δ2 = δ3 = 1. (V.14)

At this kinematic point, we make the change of variables

a1 = 1− y, a2 = xy, a3 = (1− x)y, (V.15)

with Jacobian equal to y, and obtain

Î3(2, 1, 1) =
Γ(1 + ε)

2

∫ 1

0

d3ai
δ(1−

∑
ai)

(1
2a3a1 + 1

2a1a2 + a2a3)1+ε

= 2εΓ(1 + ε)
∫ 1

0

dx

∫ 1

0

dy y−ε
[
1− (1− 2x(1− x))y

]−1−ε

= 2ε
Γ(1 + ε)

1− ε

∫ 1

0

dx 2F1(1 + ε, 1− ε; 2− ε; 1− 2x(1− x)) .

(V.16)

Next we use the change-of-variables,

x =
1−
√

1− z
2

, z = 4x(1− x), (V.17)

and a hypergeometric identity, to get

Î3(2, 1, 1) = 2ε−1 Γ(1 + ε)
1− ε

∫ 1

0

dz (1− z)−1/2

[
Γ(2− ε)Γ(−ε)

Γ(1− 2ε) 1F0(1− ε; z/2)

+
Γ(2− ε)Γ(ε)

Γ(1 + ε)Γ(1− ε) 2ε z−ε 2F1(1, 1− 2ε; 1− ε; z/2)

]

= 2ε−1 Γ(1 + ε)
1− ε

[
2

Γ(2− ε)Γ(−ε)
Γ(1− 2ε) 2F1(1− ε, 1; 3

2 ; 1
2 )

+ 2ε
Γ(2− ε)Γ(ε)Γ(1

2
)

Γ(1 + ε)Γ(3
2
− ε) 2F1(1, 1− 2ε; 3

2 − ε;
1
2)
]
,

(V.18)

We then use the following hypergeometric identities,

2F1(1− ε, 1; 3
2 ; 1

2) = 21−ε
2F1(1− ε, 1

2 ; 3
2 ;−1) ,

2F1(1, 1− 2ε; 3
2 − ε;

1
2) = 2F1(1

2 ,
1
2 − ε;

3
2 − ε; 1) =

Γ(3
2
− ε)Γ(1

2
)

Γ(1− ε) ,
(V.19)

to get

Î3(2, 1, 1) = −2rΓ

ε
2F1(1− ε, 1

2 ; 3
2 ;−1) +

4επΓ(1 + ε)
2ε

. (V.20)

On the other hand, plugging the values of ∆̂3 and δi from (V.14) into equation (V.11), we have

Î3(2, 1, 1) = −4−1/2+εrΓ

2ε2
[
2 ε 41−ε

2F1(1− ε, 1
2
; 3

2
;−1) + c

]
. (V.21)
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Comparing equations (V.20) and (V.21), we find

c = −2πεΓ(1 + ε)
rΓ

= −2π ε
Γ(1− 2ε)
Γ2(1− ε) . (V.22)

Despite its appearance, equation (V.11) does have a finite limit as ε→ 0,

Î3(αi) =
i√
∆̂3

3∑
j=1

[
Li2

(
−
(

1 + iδj
1− iδj

))
− Li2

(
−
(

1− iδj
1 + iδj

))]
+ O(ε), (V.23)

which is the form given in ref. [17].

Appendix VI. Higher-Point Scalar Integrals

In this appendix, we discuss formulæ allowing the evaluation of higher-point scalar integrals

(n > 5), in part to correct some statements we made in a previous paper [10]. The corrected results

will be similar to results obtained previously by Melrose, and by van Neerven and Vermaseren [5,7].

The main difference is that the present results allow for external kinematics in the full 4 − 2ε

dimensions, which is useful for obtaining tensor integrals by the differentiation method discussed

in sections 2, 6, and appendix VII.

We begin by recalling equation (3.23), which we rewrite here in a slightly different form,

În =
n∑
i=1

γi
2Nn

Î
(i)
n−1 + (n− 5 + 2ε)

∆̂n

2Nn
ÎD=6−2ε
n . (VI.1)

For n ≥ 6, in order to use equation (VI.1) to evaluate scalar integrals, it is desirable to take the

external momenta k1, k2, . . . , kn to be restricted to D = 4. The loop momenta have to remain in

D = 4−2ε in order to regulate infrared divergences. In the ’t Hooft-Veltman variant of dimensional

regularization, the external momenta appearing in the one-loop integral in a next-to-leading-order

calculation are indeed taken to be four-dimensional. In the conventional dimensional regularization

scheme, the external momenta are taken to be 4 − 2ε-dimensional, but this will generally lead to

only O(ε) corrections, since the integrals ID=6−2ε
n are finite as ε→ 0 for n ≥ 4.

In reference [10], we argued that the term containing ÎD=6−2ε
n in equation (VI.1) could be

dropped for n ≥ 6, when the external momenta are restricted to D = 4. The argument was based

on the fact that for n ≥ 6 the Gram determinant ∆̂n appearing in equation (VI.1) vanishes for

D = 4 kinematics, due to the linear dependence of the (n−1) vectors k1, k2, . . . , kn−1 [18,25]. If the

ÎD=6−2ε
n term could be dropped, then equation (VI.1) would reduce to a simple recursion relation

expressing the scalar integrals În as a linear combination of the n (n− 1)-point integrals În−1. For

n = 6, the argument does indeed hold, and the scalar hexagon integral is given by

Î6 =
6∑
i=1

γi
2N6

Î
(i)
5 (D = 4 kinematics). (VI.2)
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Unfortunately, for n ≥ 7 the situation is more complicated. It is true that for n ≥ 6 the Gram

determinant ∆̂n vanishes for D = 4 external kinematics. However, for n ≥ 7, the factor of Nn in

the denominator also vanishes. Indeed, Nn is given by Nn = 2n−1 det ρ = 2n−1 (
∏n
i=1 αi)

2 detS,

and the dimension of the null space of the n × n matrix Sij is n − 6 for D = 4 kinematics [5].

Therefore, for n ≥ 7, the coefficients appearing in equation (VI.1) are not well-defined for D = 4

external kinematics (which is where we would like to use the equation).

Notice that both numerator and denominator of the coefficient ratios γi/2Nn and ∆̂n/2Nn

vanish for D = 4 kinematics: The matrices that give rise to ∆̂n and to γi = 1
2
(∂∆̂n/∂αi) have null

spaces of dimension n − 5 and n− 6 respectively. Based on the dimensions of the corresponding

null spaces, we can argue that ∆̂n vanishes “faster” than Nn, and γi vanishes “equally fast”, as

D = 4 kinematics are approached. Thus we might expect that a modification of equation (VI.1)

should exist, which is well-defined for D = 4 kinematics, and for which the coefficient of ÎD=6−2ε
n

vanishes in this limit. In fact, van Neerven and Vermaseren [7] have shown how to obtain such an

equation, which expresses an n-point scalar integral in terms of six (n− 1)-point integrals. (Their

derivation was carried out for D = 4 loop momenta; however it is easy to see that it is equally valid

for D = 4− 2ε loop momenta as well, as long as the external momenta are restricted to D = 4.)

Here we will obtain an equation similar to (VI.1), but where the coefficients have N (k)
n−1 in the

denominator instead of Nn. Since N6 is nonzero for generic D = 4 kinematics, this equation will be

well-defined for the heptagon integral (n = 7) in D = 4. It reduces to the above-mentioned equation

of van Neerven and Vermaseren in D = 4, but it is also well-defined away from D = 4, which makes

it a useful starting point if one wishes to apply the differentiation approach of sections 2 and 6 to

compute tensor integrals. The reason why restricting external kinematics to D = 4 complicates the

differentiation approach is that the αi variables are then subject to various Gram-determinental

constraints [18,25], which would have to be respected in performing the differentiations. After

carrying out the differentiations it is permissible, and usually desirable, to restrict the external

kinematics to D = 4, in order to take advantages of certain simplifications. An example of this

procedure, for the one-parameter heptagon integrals, is provided in the next appendix.

To derive the new scalar equation, we first need some general relations between the quantities

∆̂n, γi and Nn, which are associated with the integral În, and the corresponding quantities ∆̂(k)
n−1,

γ
(k)
i and N

(k)
n−1 associated with the (n − 1)-point “daughter” integral Î(k)

n−1 . As in section 3, we

choose the αi variables for the daughter and parent integrals to be the same. We also take the

kinematics to be general for now, i.e. not restricted to D = 4, so that all quantities are well-defined.

The necessary relations follow from the observation: If A is a symmetric n × n matrix, and B(k)

is the (n− 1)× (n− 1) matrix formed by crossing out the kth row and kth column of A, then the
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inverse of B(k) can be computed as

(
B−1

(k)

)
ij

= A−1
ij −

A−1
ik A

−1
kj

A−1
kk

, i 6= k, j 6= k. (VI.3)

The proof is simply to multiply equation (VI.3) on the left by (B(k))`i = A`i, and simplify. Note

also that
(
B−1

(k)

)
ij

vanishes for either i = k or j = k.

Starting with the expression (3.8) for ∆̂(k)
n−1 in terms of αi and the matrix η(k), and using

equations (3.9) and (3.10), we can rewrite ∆̂(k)
n−1 as

∆̂(k)
n−1 =

∑
i,j 6=k

αiη
(k)
ij αj = αTη(k)α

= γTη−1η(k)η−1γ =
N

(k)
n−1

N2
n

γTρ
(
ρ

(k)
n−1

)−1

ργ

=
N

(k)
n−1

N2
n

n∑
i,j=1

(γTρ)i

(
ρ−1
ij −

ρ−1
ik ρ
−1
kj

ρ−1
kk

)
(ργ)j

=
N

(k)
n−1

N2
n

[
γTργ − γ2

k

ρ−1
kk

]
.

(VI.4)

Using the definitions (3.9) Nn = 2n−1 det ρ, N (k)
n−1 = 2n−2 det ρ(k), and the fact that det ρ(k) =

ρ−1
kk det ρ is the cofactor of the kk element of ρ, we have

ηkk
Nn

= ρ−1
kk =

2N (k)
n−1

Nn
. (VI.5)

Using equations (VI.4), (VI.5) and the relation γTργ = Nn∆̂n which follows from equation (3.11),

we obtain expressions for ∆̂(k)
n−1 and its derivatives with respect to αi:

∆̂(k)
n−1 =

ηkk∆̂n − γ2
k

2Nn
,

γ
(k)
i =

ηkkγi − ηikγk
2Nn

,

η
(k)
ij =

ηkkηij − ηikηkj
2Nn

.

(VI.6)

One can iterate this procedure to get expressions for ∆̂(k,p)
n−2 , etc., if necessary.

Now we proceed to derive the new scalar equation which is of use for n = 7. To do this, we

consider equation (VI.1), and also the one-parameter equation

În[ak] =
n∑
i=1

ηki
2Nn

Î
(i)
n−1 + (n− 5 + 2ε)

γk
2Nn

ÎD=6−2ε
n . (VI.7)
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Multiply equation (VI.7) by γk/ηkk and subtract it from equation (VI.1), to get

În =
n∑
i=1

[
γi

2Nn
− ηikγk
ηkk · 2Nn

]
Î

(i)
n−1 +

γk
ηkk

În[ak] + (n−5+2ε)
[

∆̂n

2Nn
− γ2

k

ηkk · 2Nn

]
ÎD=6−2ε
n . (VI.8)

The coefficients in brackets in equation (VI.8) can now be rewritten in terms of (n− 1)-point

quantities using equations (VI.6). We get

În =
n∑
i=1

γ
(k)
i

2N (k)
n−1

Î
(i)
n−1 +

γk

2N (k)
n−1

În[ak] + (n− 5 + 2ε)
∆̂(k)
n−1

2N (k)
n−1

ÎD=6−2ε
n . (VI.9)

Any value of k = 1, 2, . . . , n may be used in this formula. Note that γ(k)
k = 0, so there are only

n− 1 terms in equation (VI.9).

For n = 7 and (generic) D = 4 kinematics, we have N (k)
6 6= 0, while ∆̂(k)

6 = 0 and γk = 0. So

equation (VI.9) reduces to

Î7 =
7∑
i=1

γ
(k)
i

2N (k)
6

Î
(i)
6 (D = 4 kinematics), (VI.10)

which contains only six hexagons due to the vanishing of γ(k)
k . Indeed, the formula can be shown

to be equivalent to the scalar integral formula of Melrose, and van Neerven and Vermaseren [5,7].

For n > 7, equation (VI.9) is still ill-defined. Presumably one could go on to construct equations

in terms of γ(k,l), ∆̂(k,l)
n−2 , etc. that will be well-defined for n = 8, and so on. This would be useful

for evaluating the corresponding tensor integrals via differentiation.

Appendix VII. Higher-Point Tensor Integrals

In this appendix, we derive formulæ allowing the evaluation of tensor integrals for the pentagon

(n = 5) and hexagon (n = 6) integrals, for arbitrary internal and external masses. We also briefly

discuss tensor heptagon (n = 7) integrals. The situation regarding tensor integrals is similar to

the case of the pentagon discussed in section 6 and appendix III. In order to effectively use the

differentiation approach, one must show two things: First, that the 1/ε pole encountered in the

basic formula (2.20), at the level of n − 3 Feynman parameter insertions in the n-point integral,

does not present any problems; and second, that the “hard” six-dimensional integrals ÎD=6−2ε
n (for

n ≥ 5) always drop out of any “physical” tensor integral, i.e. any integral which is the Feynman-

parametrization of some loop-momentum integral. We discuss these issues here to some extent for

n = 6, 7; presumably both points can be shown to hold for arbitrary n.

For n = 5 and n = 6, the insertion of a single Feynman parameter can be treated using

equation (VI.7). For n = 5, the term containing the D = 6 − 2ε scalar integral ÎD=6−2ε
n is
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O(ε) and can be ignored. For n = 6, this term is O(1), and so we would like to show that

for “physical” one-parameter integrals (linear combinations of the parameters corresponding to

Feynman-parametrization of some loop-momentum integral), and for D = 4 external kinematics,

the integral ÎD=6−2ε
6 drops out. Feynman parametrization of the loop-momentum integral In[pµ]

leads to a linear combination of one-parameter integrals, similar to the first equation in (III.3),

n∑
i=2

pµi−1In[ai] ∝
n∑
i=2

pµi−1αiÎn[ai] . (VII.1)

So we can show that ÎD=6−2ε
6 drops out by showing that

6∑
i=2

pµi−1

αiγi
N6

= 0 (VII.2)

for D = 4 external kinematics. To show that equation (VII.2) holds, it suffices to contract the

equation with a set of vectors pµj−1 that span D = 4 (we can pick any four of j = 2, . . . , 6 for

nonexceptional momentum configurations). We then use equation (III.7) to write pi−1 · pj−1 in

terms of the matrix ρ = N6η
−1, and equation (3.11) to simplify the sum:

6∑
i=2

αiγi
N6

pi−1 · pj−1 =
6∑
i=1

αiγi
N6

(
ρij
αiαj

− ρi1
αiα1

− ρ1j

α1αj
+
ρ11

α2
1

)

=
6∑
i=1

γi
N6

(
ρij
αj
− ρi1
α1

)
+

∆̂6

N6

1
α1

(
−ρ1j

αj
+
ρ11

α1

)

=
∆̂6

N6

1
α1

(
−ρ1j

αj
+
ρ11

α1

)
.

(VII.3)

But ∆̂6 = 0 while N6 6= 0 for D = 4 external kinematics, so ÎD=6−2ε
6 does drop out as desired.

We turn next to the insertion of two Feynman parameters. The first part of the derivation

parallels the derivation of the one-parameter equations (3.4) and (3.16) in section 3. We consider

the integrals

Jn;i[ak] ≡ Γ(n− 3 + ε)
∫ 1

0

dan−1

∫ 1−an−1

0

dan−2 · · ·
∫ 1−a1−a2−···−âi−···−an−1

0

dai

× d

dai

ak[∑n
i,j=1 Sijaiaj

]n−3+ε

∣∣∣∣∣
an=1−a1−a2−···−an−1

,
(VII.4)

evaluated two different ways, to obtain the set of equations

n∑
j=1

(
ρij
αi
− ρnj
αn

)
În[ajak] =

1
2

[
Î

(i)
n−1[ak]
αi

−
Î

(n)
n−1[ak]
αn

]
+

1
2

(
δik
αi
− δnk
αn

)
ÎD=6−2ε
n [1] . (VII.5)
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Solving for În[aiaj ], we get

În[aiaj ] =
1

2Nn

n∑
`=1

(
ηj` −

γjγ`

∆̂n

)
Î

(`)
n−1 [ai] +

γj

∆̂n

În[ai] +
1

2Nn

(
ηij −

γiγj

∆̂n

)
ÎD=6−2ε
n . (VII.6)

We can rewrite the right-hand-side of equation (VII.6) in terms of scalar integrals only, with the

help of equation (3.25):

În[aiaj ] =
1

2Nn

n∑
`=1

(
ηj` −

γjγ`

∆̂n

)
1

2N (`)
n−1

[
n∑
p=1
p 6=`

η
(`)
ip Î

(`,p)
n−2 + (n− 6 + 2ε) γ(`)

i Î
D=6−2ε (`)
n−1

]

+
γj

∆̂n

1
2Nn

[
n∑
`=1

ηi` Î
(`)
n−1 + (n− 5 + 2ε) γi ÎD=6−2ε

n

]

+
1

2Nn

(
ηij −

γiγj

∆̂n

)
ÎD=6−2ε
n .

(VII.7)

In this equation, Î(`,p)
n−2 is the (n− 2)-point scalar integral obtained from Î

(`)
n−1 by eliminating

the p-th propagator. We keep the original kinematic αi-variables defined for În; Î(`,p)
n−2 will be

independent of α` and αp. The other quantities — N
(`)
n−1, ∆̂(`)

n−1 and its derivatives — refer to

the normalization, rescaled Gram determinant, and so on, associated with Î(`)
n−1. We can eliminate

Î
(`)
n−1 from equation (VII.7) in favor of Î(`,p)

n−2 and Î
(`) D=6−2ε
n−1 , and use equations (VI.6) to simplify

things. We get finally

În[aiaj ] =
ηij∆̂n + (n− 6 + 2ε)γiγj

2Nn∆̂n

ÎD=6−2ε
n

+
n− 6 + 2ε

4N2
n

n∑
`=1

[
ηi`γj + ηj`γi −

ηi`ηj`γ`
η``

− γiγjγ`

∆̂n

]
Î
D=6−2ε (`)
n−1

+
1

4N2
n

n∑
`,p=1

[
ηipηj`η`` − ηi`ηj`η`p

η``

]
Î

(`,p)
n−2 .

(VII.8)

This formula merits several comments:

1 ) The expression Î(`,p)
n−2 has no meaning for ` = p; however, ` 6= p is enforced automatically by

the prefactor.

2 ) For n = 5, and all-massless kinematics, this equation reduces to equation (6.16); notice that

η`` = 1 in this case, and that we wrote out the În−2 terms — in this case triangles — more

explicitly there.

3 ) For n = 5 and general kinematics, we now have Î5[aiaj ] to O(1), which means that we have

surmounted the “1/ε barrier” for the pentagon. That is, insertions of more than two Feynman
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parameters can be obtained using just the differentiation formula (2.20), and equation (VII.8)

evaluated to O(1). The argument in appendix (III) for the cancellation of ÎD=6−2ε
5 from

physical quantities works for general kinematics too.

4 ) For n = 6, we will have surmounted the “1/ε barrier” if we can produce Î6[aiajak] to O(1),

or alternatively the derivative ∂/∂αk of equation (VII.8) to O(ε). The Î(`,p)
n−2 term presents no

problem, because we can easily compute the first derivatives of box integrals to O(ε), using

equation (3.17) with n = 4. The ÎD=6−2ε (`)
n−1 term also presents no problem, due to the manifest

ε prefactor for n = 6. Finally, the ÎD=6−2ε
n term works out as well: the γiγj term has a manifest

ε, and the ηij term requires us to know the first derivatives of ÎD=6−2ε
6 to O(ε); which we can

again compute using equation (3.17), this time with n = 6 and ε → ε − 1, in terms of the

integrals ÎD=6−2ε (`)
5 and ÎD=6−2ε

6 through O(1).

There is one last step to surmounting the “1/ε barrier” for the hexagon, which is showing that

ÎD=6−2ε
6 and ÎD=6−2ε (`)

5 drop out of “physical” quantities. Before looking at the three-parameter

expression, let’s look at the two-parameter expression (VII.8) again and see how how ÎD=6−2ε
6 drops

out of Feynman-parametrized loop integrals. Feynman parametrization of the integral In[pµpν]

leads to

−1
2
δµν[4−2ε]I

D=6−2ε
n [1] +

n∑
i,j=2

pµi−1p
ν
j−1In[aiaj ] , (VII.9)

which means that we want to show that

6∑
i,j=2

pµi−1p
ν
j−1

[
ηij

2N6
+
εγiγj

N6∆̂6

]
αiαj =

1
2
δµν
[4]

+O(ε). (VII.10)

Because of the factor of ∆̂6 in the denominator, we should really be slightly more careful about

how we go to “D = 4 kinematics”, than in the one-parameter discussion above. We choose four of

the vectors pµi−1 to lie in D = 4 and therefore to span D = 4; we will permit the remaining two

vectors to have components in the [−2ε] directions, and we will only take ε → 0 at the end. In

order to prove that equation (VII.10) holds, it suffices to contract it with pµi′−1p
ν
j′−1, where i′ and

j ′ each run over the set of four vectors spanning D = 4. (In the expression (VII.9) we can consider

µ and ν to belong to D = 4, not [−2ε], since we intend to contract the result with D = 4 vectors.)

The derivation of equation (VII.3) continues to be valid, since we are taking pj−1 to be one of the

momenta that lie in D = 4. Thus each factor of γi in (VII.10) will end up with a factor of ∆̂6, and

the γiγj term in the equation drops out in the limit ε→ 0. The ηij term has a smooth limit; using

equation (III.7) it is easy to show that it gives the desired result, 1
2
pi′−1 · pj′−1.

We now sketch how ÎD=6−2ε
6 drops out of the integral I6[pµpνpλ], which after Feynman-
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parametrization becomes
6∑

i,j,k=2

pµi−1p
ν
j−1p

λ
k−1I6[aiajak]− 1

2

(
δµν
[4−2ε]

6∑
k=2

pλk−1I
D=6−2ε
6 [ak] + cyclic

)
. (VII.11)

In order that the coefficient of ÎD=6−2ε
6 vanishes from the combination (VII.11) we find, after

differentiating (VII.8), that we must have

6∑
i,j,k=2

pµi−1p
ν
j−1p

λ
k−1

(
ηijγk + ηikγj + ηjkγi

2N6∆̂6

)
αiαjαk =

1
2
δµν
[4]

6∑
k=2

pλk−1

(
γk

∆̂6

)
αk + cyclic.

(VII.12)

We have already dropped terms with more γi’s in their numerators than ∆̂6’s in their denomina-

tors, which will vanish in the D = 4 limit, following the same logic used earlier. If we now use

equation (VII.10), and again drop terms vanishing in the D = 4 limit, then we can see that equa-

tion (VII.12) is indeed true, and so ÎD=6−2ε
6 drops out of a momentum-space integral with three

loop-momentum insertions. Similar considerations apply to ÎD=6−2ε (`)
5 .

For the case of heptagon (n = 7) tensor integrals, here we will be content to obtain a well-

defined one-parameter equation. By similar manipulations to those giving equation (VI.9), we can

get the one-parameter equation,

În[ai]−
ηik
ηkk

În[ak] =
n∑
j=1

η
(k)
ij

2N (k)
n−1

Î
(j)
n−1 + (n− 5 + 2ε)

γ
(k)
i

2N (k)
n−1

ÎD=6−2ε
n . (VII.13)

This equation is not adequate as it stands, since În[ai] appears twice; however, by differentiating

equation (VI.9) with respect to αi, we get a second one-parameter equation,

În[ai] =
1

n− 4 + 2ε
∂În
∂αi

=
1

n− 4 + 2ε

[
n∑
j=1

(
η

(k)
ij

2N (k)
n−1

Î
(j)
n−1 +

γ
(k)
j

2N (k)
n−1

∂Î
(j)
n−1

∂αi

)
+

ηik

2N (k)
n−1

În[ak]

+ (n− 5 + 2ε)

(
2γ(k)
i

2N (k)
n−1

ÎD=6−2ε
n +

∆̂(k)
n−1

2N (k)
n−1

∂ÎD=6−2ε
n

∂αi

)]
.

(VII.14)

Solving the two equations (VII.13) and (VII.14) for În[ai], we get

În[ai] =
n∑
j=1

γ
(k)
j

2N (k)
n−1

Î
(j)
n−1[ai] +

γ
(k)
i

2N (k)
n−1

ÎD=6−2ε
n +

∆̂(k)
n−1

2N (k)
n−1

∂ÎD=6−2ε
n

∂αi
. (VII.15)

For n = 7 and D = 4 kinematics, we have ∆̂(k)
6 = 0 while N (k)

6 6= 0, so we can drop the last

term, to get:

Î7[ai] =
7∑
j=1

γ
(k)
j

2N (k)
6

Î
(j)
6 [ai] +

γ
(k)
i

2N (k)
6

ÎD=6−2ε
7 (D = 4 kinematics). (VII.16)
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As with the scalar heptagon equation (VI.10), in this equation any value of k, k = 1, . . . , 7, may

be chosen. In using equation (VII.16), we would like to know that ÎD=6−2ε
7 drops out of “physical”

quantities. This amounts to showing that

7∑
i=2

pµi−1

αiγ
(k)
i

2N (k)
6

= 0, (VII.17)

for D = 4 external kinematics. To show that equation (VII.17) holds, we contract it with four

independent vectors spanning D = 4 Minkowski space, namely pµj−1 for j ∈ {2, . . . , n}, j 6= k. We

thus have to show
7∑
i=2
i6=k

αiγ
(k)
i

2N (k)
6

pi−1 · pj−1 = 0. (VII.18)

But this is the same sum encountered in showing that Î(k) D=6−2ε
6 drops out of “physical” linear

combinations of Î(k)
6 [ai], which we have already shown above.

Finally, the linear combinations of Î(j)
6 [ai] that appear explicitly in equation (VII.16), namely∑7

i=2 p
µ
i−1 αi ai, are also the same as those occurring in “physical” one parameter hexagon integrals

(using Î(j)
6 [aj ] = 0). So Î(j) D=6−2ε

6 drops out there too. Therefore “physical” combinations of Î7[ai]

in equation (VII.16) are given in terms of well-defined, D = 4 quantities, as desired.

To get heptagon integrals with two or more Feynman parameters inserted, one can differentiate

equation (VII.15) with respect to the αi, and then take the limit of D = 4 kinematics; it remains

to show that the unwanted six-dimensional integrals drop out for “physical” quantities.
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Figure Captions

Fig. 1: A schematic depiction of equation (3.24), with the coefficients suppressed.

Fig. 2: A diagram containing a triangle loop with one massive (or off-shell) leg.

Fig. 3: A diagram containing a box loop with one massive leg.
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