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ABSTRACT 

This paper discusses various aspects of multibunch motion 
in the- presence of nearest neighbor wakefield coupling. 
Included are the solution to the problem for smooth 
focusing with equal bunch energies, an explanation for the 
apparent &mping of the bunch amplitudes that is observed 
for weak coupling, and a treatment of the problem for 
discrete focusing based on the moments of the wakefield 
distributions in the structures. 

l- INTRODUCTION _- 
Many of the designs being considered for the next 
generation linear collider use multiple bunch operation to 
achieve the desired luminosity. One limitation in this 
approach comes from the coupling of the motion of the 
bunches due to the long-range transverse wakefields 
generated in the accelerator structures of the linac. If not 
controlled, these wakefields will produce a large growth in 
the transverse-motion of the bunches that degrades the 
luminosity [l-l. Qne means of reducing this growth is by 
detuning the dipole modes in the cells of the structures so 
that the sum of the wakefields generated in each structure 
decohere. At SLAC, for example, the X-band structures 
being developed for the Next Linear Collider (NLC) will 
have a 10% Gaussian detuning of the cells to reduce the 
wakefield sum by two orders of magnitude at the 
downstream bunch locations [2]. The frequency spread that 
can be accommodated for such detuning is usually limited, 
so the decoherence time is generally comparable to the 
bunch separation time. Hence the nearest downstream 
.bunch is likely to experience the largest wakefield kick. If 
damping is used to suppress the dipoles modes, the 
neighboring bunch is also likely to receive the largest kick. 
In these cases it may be a good approximation when 
treating the problem of multibunch motion to consider only 
the nearest neighbor coupling, that is, the effect of the 
wakefield generated by each bunch on only its immediate 
downstream neighbor. In the following sections, we 
examine some of the characteristics of multibunch motion 
with this type of coupling. 

2 MUTIBUNCH MOTION WITH SMOOTH FOCUSING 

To formulate a solution to the multibunch motion problem 
for-ne-arest m@.hbor coupling, we first need to define the 
linac configu&ion ahd the dynamics. To simplify the 
problem we assume a constant acceleration gradient linac 
with smooth focusing in which the beta function grows as 
the square. root of the bunch energy. For specific 
applications of the results, we will use the linac parameters 
listed in Table I. For this set, the fractional change in the 

bunch energy on the distance scale of a betatron wavelength 
is small enough that the equations of motion can be reduced 
to a good approximation to those for a zero acceleration 
gradient linac of length 

Using the values in the table, this yields a length of 1.9 km 
compared to the actual linac length of 4.9 km. In this zero 
acceleration gradient linac, it will be assumed that the 
bunch energies are constant and equal. Also, each bunch 
will be treated as a macro-particle of charge It, that has a 
tmnsverse offset of unity at the beginning of the linac. 

Table I. NLC Linac Parameters 

Quantity .. 1 Symbol 1 Value 1 

Charge per bunch 
Initial Beta Function 
Initial Linac Energy 

Final Linac Energy 

Acceleration Gradient 

Ib 

PO 
Eo 

Ef 

&I 

1.10’0 
4m 

16 GeV 

250 GeV 

50 MeVlm 

To represent the bunch-to-bunch coupling, we treat the 
wakefield as being independent of position along the linac 
and characterize its strength by the average of the dipole 
mode wakefields generated by a bunch trajectory with a 
fixed transverse offset in a structure. This representation 
ignores the effect of the variation of the bunch trajectory 
and wakefields within the structure, but is generally a good 
approximation when the betatron wavelength is large 
compared to the structure length (a formalism to include 
these effects is discussed in section 4). With this 
assumption, the bunch interaction can be expressed by 

dei WbbIb - - ~ xi-1 
dz- E-3 (2) 

which relates the angular kick to bunch i per unit length of 
the linac, d&/dz, to the transverse position, xi-i, of the next 
upstream bunch. The coupling coefficient is the wakefield 
strength per unit length at one bunch separation, Wbb, and 
is normalized to the charge of the leading bunch, Ib. 

With this definition of the problem, an exact solution to the 
equations of motion was derived. The transverse position of 
bunch n, x,,, at location z is 

n-l 

X”(Z) = COS(Z&) + C Anj cos(z’BO) (-‘)j’ (3) 
j=l sin(z/p,) (-l)(j-1)n 
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where the upper expression is for j even, and the lower for j 
odd. Also, 

“-j-l j(j+2k-l)! 
An,j = c rk k!(i+k)! ’ (4) 

k=O 

f E WbbPoIb 
2Eo and 

r E Wbb&b 
4Eo . (5) 

Equation 3 shows that the growth of the bunch amplitudes 
is characterized by a power series in fz. Thus to keep the 
increase in the amplitudes small at the end of the linac, one 
WiUlt.3 

fL < 1 or Wbb c 4.2 MeVlm2/1010e (6) 
for our example. In this case, 

r < 1.1 l 10e3 (7) 
so the k=O term dominates in equation 4, and hence .a 

Anj z 1. (8) 
Using this approximation, the results for the first three 
bunches are 

Xl(Z) = COS(Z/Bo) 
X2(z) =. cos(z&) + fz sin(z/po) _. (9) 
X3(z) = .~os(z/po) -+ fz sin(z/Bo) - ; (J-z)2 cos(z/po). 

In studies of the NLC linac performance, the relevant 
quantities are the betatron amplitudes of the bunches at the 
end of the linac. Figure 1 shows these amplitudes for the 
first 6 bunches for four values of fL ranging from .25 to 
1.0. For bunches beyond the sixth, the amplitudes are 
essentially unity. Therefore to limit the amplitude growth to 
below lo%, fL should be less than about 0.5. 
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Figure 1. Amplitude versus bunch number at the end of the 
linac for four values of fL. 

. - 
3 SUPPRES&N OE RESONANT GROWTH 

The results in figure 1 are somewhat surprising in that one 
would naively guess that the effect of bunch 1 on bunch 2 
would be -the same as any other bunch pair, so the 
amplitudes would increase monotonically with bunch 
number. What is observed, however, is an apparent 

2 

damping of the amplitudes after the second bunch. To see 
why this occurs, we first consider the motion of bunch 2 
which we rewrite in the form 

x2 = $i--qF COSFZ - tan -‘cfz)] (10) 
where k=l/po. Since fz = tan -‘cfi) in the regime that we are 
considering, 

xz = 46-j.% cos[(k-f)z] (11) 
so the wakefield coupling effectively lowers the wave 
number of bunch 2 by f. As a consequence, bunch 3 is 
driven off resonance by an amount that essentially cancels 
the “beating” term that arises in such cases. That is, to 
order f, the equation of motion for bunch 3, 

s + kz xg = 2kf cos[(k-f)z] 02) 

has the solution 

x3 = cos[(k-f)z] - (13) 

I sin[&-f/%1 sin[Cf/%l 

which reduces to 

x3 = cos[(k-f)z]. (14) 
Likewise, bunch n, for n > 3, has a similar solution. Thus 
all bunches but the first effectively have an increased 
energy of 

AE/E = 2f/k = 4.2. low3 for fL = 1. (15) 
If the bunch energies vary randomly by amounts of this 
order or larger, one would expect that the apparent damping 
of the amplitudes would not occur. To investigate this, the 
equations for motion for unequal bunch energies were 
solved recursively and the solutions evaluated for different 
sets of Gaussianly distributed energy differences. For rms 
energy spreads in the range of 10-j to 10-2, the computed 
bunch amplitudes appear to vary randomly about unity as a 
function of bunch number. The size of this variation scales 
with fL, and is of the order of the increase in amplitude of 
bunch 2 in figure 1. For the NLC, where the energy spread 
tolerance on the bunches is a few parts in a thousand, the 
variation of the amplitudes will likely be somewhere 
between the “damped” and the “random” case since some 
of the energy variation will bc correlated. 

4 TWO BUNCH MOTION IN A FODO ARRAY 

In defining the coupled motion problem in section 2, we 
ignored the effect of the variation of the wakefields and the 
bunch trajectories in the structures. A formalism to account 
for these effects readily follows from the treatment of the 
multibunch motion problem in linac FODO arrays where 
the trajectories are essentially straight lines through the 
structures. Such trajectories simplify the integration of the 
wakefield kicks along the structure and lead to a char- 
acterization of the wakefields in terms of the moments of 
their distribution. Assuming exact linear trajectories for the 
purpose of computing the driving terms in the equations of 
motion is generally a good approximation since the 



trajectory deviations due to intra-bunch transverse wake- 
fields, acceleration and beam loading are usually small 
relative to the unperturbed bctatron motion. 

To formulate this approach, we first consider the simple 
case of only two bunches traversing a single unpowered 
structure of half-length Lh. In the approximation that the 
first bunch follows a straight line trajectory, its net effect 
on the trajectory of the second bunch can be written 

(16) 

where. AX and ~8 are the effective change in the position and 
angle of the second bunch at the center of the structure, and 
x and 8 atk?.he position and angle of the first bunch at this 
same location. The Mi’s are the moments of the wakefield 
distribution and are defined for an uncoupled oscillator 
model of a structure as 

_- (17) 

where sm is the longitudinal position of cell m relative to 
the center of the structure, o, is the dipole mode frequency 
of ceil m, and 1, is the bunch separation. In this model, the __ 
N cells of a-structure are treated as independent single 
mode oscillators whose excitation strength is proportional 
to the transverse offset of the bunch trajectory at the center 
of the cell [2). For simplicity, we ignore the effect of the 
Q’s of the modes and-assume that the wakefield strength, 
WO, which is normalized to the length of the structure, is 
the same for all cells. With these definitions, the moment 
MO is the function that one usually tries to minimize by 
detuning the cells. It is related to Wbb in the smooth 
focusing example by 

MO = 2 Lh Wbb. (18) 
The additional moments, Ml and M2, result from the 
distribution of the wakefields over a finite length. This 
distribution can lead to a change in the trajectory of the 
second bunch even if the first bunch has an average offset 
of zero through the structure. 

For a given linac configuration, the equations of motion can 
bc solved using the representation of the bunch coupling in 
equation 16. For the two bunch example, we are interested 
in the size of the betatron amplitude induced in the second 
bunch- from its coupling to bctatron motion of the first 
bunch. For the simple linac configuration of a zero 
acceleration gradient linac with a single structure between 
each quadrupole, the calculation yields an expression for 
the induced amplitude that is independent of Ml if the 
bunches travel an integral number of FODO cells in which 
the net b&&on phase advance is an integral multiple of II. 
The cancella@n of the contribution from Ml is related to 
the symmetry of the FODO cells and also occurs to a large 
degree if the bunches are accelerated. Thus for linacs with 
many FODO cells, this moment of the wakefields can 
generally be ignored. In contrast, the M2 contribution from 
groups of cells having A phase advance is additive in a 

constant energy linac, and so it increases linearly with 
distance as does the contribution from MO. 

As a specific example of the induced motion, we consider 
the linac configuration in which the bunch energy increases 
linearly with distance, and the beta function and quadrupole 
spacing increase as the square root of the bunch energy. We 
assume that the same type of structure is used throughout 
the linac, and that the structures fill the entire the space 
between quadrupoles starting initially with a single 
structure. This requires an approximation of fractional 
structures since the quadrupole spacing is generally not an 
integral number of structure lengths. For this configuration, 
the induced amplitude, A, of the second bunch at the end of 
the linac, per unit amplitude of the first bunch, is to a good 
approximation, 

A _ MoN,PcIb 
2J30 

1 + g 3 + g[g- +zf] (19) 

where 
sin2(+/2) 

g = l+cos2(i$/2) * (20) 

Here t$ is the phase advance per FODO cell, PC is the beta 
function at the midpoint between the first two quadrupoles, 
and N, is number of quadrupoles which equals L/(2Lh). 

The expression for A shows that with acceleration, the 
relative contribution of Mz scales as dE,/Er. This is 
actually due to the increase of the betatron wavelength as 
the energy increases. The relative size of Mz and MO 
depends on the detuning parameters and the bunch 
separation. For the parameter ranges being considered for 
the NLC, the M2/Mo amplitude ratio computed in the 
uncoupled oscillator model is generally of order unity at 
distances of many bunch spacings, but can be as large as 20 
at the nearest bunch location. For this worst case with 
0 = 90’ and the energy values listed in table I, A is 2.5 
times larger than in the short structure limit (Lh + 0 with 
constant quadrupole spacing) where M2/Mo = l/3. Thus it is 
important to also consider the size of Mz when choosing the 
detuning parameters. As a final comment, we note that the 
induced amplitude in bunch 2 in the short structure limit is 
equal to the result from the smooth focusing example in 
section 2 when 

PO = PC (1 + $93). (21j 
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