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1. Introduction

If positrons and electrons can be made circularly polarized and ren-
dered to collide head on, interesting physics can be learned. Most spectacular
would be observation of the nonzero annihilation cross section when the he-
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a spi
+-~  spin 2 particle coupled to the electron. Also in the interaction ete™ — 7+7~,
7% can be made highly polarized; this will give us a handle to decide whether
7 is coupled to the right-handed W and the charged Higgs particle in addi-
tion to the standard left-handed W. Polarized 7% can also be used to test

the CP violation in the 7 decay.

In this p.:;Lper we want to accomplish two goals. The first goal is to

-. -investigate the properties of the two reactions mentioned in the title!'2. The
- sécohd is to consider the merits of using these two reactions as sources of
polarized v, et and e~ beams. For the near term future, the best source of
polarized e* beams will most likely be ordinary pair production of e* using

the polarized photon from the first reaction. The reason is that for regular

- pair préductio’n, y+Z —ete” +Z+- -, the threshold energy is only a few
MeV and thus even a 20 MeV photon is sufficient to produce almost 100%

polarized e* beams.

In contrast to this, the pair production using the second reaction
requires a free electron laser (with photon energy > 15 eV) and a backward-
scattered high energy v of several tens of GeV. The advantage of the latter is

o that the transverse momentum of P, of e* is much smaller than m, whereas
in ordinary pair production P, is caused mainly by the Coulomb multiple

scatterings of e* in the target, which is given roughly by 14 MeV /f where
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t is the path length of e* in the target in units of radiation length of the
target material. The transverse momentum P,, as well as the spread of
the longitudinal momentum AP, of e* beam, can be greatly reduced by the
cooling rings, so it is not obvious that the srﬁallness of P, for e* produced by
laser + v — e*e™ has such a crucial advantage. Obviously, further detailed

engineering studies must be carried out.

When the intensity of the laser beam becomes very high, the coherence
of laser photons becomes important [2,3]. In fact if the intensity becomes so

high that the dimensionless parameter (see Appendix A)

. 2 -27
62 =471 (_a_) =n, 271 x 10 ’ (11)

m w; (eV)
~ where n., = number of photons /cm?® in the laser beam, w; = laser photon
’ 'rv"ér;e'rgy in eV, 'azamplitude for the vector potential in radiation gauge, be-
comes comparable to one, then our treatment of the problem breaks down,
because we assumed the convergence of a series expansion in £2. The cross
section is the sum of cross sections, Y o, each of which is produced by s
coherent incident photons. Roughly speaking the o is proportional to £%.

" Thus when % ~ 1, 01, 0,,03,04 - - have almost the same magnitudes.

We follow the work of D. M. Volkov-[1], who obtained the solution
to the Dirac equation in the plane electromagnetic field in 1935, long before
the invention of laser. Obviously, in order to apply his formalism to the laser
photon-electron interaction, the laser beam must have a larger dimension
than that of the electron beam, and the laser photon wave length must be

. %'-:,.;ShQI‘-'t compared with the intersecting length of the electron beam inside the
laser beam, in order to take the time-averaged value of electron momentum

in the laser field; such as is done in Eq. (40.14) of Ref. [1].
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For production of polari.zed ~ and e* beams, the coherence effects of
the laser beam [i.e., cross sections with s>2 in Egs. (2.11) and (3.1)] have
many undesirable effects. Roughly speaking, the high-energy tips (within
20 ~ 30% from the very tip) of the spectfa, of both reactions have charac-
teristics of high intensity and high polarization. The locations of the tips
of the spectrum differ for each s as given by Eq. (2.34) for the reaction
sky + 271 — ko + p, and Eq. (3.30) for the reaction sky + k; — p; + po-
The tip of the spectrum for the s = 1 case is the most important energy, but
this point is somewhat below the energy tips for cross sections with s > 2.

Thus the contributions from s>2 do not have good polarization character-

- istics near the tip of the spectrum for the s = 1 case for both reactions.

- When the center-of-mass energies are high compared with the mass of the

"~ electron [see Egs. (2.34) and (3.30)] umax approaches unity for all s’s for both

reactions, and the objectionable features of higher s contributions disappear.
For low energies (i.e., when the center-of-mass energy is not relativistic), one
should keep £ < 0.5 and increase the laser pulse length in order to maintain

-good polarization and good intensity.

In Sec. 2 we treat the differential cross section and the polarization
of the scattered photon k, for arbitrarily polarized k; and p, in the reaction
laser (sky) + p1 — k2 + p2. Measurement of the electron polarization using

polarized laser beams is discussed.

In Sec. 3 we treat the differential cross section and the polarization

of e* from arbitrarily polarized k; and k, in the reaction laser (sk;) + k; —

e*(p) + e (p2)-



In Sec. 4 we treat the energy distribution and the polarization of e*

from an arbitrarily polarized (circular) photon in the reaction
k+Z —sete +---,

where Z is an atomic target (numerical examples given are for tungsten).

In Sec. 5 we summarize and discuss our results.

2. Laser-electron interactions.

We follow closely the work of Volkov, as given in Ref. [1]. In this

section, we treat the interaction sky + py — ky + po (see Fig. 1).

Each electron and photon caﬁ have two helicity states, and thus there

are 'éltogether sixteen helicity amplitudes for each s. Let us denote each
"-;.fof this 'amplitﬁde by A aasa, Where Aj, Ao, Az, and Ay are helicities of the
incident photon, the outgoing photon, the outgoing electron, and the incident
electron respectively. For example, Aspnnp means A; is positive, Ag is negative,

A3 is negative and A4 is positive. Because of the parity conservation, we have
Aaxiaorsrs = As—2y=2p,—2a,—A; thus we need to calculate only eight helicity

amplitudes, which we chose to be:
Asnnnn 9 Asnnnp P Asnnpn 5 Asnnpp s
Asnpnn ) Asnpnp 9 Asnppn y Asnppp .

Our calculational strategy is the following: we choose the center-of-

mass system to obtain expressions for Asy,x,2,2, and then evaluate these

expressions in the coordinate system where the experiment is carried out. In

the center-of-mass system, the expressions for Ay, 1,5, 's are the simplest.
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The center-of-mass system we have used differs somewhat from the usual
one, because of the presence of a laser field in which electrons not only
acquire additional momentum in the direction of the laser beam but also an
additional mass due to its helical motion ih the laser field. Let us denote the
four momenta of the laser photon, the outgoing photon, the incident electron,
and the outgoing electron by k,, k, p1, and p, respectively. Let ¢; and ¢, be

the qﬁasi—four momenta of p; and p, electrons inside the laser field:

€2m2

= =k 2.1

Q P+ 2y o 1, (2.1)
52 2

= k 2.2

92 P2 ‘+ 357 Fr 1, (2.2)

~where £? is the dimensionless parameter representing the intensity of the laser

 defined in Appendix A.

From (2.1) and (2.2), we obtain the quasi-mass of the electrons in the

laser field

w2
n=g=m(1+)=m".

The energy momentum conservation is

sk1+ q = ky+ g2 (2.3)
or
(s~mk+p=k+p (2.4)
where
2,2
n=tD (pz%kl_pl%h) . (2.5)

Our center-of-mass system is defined by

(s—mh+p=k+p=0.



In this system, the four vectors ki, k2, p1 and p, have the following compo-

nents (see Fig 2)

ky = ( P_ 0,0 -2 ) (2.6a)

s—n s—n
k; = (p, psinb, 0, pcos¥b) , (2.6b)
P = (6, Oa 07 “P) ) (26C)
p2 = (e, —psiné, 0, —pcos¥) . (2.6d)

Since k, depends upon 7 in the coordinate system, we can substitute the

expression for k; given above into Eq. (2.5) and solve for . We obtain:

S
1+¢’

s§—n=

(2.7)

: rwith? =£2m?/2 x (1 - z)/[(e + p)(e + pz)] and @ = cosb.

A tremendous number of cancellations occur in the course of calcula-
tion. Since p and e are related by €2 = p? + m?, the final expression cannot
be unique if we treat e and p as independent variables. This is remedied by

using the variable y = (e + p)/m. In terms of y, we have

_my*+1) A
e = % \ (2.8)
_ m(y?-1)
p —_— T . (2-9)

We used the commercially available computer program [4] called MAPLE to
obtain all our analytical expressions, as well as the numerical results. The
helicity amplitudes were obtained by explicitly writing down spinors u, v

as 4 x 1 arrays, 4 and v as 1 x 4 arrays, and by using explicit representa-

N s
tions for all 4 matrices. MAPLE handled all the matrix multiplications and

- simplifications (see Appendix B).



Let the vector potential representing the laser field be
A =3a,cos® + d,sin @, (2.10)
where ® = k; -z = [p/(s — )] (t — 2). For A; = positive, we have
d, =aé, and d; =aé,,
and for A; = negative, we have
d =aé, and d; = —aé,,

where a is defined by Eq. (1.1).

The matrix element for laser photon-electron scattering—see Eq. (101.9)

. of Ref. [1]—can be written

- {Sp) e = == (2m)*Y_ _ 8*(ski+ @1 — @2 = k2) Ao

v8q10920k20
(2.11)

where

Asadoxsre = Bs Aosaingnsae + Bis Aisainanars + Bas Azsainongn, » (2.12)

Biv = = () + Joa ()]

1

By = ‘2—2' [Js—l(z) - Js+1(z)] s

J, is a Bessel function of the first kind,

_ €msind
‘= e+ pr

_ . E8m? (ky-eyy)
= @(pa) :
AOSA]A?AQAQ» u(p2 3) ¢/\2 + 2 (kl . pl)(kl . 1)2)

(3—77)’

kl u(pl/\4) ’
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_ Em 1

Aradarere = Up2ds) 25~ %klhz ¢,\2k17$ u(p1is)
_ Em

A2s/\1)\2/\3/\4 = u(p2’\3) "2— k - P2 7yk1¢/\2 ky - ¢Azkl")/y u(pl)‘4) .

Notice that we have chosen A\; = (—1) because cases involving Ay = +1 can
be obtained by mirror imaging, which reverses the helicities of all particles.
Here, €}, is the complex conjugate of the polarization vector for the outgoing

photon.

For A, = positive,

For A, = negative,

R A ' . 0cos() i—_z_ —sinf

We notice Ag, A1, A; are independent of s because only £, is dependent

on s and k, appears in both the numerator and denominator with equal

power. The explicit representations of spinors are given in Appendix B.

After obtaining the helicity amplitudes A,y ,1,2, as shown in (2.12),

we can sum over the helicities of the outgoing electron A3z and obtain

WSA]/\Q/\‘ = AE/\]/\QP/\4 + AZ/\]/\2TL)\4 * (2']‘3)

There are altogether eight Wiy, x,1,’s, but only four of them are inde-

pendent because of parity conservation,
N~ L
Wsnnn = VVsppp 3

Wsnnp = Wsppn ’
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Wsn;m = Wspnp s

Wenpp = Wepnn -

Suppose there are in total N events which are induced by four possible

combinations of initial helicities Ny, »,.
- S N = Ny + Npn + Npp + Npp.
The number of events with A, = positive is
N, = Ny Wappp + Npn Y Wappn + Nop D Wingy + Non > Winpn -
' ,. ,The_ pumber of events with A, = negative is
.N," = Npp 3 Wapnp + Non 2 Wepnn + Nop D Werny + Nun 3 Wonon-

Let P(k;) be the polarization of k;. By definition

Np — Nn _ (Npp - Nnn)Zs Dsm) + (an — an) Zs DSPn

P(k,) = - (2,14
(k) = TR, ™ Moy & Naw) 5 B+ Ny 7 Nog) T S * &1
7 where
Dypp = Weppp — Wepnyp
Sspp = Wappp + Wopnp
Dspn = Wsppn - Wspnn )
Sspn = Wsppn + Wspnn .
< ‘ .. Now the polarization of k, is defined by
P(ky) = Non = Nom _ Nop = N (2.15)

Npn + Nin - Npp + Nop ‘
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and the polarization of p; is defined by

Npp " sz _ an — Nnn

P = R, N, = N+ Naw (2.16)
From (2.14)-(2.16), we obtain finally |
P(kg) — P(kl)zsN18+P(pl)ZsN25 (217)

Y s D1, + P(k1)P(p1) s Da2s

.

7 where
le = (Dspp + Dspn)/m2 ’ N2s = (DSPP - DSP")/7n2 ’
Dys = (Sepp + Ss;zm)/m2 ) Dys = (Sepp — SSPn)/mz :

. We let the MAPLE grind through all the above computations and

- . -obtain the expressions for Ny, Nys, Dy, and Dy, as follows:

Esind
dy

Ny, = {[—(6+22)y® — (2 = 2z)y] €* + 4° — 44°} Js(Jo1 = Jo41)

0o

2
+{(1 + 6z + 2?)y* — (1 — 2z + 27)} o [Ty = Tl (2.18)

SNy = {—(4—-42)(y* —¢7) €+ (2 -22%)y° — (2 + 4z — 62?)y"

L T

—(2 — 8z + 62%)y* + (2 — 4z + 227)) y
1

£sind 7
d

+4zy® — 4xy3} Js(Js-1 + Jst1)

2
—(4 - 45”2)(1/4 - y2) fl— s—1Js41
i 1

2
H1 204200t - 1) & L+ ). (2.19)
lgj:::— ) .;. 2
D,, = -8J%+ i (54 2z + z)y* + (2 — 22%)y?
1
+(1 =2z 42H) [J2, + J%, —2J2], (2.20)
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sin 0
Dy = {[-(2- 2z)(y° - y)] € +4(y° = 9°)} Jo(Jom1 = Jot1) 6—31__
2
=) & U - ) .21
where d; = y*[y? (1 +z)+ (1 —z)], z = cos b, and y = (e +p)/m, z and y will
be given in terms of laboratory quantities later in Egs. (2.36) and (2.37).

The lowest order Compton case for Eq. (2.17) can be obtained by
letting s = 1, J, = £ysin0[y’(1 + z) + (1 — )]7, Jeo1 =1, Jo41 = 0, and

retaining only £2 terms in Ny, Nps, Dys and D,,. The result can be written

Ny = Ey*(1+z)-1+7]

x[y*(2? + 22 + 5) + 2y%(1 — 2?) + (1 — 2)?) y*/d} , (2.22)

N, = €(1—2z) [y%(z® + 4z +3) + y*(a* — 62 — 3)

—(2? =1) y* = (1 = 2)*] y*/dy} , (2.23)

D, = 52[y6($3 + 3224+ Tz + 5) — y4(3at3 — 5%+ o+ 1)

+1%(32% — 322 — 3z + 3) — (2 —32* + 32 — 1)) y?/d} , (2.24)

D, = Ey*(1+2)—1+q]

x[yt(—2? — 2z + 3) + ¥?(22% — 2) — (1 —2)?] y?/d2 . (2.25)

The differential cross section for the process sky + ¢1 — k2 + q2 is

proportional to Dy,. -

1 1 d3k2 d3QQ [ D1 ]
doy, = &*(sky+q1—ky— adm)? =22, (2.26
4k1 - (27r)2 2w2 2q20 ( 1Tq 2 ‘12) ( ) {2 ( )
X7 which can be simplified into
do, ma?
@0, _ T 5
du 4w1E1§2 Dls 3 (2 7)

12
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where w; and E; are laboratory incident photon and electron energies

respectively and u = w,/ E;.

Terms in the square bracket in Eq. (2.26) can be understood in the

féllowing way: (adm)? = e* comes from incoming and outgoing photons

2 in the denominator is equal to 4raa?,

coupled to the electron. The m?*¢
which is put there so that in the limit £ — 0 and s = 1, do, gives the
Com;r)t‘on> cross section. This factor is evident by inspecting the definition of
A given by Eq. (2.10). We also notice that in Eq. (2.26) the flux density is
given by 4k; - q1, not by 4sk; - ¢;. Conceptually this is because the number
of photons acting coherently is not a priori given by the laser beam but is

~ determined by the matrix elements of the interaction. The differential cross

" section is obtained by the sum with respect to all s:

do o do ra’? ~
—_— = —-——s = — i} D s 2-2’\
du ZS:] du 4w1E1§2 Zs:l 1 ( b)

Assuming that the size of the electron beam is much smaller than
that of the laser beam, the number of events per incident electron within an

infinitesimal length dl (cm) of the laser beam is

d*wW do
du = Ny dl E s (229)

where n., is number of laser photons per cm® given by Eq. (Al).

Thus, the total number of scattered photons per incident electron in
dl is [5]

umax

o do,
dunydl 37 =

aw

Ymin

adlm? o  fumax 1
16E, Zs=1 /“m.in du (197 x 10-13 cm MeV) Dis
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o umax

= 6.024 x 103'12%!—(((;(1:—\)/) > " Didu. (2.30)

Now we see why we have to use the infinitesimal length dl instead of

the total pulse length L of the laser beam. We know that W cannot exceed
1, when u is near 1 because of energy conservation. For our purpose, it is a
good approximation to assume that an electron once it is scattered by the
laser photon will be lost as a scatterer to produce high energy photon. This
assumption is justified by the shape of Dy,, which has a more prominent peak
at the high value of u than at the low value of u. If this approximation is

made, we can use the total cross section o as the coefficient of attenuation.

. We then have
do
du '

- “Integrating the above with respect to [ and u, we obtain the number of

dW = n., exp{—n,ol} di

scattered photons per incident electron:

=] dO's
s=1 du :

W = (1 —exp{—n,oL}) 1 /umax du >
o

Umin

(2.31)

This equation is applicable when both uy;, and umax are not much
“-smaller than 1. On the other hand, when u is much less than 1, an elec-
tron can scatter with the incoming laser photons many times before losing
a substantial fraction of its energy. In this case there can be more than
one back-scattered photon per incident electron, and thus VV. can be greater
than 1. This happens, for example, when E; = 1 GeV and w;, = 1 €V,
and thus up.x = 0.016 for £ — 0 and s = 1. When the multiple scatter-

_ ing is important, we need to consider the straggling instead of the attenua-

tion. The problem of straggling can be handled by the Monte Carlo method

numerically.
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The numerical evaluations of Nis, Nys, Dy, and D, are performed in
the following way: we first specify the values of incident laser photon energy
(w1) and incident electron energy (E;), and laser intensity (£). Since this is
a two-body problem, the laboratory angle §; (which is the angle bwtween k,

and pj) is related to the laboratory scattered photon energy w,; = F u by

1 1
o= — w(;-—l)—-(l+§2), (2.32)

where v, = E;/m, w = 4sEyw;/m?, or

“SE TS 521+ V07 [ (239
 from which we obtain up;, = 0 and
1
s = T3 o (2.34)
'i‘he argument for the Bessel function is
z= mél—r}lf—l_—lj . (2.35)

Then y and x appearing in Ny, Nas, Dis, and Dy, can be written in terms

~ of laboratory quantities as

+ 1/2
y =3 p:[1+w—§21f‘_u} . (2.36)
292 1/2
z=cosb =~ (1 - f;—;—) sign, . (2.37)

where sign = [u —0.5(1 —y~2)]/ ju -~ 0.5(1 —y~?)|, and p = m(y? — 1)/2y.

For convenience of discussion we have specified E;, wq, u, and £ as
input variables for evaluating Dy, Dj,, Ny, and Nos. However, these func-

tions depends only on center-of- mass energies w, u. and £. In other words,
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these functions depend only the product Fjw;, but not E; and w, separately.
Here umax depends only on w and £, as seen from Eq. (2.34). Thus, as long

as Umax and ¢ are given, the functions Dy, Dy, Nis. and Ny, are specified.

From the definitions of Nj,, Na,, Dis, and Dy, given in Eq. (2.17),

we obtain
Zs le
A = &b
Z:s Dls
dU(Al = Az) — dO'(A] = —Az)
= , 2.38
dO'(Al = AQ) + dO'(/\l = —/\2) ( )
. Zs N2.9
B =
Zs Dls '
dO'()\4 = Az) - dO’(A4 = —Az)
_ , 2.39
dO’(A4 = /\2) + dO’()\4 = —/\2) ( )
Zs D2s
C = &%
Zs Dls
_ dO’()\l = A4) — dO'(/\l = —/\4) (2 40)

dO'()\l = /\4) + dU(A] = —-)\4) ’

where, for example, do()\; = ;) means the differential cross section (do/du)

"“in which A3 and A4 are summed and A, and ), are set either both positive

or both negative. From the parity conservation, the two possibilities have
equal probability. These relations tell us that A, B, and C are not just the
coefficients of P(k;), P(p1), and P(k;) P(p1) in the definition of P(k;),

Y — P(k)A+ P(p) B
P(k;) = T PP C (2.41)

but also that they have definite physical meanings. In fact, the quantity C
defined in Eq. (2.40) plays a very crucial role in the measurement of helicity

of electrons using the polarized laser photon beams shown in the following.
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Measurement of Helicity of et .using circularly polarized laser beams

At SLAC the helicity of the electron beam is measured in two ways:
one by the Mgller scattering on the polarized atomic electron target and the
other by the Compton scattering on the circularly polarized laser beam. Here

we describe the latter. Let the number of events induced by the positive

(A\; = p) and negative (A\; = n) helicity laser beam be N(p) and N(n)

e

respecfively. We have

N(p) = Npp (Z Wspnp + Z VVsmw)
+ pn (Z Wsppn + Z ¢ spnn) s
np (Z Wsnnp + Z W snpp)

+ Npn (Z 194 n,m+2 W Wm) . (2.43)

(2.42)

N(n) =

Then the asymmetry can be written

_ NG -N@) _ PU)+PRIC
Aom = Ny ¥ Nem) ~ 14 PP C PG B4

- -If we let the number of positive helicity photons used to measure N(p) be
equal to that used to measure N(n), then P(k;) becomes zero, and the last
expression results. Since C as given by Eq. (2.40) is a calculable function, we
can obtain the polarization of the electron P(p;) by measuring Asym. This
technique is well known. Our contribution here is to include the effects due
to contributions from s > 2. In the measurement of the polarization using

‘ the asymmetry, the energy of the outgoing electron E, is measured. Since

o
E2 Ey(1 — u), we can see the E; dependence of Agym from graphs shown

in Figs. 3 and 6 through 9. The most interesting features of these curves are

17
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that D,, and N,, have zeros a;t the same value of u, which corresponds to

the photon scattering angle of 90° in the rest frame of the initial electron,

given by

| 1— (14 w+ 12!
1+£

U, =

, (2.45)

where w = (45w, E;)/m?. The value of uy increases as s is increased, but
it decreases as £ is increased. When £ is large and the s > 2 contribution
becomes important, the zero in the s = 1 contribution becomes partially
filled. We also notice that in the Thomson limit, w — 0, we have Dy, = 0,

and thus the method cannot be used in this limit.

There must be a simple reason why these zeros occur for N;; and

D,,, but not for N,,. At this moment, this author is unable to find a simple

. v"'e_xplanation. 7

Observations:

1. From the expression of umax given by Eq. (2.34), we see that if the
cénter-of—mass energy is much greater than the effective mass m*, then
Umax approaches unity. On the other hand, if 4Ew;s < m?*(1 +£2), we
have tumax — 0. If 4E 1wy > m?(1 +§2), then unax approaches unity for
all s. On the other hand, uyax changes greatly for different s’s when the
center-of-mass energy is comparable to or less than m.‘*. In the latter
case, the modes with s > 2 spoil both the energy distribution and the
quality of polarization of the scattered photon beam. Thus £ should be
chosen much less than 1, but the laser pulse length should be increased

to obtain high luminosity. See Eq. (2.31).
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2. The o, is roughly propdrtional to £2*. Thus when £2 is much less
than unity, only o; survives, and it reduces to the Compton scattering
cross section. In the Compton limit (i.e., {2 — 0) we may write the

polarization of the scattering photon [see Eq. (2.17)]

_ P(k))A+ P(p)B
Pk = T PRy Pl )C (2.46)

with A = Nl/Dla B = Ng/Dl, and C = D2/D1, where Nl, Ng, Dl’ and

D, are given respectively by Egs. (2.22-2.25). In Fig. (3) we show A,
B, and C in Eq. (2.38) for three sets of energies: (a) w; = 3.5 eV and
E, =1GeV, (b)w, =1.17 €V, and E; = 50 GeV, and (c) w; = 3.5 eV
and E; = 500 GeV. The valﬁes of Umax fOr each case indicate how
relativistic the reaction is in the center-of-mass system. (a) is the low-
~ energy cése and almost the Thomson limit, which is characterized by D;
being symmetric with respect to 4 = umax/2 and A being antisymmetric
with respect to ¥ = umax/2 and B = C = 0. In the Thomson limit, the
polarization of k, is opposite to that of ky at the high-energy end, but at
the low-energy end it is the other way. The polarization of the incident
electron rdoes not contribute to the polarization of k; in the Thomson
limit because B — 0. As the center-of-mass energy is increased, the
energy distribution (i.e., D;) gets skewed toward the high-energy end
and B becomes more prominent and A becomes less so. This means
that at high center-of-mass energy the polarization of k; is dominated

by the polarization of the incident electron (p;).

Figure 4 illustrates that at an intermediate center-of-mass energy

(W, = 1.17 eV, E; = 50 GeV), if the incident electron (p;) and the laser
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photon (k) are polarized, it somewhat improves the polarization of the out-

going photon (k).

Figure 5 illustrates the effect of high £. The energy is the same as
in Fig. 3(a); i.e., almost the Thomson limit. For simplicity we consider that

only the laser beam is polarized, so that the polarization of k, is
P(ks) = P(k) 3o N/ 30 Du,. (2.47)

The denominator of the Eq. (2.39) gives the energy distribution—D,;
for s = 1, 2, and 3 are displayed in Fig. 5(a), and Ny, is displayed in Fig. 5(b)

. for ¢ = 1. We first notice that higher s contributions to the numerator and

~ the denominator tend to spoil the characteristics of polarization and the

~

- . energy distribution respectively. We conclude that a high value of £ is not

" desirable at low center-of-mass energy.

In Figs. 6-9 we present graphs for Ny, Nog, and Dy;, D, defined by
Egs. (2.18)-(2.21) for two set of energies, two values of £ and three values of

s. The most interesting characteristics of cases with s > 2 is that at 4 = Umay

“and u =0, all these functions are zero, whereas for s = 1 these function have

maximum at ¥ = Umpax. This is because the Bessel function at the origin is

nonzero only for Jo(0) # 0, which can happen only when s = 1 for J,_;(0).

Thomson and Pseudo_—Thomson limit

Let us denote the limits { — 0 and w = 4w; E;/m? — 0 as the
Thomson limit, and w — 0 but ¢ is not small as the Pseudo—Thomson limit.

For example, scattering of a laser beam by an electron beam of less than

100 MeV belongs to the Pseudo-Thomson limit. In the Pseudo-Thomson
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limit we have

23£ . ")/,,01
z L 2.48
VIO 1420 (248
El/m
ye = , 2.49
VI+E (249)
¥’ = 1+w-—E%u, (2.50)
_ 1136
x = T8 (2.51)
11
262 = w(;_um) , (2.52)
3 8s 2
N = [a¢sin0+ (Z) ] L0 —di) . 259
N?s = 0’
Dy, = —8J2+4€?[J2, + %, —2J7] . (2.54)
D23 = 0 .

When 7.6, < 1, we have z — 0 and thus only s = 1 is important, and

furthermore J, = 2/2, J,_; = 1, and J,;; = 0. In this limit, we have

Ni 4€% | ’ " (2.55)

-Dll

262 (1+2%) . (2.56)

Fe The polarization of k, is thus independent of the polarization of p; and

2z
14 22

P(ky) = P(ky) . (2.57)
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The energy and angle of k, ars related by

U 1
Um&x - 1+’720l2 ’ (2-58)
Wlth Umax — 4w1E1/m3
The differential cross section is
- L do 2mrl
—_— = 1+2?%). 2.
o ” (1+ 2% (2.59)

The Thomson limit is obtained by setting £ = 0 in Egs. (2.57) and (2.59).

We have used the rest frame of (p; + k2) to obtain the relatively com-

- pact expressions for Ny, No,, Dy,, Do, as shown in Eqgs. (2.18) through (2.21).

. The ‘simpliﬁcatisn occurs because in this frame the complicated expression
"< (s —n) occurs only in the definition of k; as shown in Eq. (2.6) and k, ap-
- psafs with equal power in the numerators and the denominators of Ag, Ay, A,
defined by Eq.(2.12). Thus Aq, Ay, A2 do not contain the factor (s —7n) in
this frame. In the Compton limit s — 7 = 1, so we do not have to resort to
this frame. Actually we can obtain simpler expressions for Ny, Ny, D1, D, in
~the rest system of the initial electron p; = (m,0,0,0). In Appendix C we
give expressions for N1, N2, Dy, D, in the rest system of the initial electron

and also in terms of the variables u = w,/E; and w = 4w, E; /m?.

3.  Laser (ki)+ high energy photon (k;) —e* +e7.

Our purpose here is to investigate the properties of e* or e”,

_including their polarization when both k; and k; are circularly polarized.

" The initial state can have an even or odd number of photons in the reaction

sky + ko — p, + p2. Since amplitudes for different s’s do not interfere, the
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ﬁhal state has a definite chargé parity for a given s; thus one cannot distin-
guish e~ from et in this problem. However, we shall call p, positfon and
p; electron for convenience in applying the substitution rule to the previous
problem. The Feynman diagrams for the present problem (Fig. 10) and the

previous problem (Fig. 1) are related by the substitution rule: k; — —k;,

p1 — —p1, u(p1) = v(=p1), and €; — €.

" Let us denote the helicity amplitude in the laboratory system by
Tyxx0a0, for the reaction sky + k; — et + e, where A, Ay, Az and Ay
are laboratory helicities of k; (laser), k; (high energy +), p, (electron) and
p1 (positron) respectively. Again out of 16 helicity amplitudes, only 8 are

" independent because of the parity conservation, which results in Tsx, a0, =

7 Tsy_-A; y—A2 1_A3 —Age

The matrix element for laser photon plus high-energy v — ete™ can
be written

—te 0o
(Sridrraren = = (271‘)4 Zs=1 54(3151'*']”12—(11 —q2) Tsnpranens » (3:1)

vV 8¢10920w2

where g0, g20 and w; are all laboratory energies of ¢i, ¢; and k; respectively.

The helicity amplitude Tsx,3,0,2, can be written as

Toxiarsrg = BsTosxaongns + BisTionaonan, + Bas Tasniagnsny o (3.2)

where B,, Bi,, and Bs, are the same as those defined in Eq. (2.12). The
argument of Bessel functions z is now

{mb,

z = m’_—u—) s (33)

> whére 6, is the laboratory angle between p; and ii;g (see Fig. 11), w; is the

energy of the laser photon, and u = Ey/w, with E; and w; being the energy
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of the outgoing positron and the incident high energy v respectively, and 6,

is related to u by

1 2 211/2
0, = o [4sw1w2u(1 —u) —m*(1+¢ )] , (3.4)
and £ is the parameter defined in Appendix A.
fe o Tosairarsre = (P2, A3)éy, v(—p1, Ad) (3.5)
_ em | 1 1 ]
Tisx002s0 = U(p2, A3) 5 {m Yok £, + mﬁjﬂ::_ v(=p1, M),
(3.6)
_ Em [ 1 1 ]
Tasnirarare = U(p2,As) 3 _———kl P2 7yk1¢,\2 + k]_.‘ p‘l¢,\2 kﬂ'y_ v(—p1,A4) -
(3.7)

~ Here, e, is the polarization vector for the high energy incident photon k;:

" for A\, = positive,

1 1
ey, =(0,—,—,0); 3.8
A2 ( \/i \/i ) ( )
for A\; = negative,
1 —
€ (0,—\/—5,\—/—5,0) (3.9)
€2m2
= -k . 1
G p1+2p1-k1 1 (3.10)
2,2 : -
= ky . 3.11
g2 =p2 -+ gy (3.11)

The explicit representations of spinors are given in Appendix B. Using

%~ the notations of (B.1) through (B.4), we have

u(pz, £) = u(pz, b2, 7, £.5) , (3.12)
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v(_pla :t) = v(plaelaoa :t5) . (313)

The p,, 62, p1, and 6; can all be written as functions of u, wy, ws, and €.

Equation (3.4) gives 0,.

Assuming w; > wy, E; > m, E; > m, 0; < 1, and §; < 1, we have:

. Ey, = wpu, (3.14)
E2 = W2(1 — U) s (315)
02 - 01E1/E2 . (316)

Using exactly the same argument as in Sec. 2, we obtain the differential
- cross section and the polarization for the positron (also applicable to the

. _electron because of charge symmetry).

From the helicity amplitudes, we obtain the differential cross section
and the polarization for the positron (also applicable to the electron because

of charge symmetry) in terms of Ny, Ny,, D;,, and D, defined as follows:

1 2 2 2 2 7
le = 5_77? ZA] /\3(Tsn/\2/\3n + Tpr\z/\SP - TS”/\%\SP - TSI-"\W\E.”) (31 l)
]. 2 2 2
N2s = 577? th\s(Tsz\;n)\sn + TS/\1P/\3P - sz\lp/\an - Ts/\ln'\sp) ’ (318)
1 2
Dls - mz)qz\z)\s/h Ts,\l,\z,\3/\4 ’ (319)

1 )
D23 = m Z:)\a)q (Ts?nn/\;;«h + Tfpp/\:;/h - Tsan,\3/\4 - Tfpn)\g,/\.;) P (320)

where n and p refer to negative and positive helicities respectively.

— . The differential cross section for each s is

1 1 dSql

do, =
7 Buwiws (2m)% 240

6 [(skl +hy—q) — mf] [(a47r)2—D—ls—} , (3.21)
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which can be simplified to

do, _ ra’?
du  4wiwy€?

Dy, . (3.22)

The total cross section is

Umax

Zs_ / Dy, du

Urnin

T - - V g = Zs:l s = 46‘)1(.02{2
where Umax and umi, are given by Eq. (3.30).

The polarization of et (or e7) is

(kl)zles+P( )Z AZs

= Drot PUP) Dy )

P(Pl) = P(p) =

26



We notice that in D;, and D,,, the spins of both the electron (A,)
and positron ()3) are summed, and hence they can be calculated in any
frame. We have calculated these two qﬁantities in both the center-of-mass
and the laboratory system. The numerical results agree completely. In the
center-of-mass system, simple analytical expressions for D,, and D,, can be

obtained:

(€ + p’z?)

Dy, = J?4+2¢7 e (JEL, 4+ J2, —2J%) . (3.24)
Dyy = —Js(Jso1 — Js41) 252111: (e? + p*z?)
+(J32—1 - J3+1) (22?_1;:2 2;‘:(;1:4:;) . (3.25)
B Here the center-of-mass system is defined as:
pl = (e,psinf,0,pcosf) , py = (e,—psind, 0, —pcosb) ,
ky = (e,0,0,—€)/(s — 1), ky = (€,0,0,¢) ,
- =cosf, s—n = (2 8_(‘;:2;2???2”12 ,
f T sinzsﬂgfizszir(llg—i- £2) (3.20)
Here, e, p and z are related to the laboratory quantities by
e = wwa(s — 1), | “ (3.27)

p= Ve —m?,
<7 sinf = pysin b, /p, (3.28)

] cos@z\/l—-sin29 (u—%)/ L

u—=|, (3.29)
27
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where u = E; Jw,, with

1 2 2
Umax = — [1:;:1/1_?”_(_1_*'6_)
min 2 Swiwa

In Figs. 12 (a,b), we display the polarization of et (or e) in the

(3.30)

Compton limit (¢ = 0.01,s = 1) for low-energy (w; = 15 eV and w, =

50 GeV) and high-energy (w; = 15 eV and w; = 500 GeV) cases, respectively.

The functions A, B, and C are defined as

_ P(ky)A + P(ky)B

P(e*) = 1+ P(k)P(k3)C

(3.31)

- where P(e*), P(k;) and P(k;) are longitudinal polarizations of e*, k; and

"k, respectively. From (a) and (b) we see that near the high-energy tip (v =

VB, /wy, = tupax), P(e*) is determined mostly by P(k;). This is especially

true at high energies.

Figure 12(c) gives the values of A, B, and C evaluated in the center-
of-mass system. These curves are given purely for pedagogical purposes. The

parameters used are the same as those for Fig. 12(a); namely, w; = 15 eV,

“wy = 50 GeV, and £ = 0.01. The fact that A’s (and B’s) differ in two

different frames are related to the Thomas precession [11]. It is easy to see
that a particle having a spin parallel to its direction of motion is not a frame-
independent concept if m # 0, because one can always go to the particle’s
rest frame and then boost it in a direction that is different from the spin

direction. The v = (Umax, 0.5, Umin) correspond to cosd = (1,0,—1). The

. A and B are mirror images of each other in the center-of-mass system, but

-

not in the laboratory system. The values of A (or B) in both frames are

similar at ¥4 — Umax (i.€., 8 — 0 in the C.M.), but they become opposite near
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U — Upp (1.€., 0 — 7 in the CM) This is easy to understand because if the
spin of a particle is parallel to its direction of motion in the center-of-mass
system, it will still be parallel near u = umax in the laboratory system, but it
will be antiparallel near u = umin because the direction of motion is reversed
by the Lorentz transformation. We also notice that C’s are identical in two
cases, because both the electron and positron spins are summed in Dy, and
D,, (C = D,/D,, with s = 1). The agreement in numerical values of C
in two cases gives us a very welcome check on our calculation. We should
remind the reader that the mass of the electron cannot be ignored in this
problem because the center-of-mass energy is not high compared with m,

- even though both e* and e~ have energies of tens of GeV in the laboratory.

" In Figs. 13(a,b) we plot Di;, which gives the energy distributions for

,"V-"é‘* { or.e”). We notice that all the graphs are symmetric with respect to
v = 1/2. This can be understood in the following way: the final state
ete” mﬁst be symmetric with respect to the exchange et < e~ because
it has a definite charge parity for a given s. Thus in the center-of-mass
system where et « e~ is equivalent to § — 7 — 0, the angular distribution

- must be symmetric with respect to § = 7/2. According to Egs. (3.4) and
(3.28,3.29), u = 1/2 corresponds to § = /2, and the reflection through
u = 1/2 in the laboratory system is the same as reflection with respect to
6 = /2 in the center-of-mass system. This explains the symmetry of these
graphs with respect to u = 1/2. From these energy distributions we also
notice that events are concentrated in the high energy and low energy ends.
As the laser intensity (£) is increased, the range of u decreases for a given s

[see Eq. (3.30)); but events with large s participating become more prominent,

" and events with larger s have a larger range (tmax — Umin) of u.
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The number of positron (or electrons) produced per incident high
energy v (labeled k;) in the laser beam from ! to [ + dl can be obtained from
Eq. (3.18):

adlm? 1
=dl = s ( > ’
dW =diln,oc = 16, E,J/ D, du 197 x 10-13 ¢cm MeV
(3.32)

where .dl is the longitudinal path length of k; in laser in ¢cm and n. is the
number of photons per cm® of laser given by Eq. (A.3). We use the ex-
pression of Dy, given by Eq. (3.24) and umax and u, given by Eq. (3.30).

Equation (3.32) can be simplified into

dl umax
dW = 6.024 x 10° (GC?V S [T Ddw. 333)

Umin

o Inspection of numerical values of Dy, shown in Figs. 13(a,b) tells us
that Eq. (3.33) can be valid only when dl <« 1072 cm even for £ = 04,
otherwise dW is almost equal to unity or even exceeds it. Obviously, it is
energetically impossible to create more than one high energy e* from one
single high energy photon. Thus, attenuation of the k; beam as it goes

" “through the laser beam must be taken into account.

Let L be the pulse length of the laser beam in cm (~ 0.05 cm, for
example, used in Ref. [3]), then the total number of e* (or €7) produced per

incident ky with umin < u < Umay is

umax L
W = / du/ exp{—on,l} n, do dl
u 0 du

min

‘ - 1 rumax do
(1 —exp{—on,L}) ;/ du e (3.34)

Ymin

30



This shows that W can never exceed unity as expected and in our
examples shown in Figs. 13 (a,b), W is nearly unity. Excessive laser intensity
does not produce more e¥. We also notice that the attenuation does not
affect the spectral shape of e*. Summing the contribution from all s’s, we
see broadly speaking that there are two bumps in the spectrum, the high-

energy bump and the low-energy bump. Equation (3.4) can be written

¥ .

2
P!, = 4dswwy [i - (u - %) } —m?*(1 + &%)

= 4swiwy(Umax — w)(U — Umin) (3.35)

where P,, = E.8, is the transverse momentum of e*.

.. Equation (3.35) shows that the transverse momentum of e* is very

small near ¥ = Umayx OF U = Umin, and the two bumps have identical P,

distributions. For example, for w; = 15eV and w; = 50GeV we have
P12_L =35 x 1012(ev)2(umax - u)(“ - urnjn) ; (336)

~_thus, near ¥ = Ugax OF U = Uy, We have P <m.

In contrast to this, positrons are usually produced by impinging an
electron beam on a tungsten target. The electron first produces bremsstrahlung
in the target, and then the photon produces a pair. The direct electroproduc-
tion of a pair is usually negligible, being equivalent to about 0.02 radiation
lengths of extra target thickness, according to the Weiszacher William’s ap-

- - proximation [6]. The energy distribution of positrons by a monoenergetic
¥ inci'dent electron on a target of t radiation lengths can be found in Tsai and

Whitis [7]. The ‘P, distribution is mostly due to multiple coulomb scattering
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of the incident electron and the outgoing positron. The P, is given roughly
by
< Py >,e=14.1 MeVV42,

where t is the sum of path lengths of the incident electron and the outgoing
positron in radiation lengths in the target. For example, at SLAC the total
radiator thickness is 6 rl. Part of this is traversed by the photon, so the
effective t is 2 ~ 3 1l. The average P, of e* from the pair production in a
thick target is about 20 MeV, whereas from the laser it is less than 0.5 MeV.
Thus, as a positron source, laser + vy — e + e~ is potentially much better
than the existing method of using the thick target, provided that we have a
~free electron laser with sufficient infensity and a very high energy electron

" accelerator.

In Figs. 14-16 we show Ni,, Ny, Dy,, and Dy, in the laboratory
system for two sets of energies (w; = 15 eV, w, = 50 GeV and w; =15 eV,
wy = 500 GeV) and two laser intensities (£ = 0.4 and £ = 1.0). We make the

following observations on these figures:

e Since D, is symmetric with respect to u = 1/2, there are an equal

number of low- and high-energy e* clustered around umin and Umay.
g gy

e The polarization of k, and et helicities are nearly the same near upa,y.
The polarization of et near umax can be increased slightly if k; is made
to have the same helicity as that of k;, because N;; and N,, have the
same sign near Umax-

ol
e Near u = unyn, the quality of polarization is not so good. The polarization

of e near umin is mostly determined by the polarization of k; (laser
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beam) and their helicities are opposite. Again, if both k; and k, are
polarized and have the same helicity, the polarization of e* near u =

Umin Will be slightly enhanced corn;;ared with having only k; polarized.

4. Polarized et from Pair Production in an Atomic Target

Olsen and Maximon [8]. They included only the elastic atomic form factor.
We include here the contribution from the inelastic atomic form factor in the
manner of Wheeler and Lamb [9}, using the Thomas-Fermi-Moliere model

of atoms, which are suitable for atoms with Z > 5 (see Table B.2 of the

- -author’s Review of Modern Physics paper [6]).

Since the angular distribution of e* from pair production is caused
n;ostly by the multiple Coulomb scattering, rather than by the production
rnechaniém, the angle can be integrated out so that only the energy distri-
bution is relevant. Both the energy distribution and the polarization of e*

can be written in terms of four functions:

Yz oar, (4.1)

| 1
@1 = 20.863 — 21In(1 + b*) — 4barctan (—) 3

b

| ' 1
@2 = 20.196 — 21In(1 + b?) + 8b [1 ~— barctan (—)

b

1 4 | __ S
~0.751n (1 + ?ﬁ)} - Sz -af, (4.2)

2 / 1 2
¥, = 28.340 — 21n(1 + b'*) — 4b arctan (y> - §an ) (4.3)

¥ = 27.673 — 2In(1 + §?) + 852(1 — ¥ arctan (%)
1, 2

—0.75(1 + 3,5) -3 InZ, (4.4)
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where

b= 55.846 m . (4.5)
[ku(l —u) ZS]
362.01 m

[ku(l —u) Z%] ’

b =

(4.6)

are roughly gmin X atomic radii for elastic and inelastic atomic form factors

respectively [6]; f is the Coulomb correction to the one-photon exchange

v

apprdkimation worked out by Bethe and Maximon [10],

1.008z22

f(z) =1.202z —1.0369 22 + ,
1+

(4.7)

where z = (Z/137)? and Z is the atomic number; k is the photon energy,
and u = E/k with E the energy of the e*.
The differential cross section is then

doy 2

< = a7 F, (4.8)
where

F= Z?{(u2+(1—u)2)¢1+§u(1—U)¢2}+Z{(u2+(1—u)2)¢1+§u(1—u)¢’2} :

The polarization of e* is
P(e*) = P(k) G, (4.9)
where

= (22 (20— )r + 30— e} + 2{(2u = D+ 21— wi}] / F

, a.nd'P(k) is the polarization of the incident photon obtained by the backward-
. scattered laser beam defined by Eq. (2.17).
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In Fig. 17(a) we have plotted F/78400 for Z = 74 (Tungsten). The
number 78400 is a normalization factor in order to make the end points in

the complete screening limit (k = oco) equal to unity.

In Fig. 17(b) we plot the polarization of e*, assuming the incident

photon is completely right-hand polarized; i.e., P(k) = 1 in Eq. (4.9). The

D polarization is quite independent of energy—k = 1 GeV and k£ = 20MeV
cases are plotted and they are hardly different. Near uay, the polarization
is 100%; at © = 0.9, the polarization is 98%; at v = 0.8, it is 93%; and at
u = 0.7, it is 84%. Suppose that we select the energy of e so that only the

u > 0.7 portion is accounted for, then the integrated polarization would be

Jox P(e*) Fdu
f01.7 Fdu

(4.10)

This number would be more than 90% if we have almost 100% polar-

ization for the incident photon beam.

5. Applications

1. Laser (k;)+e-(p1) — k2+e_(p2) as a source of polarized photon beam.
Compared with ordinary bremsstrahlung beam, the photon beam pro-

duced in this way has the following characteristics:

(a) The spectrum here is peaked at both u = up,x and u = 0. This
is to be compared with the bremsstrahlung spectrum, which is
peaked only at u = 0 (the usual 1/k spectrum of bremsstrahlung
[6]). See Figs. 3(a—c).

(b) Due to the absence of Coulomb multiple scattering, the aver-

age transverse momentum of the photon here is < m, whereas
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in the bremsstrahlung the average transverse momentum is ap-

proximately 14 MeV /t/2 where t is the radiator thickness in
radiation lengths. This is important when one needs a beam that

requires very small P, .

(c) This process is relatively background free, whereas the ordinary
s . bremsstrahlung is accompanied by many ete™ pairs and hadrons,

especially when the target is thick.

(d) The umax for bremsstrahlung is nearly 1, but for the laser electron
scattering it can be much less than 1 if the center-of-mass momen-
tum is much less than m. As the center-of-mass energy becomes
much- greater than m, umax approaches 1. With the electron en-

.- ergy equal to 50 GeV, we need a Free Electron Laser in order to

make umax approach 1. See Eq. (2.34).

(e) Polarization. From the point of view of intensity and polarization,
the most important region of the v spectrum from the reaction
laser + electron — 7 + electron is within 20 to 30% of the tip of
the‘spectrum for the lowest order (s = 1) mode. In this region,
the contributions from s > 2 do not have good polarization if
4w, E; < m? Thus, in this case, one should not let ¢ be greater
than 0.5 if good polarized v beam is desired. One should increase
the pulse length L in Eq. (2.31) rather than having a large ¢, in
order to increase the yield of polarized photons. When 4w, E; >

S : m2(14+£?), umax approaches unity for all s; thus, good polarization
for all s’s can be obtained. In this case, a large value of £2 can be

used. See Eq. (234)
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(f) When 4w E; < m2., Umax 15 much less than 1. In this case, an
electron can scatter laser photons many times, and we can thus
produce many such scattered photons per incident electron. For
example, when FE; = 10 MeV and w; = 1 €V, we have umax =
1.6 x 107%; thus, even after 600 consecutive scatterings by the
laser photons, the electron would lose at most 9.6% of its energy.

- The scattered photons will have an energy of about 1.6 KeV on
the high-energy side. This is definitely a better way to produce

1.6 KeV x-ray than the conventional way of producing x-rays.
2. Sources of Polarized et

(a) Method I: Laser(k;) + ko — e*(p1) + €7 (p2) .

(b) Method II: ky + Z — ete™ + - .

(c) Existing Method
At the SLC at SLAC, a polarized e~ beam is produced by shining
a polarized laser beam onto a GaAs Target {12]. The maximum
polarization obtained up to now is 27% at the source and 22%
at fhe interaction region where Zy’s are produced. The e* beam
is not polarized. It is produced by impinging a 33 GeV electron
beam onto a target of 6 rls [13]. Both ¢* and e~ beams are
then accelerated and cooled in the cooling rings to reduce their
temperature. They are then reinjected into the accelerator until

they reach the final energy.

In Secs. 3 and 4 we discussed the characteristics of Method I and

Method II, respectively. Method I requires very high energy back-scattered
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photons (many tens of GeV) aI;d a high-energy laser beam (> 10 eV) achiev-
able only by the Free Electron Laser. In contrast, Method II requires only
a backward-scattered photon beam with relatively low energy, because the
thréshold energy required is only a few MeV, 20 MeV photons will be more
than adequate. See Fig. 17. The only disadvantage of Method II compared
with Method I is the transverse momentum distribution due to multiple
Couldrhbécattering, but this problem is less serious here than in the existing
method because the target thickness needed is less than one radiation length

instead of six [13].

There are three reasons why we do not need, and do not want to have,

a very thick radiator:

=7 e The incoming particle is not an electron, but a photon.

e We are interested only in the first generation pair, the higher generation

pairs do not possess desired polarizations.

e If the target is too thick, the e* produced will lose too much energy by

bremsstrahlung.

According to Fig. 17(b) only the high—energy end (v = 0.7 to 1.0) has good
polarization. Thus one must select this high-energy tip by a magnet before

accelerating the beam.

Method I requires a Free Electron Laser, as well as a very high energy
back-scattered polarized v beam (many tens of GeV'), to produce polarized
e* beams. Its chief advantage is that the average transverse momentum is

much less than.m near umax (at ¥ = Umax, We have p; = 0). However,
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this advantage may not be that significant, because the cooling rings can
reduce the transverse momentum, as well as the spread in the longitudinal

momentum of the beam.

The number of et (or e™) per incident electron in the energy interval

dE using Method II can be written

. 1 wemes do, w2 do ,
- dns = dE(L - exp{-noocL}) - /E T dey /E 2 dE
T
X /0 n exp{—o,nt} I.(E',E,T —1t) dt; (5.1)

where n., is the number of laser photons per cm?® introduced in Appendix A,

and o, is the total Compton cross section:

1 4 8 1 8 1
_ 2 1 _ % ©° 4,5 v ‘
o, = 27rg ” {(1 ) In(1 4+ w) + 5 + © T30 +w)2} ,  (5.2)

. with w = 4w, E; /m?; w; is the laser photon energy and E; is the incident
electron energy in the reaction laser (k1) + p1 — ko + po. L = laser pulse

length in cm.

The first part of Eq. (5.1) up to the integration with respect to dw; is

_ essentially Eq. (2.31), except that we have concluded that we should avoid
the situation where s > 2 is significant, and thus the Compton cross section is
used. The back-scattered photon with energy w, then enters a target of total
thickness T radiation lengths. The pair production takes place at the depth
of t radiation length. The pair-production cross section do,/dE’ is given by
Eq. (4.8) where u is E'Jwy; n = %Xg is the number of target particles per
unit radiation length; and exp(—o,nt) is the attenuation factor of the photon

e inténsity at depth t. The total pair production cross section is given by

op(k) = ap(00)[1 = ((k)] , (5.3)
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where 0,(00) = (7/9) (A/XoN) with A the atomic weight in grams/cm? and
¢ the correction factor tabulated in Table IV.5 of Ref. [6]. The ( can be
obtained from integration of Eq. (4.8) and I.(E’, E,T —t) is the straggling
function of an electron whose energy is E’ at production at depth t. The
electron (or positron) then traverses the remaining target thickness T' — ¢ to

emerge from the target. Then I.(E', E,T —t)dE gives the energy distribution

¥

~of an electron at T whose energy was E’ at . The straggling is caused by
the bremsstrahlung emission (for simplicity, we ignore the straggling due to
jonization and the Landau straggling [14]). The straggling function I. can

be written [15]

, ENTTY doy N
Ie (E ,E,T —t) = [In (—E“)] W —Z ‘XQ(T - t) 5 (54)

. where k = E' — E, X, is the unit radiation length of the target in g/cm?,

" doy [dk is the bremsstrahlung cross section related to the pair-production

cross section by the substitution rule [16)

doy dap) k*E
) k——k

% = e S

(5.5)
and b~ 4/3.

Using Eq. (5.4), the ¢ integration in Eq. (5.1) can be carried out
analytically. We have

/T { t} I.(E',E, T —t) dt = n doy ST(BT — 1) + 1]e~o*T
A n eXpi{—0pn e , Lo, = 52 Ik € [

= H(.E’,E,‘-T) . (56)

where B = o,n + bln[In(E'/E))].

& 7 - Similarly, the polarization of e* using Method II can be calculated
by combining the polarization of the back-scattered photon in the Compton

scattering with the polarization of e* in the pair production. Notice that:
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(1) when the back-scattered photon passes through the target, its helicity is
not changed, its intensity is changed because of the attenuation, and its
energy distribution is slightly changed because the energy dependence

of the o, in the absorption coeflicient.

(2) the helicity of et is not changed by bremsstrahlung or multiple Coulomb

+

scattering as long as e* remains relativistic {17]. The polarization of

e at t = T, with energy E, is given by

f;zmax Dy Adw, f§2 G(wz,E') H(E,,E’T) F(wz,E’) dE’
fEQmax Dl de E’ H(E',E, T) F(w%El) dE’ ’
(5.7)

where D is given by Eq. (2.24), A is given by N;/D; with N; and

P(ei) =

D, given by Eq. (2.22) and (2.24) respectively, G(w2, £') is given by
" Eq. (4.9), H(E',E,T) is given by Eq. (5.6), and F(w,, E’) is given by

' - Eq. (4.8).

6. Concluding remarks

When dealing with a problem in which many particles are polarized,

it is easier to deal with calculation of matrix elements directly, instead of
" matrix elements squared, using density matrices and projection operators.
This is true even when dealing with the simplest problem, such as the lowest
order Compton scattering. When the matrix element itself is very compli-
cated, the square of it becomes hopelessly complicated. It is often more
convenient, or even unavoidable, to calculate the amplitude directly. This
paper demonstrates how to deal with the transition amplitude directly using

MAPLE. For the lowest order Compton scattering, our Egs. (2.22) through

~ (2.2'5) reproduce the results given by Lipps and Tolhoek [19], who also gives

- earlier references on the subject.
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Appendix A. Intensity of Laser Beam and the Parameter ¢

The dimensionless parameter ¢ is related to the intensity of the laser
beam. The energy density of the electromagnetic field is

_E2+H2

v 2

— 2 o 2.2
= E* = a‘wy,

where the electric field E is related to A in the radiation gauge (Ao = 0) by
|E| = |04/01| = awn.

The number of photons per cm? is thus

n, = w_ a*w; | (A.1)
w1
‘and
. 2
2=oza47r_ (4770) 5
&= mz " \mlay ) (A.2)

" Since ¢ is dimensionless and m and w; are usually given in electron volts we
have to convert “per cm®” in the definition of n., into electron volts (eV?) by
the relation

1 = he = 197.3 x 1077 eVem .

- _Thus
47(197.3 x 1077 eV)?

m2wy.

2
€ =n,

(A.3)

The laser intensity is usually given in units of W/cm?®. It is related to the

photon density by
I (W/em®?) = n, 4.8 x 10™%w; (eV) W/em” .

.. We finally obtain
- . I(W/em?)

= o (VP 5.64 x 1071° . (A.4)

62
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Appendix B. Spinors for Helicity States and the Use of Maple

MAPLE is a very generic computer program which can handle both

analytical and numerical manipulations, but it is not specifically written

for high-energy physics. Therefore, we have to write down explicit repre-

sentations for ¥ matrices as well as for the spinors, and let the computer

do the matrix multiplications. In this paper we adopt the explicit repre-

sentation of Gamma matrices and the metric used by Bjorken and Drell

in Ref. [18]. The explicit representations for the helicity states for spin-

1/2 particles and antiparticles with mass m with four momentum p, =

(e, psinf cos @, psin@sin ¢,

)

u (p, 0, p,

1
u (P, 07 ¥, —5)

: 1
v (p7 03 1) 5)
1
v (pv 9, ®, —'5)

pcosf) are:

cos (6/2)
. e'¥sin (60/2)
! ¢z cos (6/2)
c; €¥sin (0/2)

Uy,

—e"*sin (0/2)
cos (6/2)
¢z e ¥ sin (6/2)
—cp cos (0/2)

= = Uu_ ,

cy € % sin (0/2)
—cy cos (6/2)
—e % sin (0/2)
cos (0/2)

2! Uy,

cycos (0/2)
¢y €% sin (0/2)
cos (6/2)
e'?sin (6/2)

—Cl

(B.4)

where ¢, = (e + m)!/?, ¢; = p/(e + m), and (£1/2) denotes the positive and

negative helicities.

N

The spinors with a bar are defined as usual, & = ut~yy and & = v*,,

~ where * denotes the hermitian conjugate. Each of the four spinors given
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ai)ove is defined as a proceduré in MAPLE, so that we can apply it to rep-
resent a fermion with any p, m, 6, ¢, and helicity. It should be noted that
the phase factor in each of the eight spinors defined above is not relevant to
our problem, because two different helicity amplitudes do not interfere with
one another, and only the square of each helicity amplitude contributes to

the polarization and the differential cross sections.

" The spinor representations shown above are obtained in the following
way:
From Dirac equations ( p — m)u = 0, we obtain

X+

1 ‘ - -
‘g
e m X+

where x is a 2 x 1 spinor representing an electron with spin parallel to p’ (or

; (B.5)

U4y = ¢

" - antiparallel when -) in its rest frame, and ¢; is the normalization factor so
that au = 2m and v = —2m. An explicit expression for x4 can be obtained

by solving 7- 8x+ = £px+; we have

cos (6/2) —sin (0/2) e7*¢
X+ = and X- = . (B.6)
sin (0/2) €' cos (0/2)

Since the overall phase is not relevant, we have chosen the form which is the
simplest. v, and v_ can be obtained by the change conjugation of u; and
u_:

vy = 1ul and v = —iyul .
Again the phases of v-+ and v_ are arbitrarily chosen.

The final check on the validity of our expressions for uy and v+ can

N be performed using the relations

Vs pur = Fus, (B.7)
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and
¥s pvx = Fvg, (B.8)

where s is a four vector having the components:.

€ . e . €
s,=|p/m, — sinfcosp, — sinfsinp, — cos0] .
m m m

.

This check shows that indeed uy (and vy) represent states with helicity +.

Since MAPLE handles both analytic and numerical manipulations,
we must decide how much we should let the computer do the analytical work
and at what stage we should do numerical computations. In general, if one
can obtain a simple analytical expression to describe nature, then one should
obtain this expression, but if the expression is too lengthy and complicated,

then we should be satisfied with numerical results.

in this paper we obtained analytical expressions for differential cross
sections for both reactions given in the title, as well as the photon polarization
in the first reaction, but we have to be satisfied with only numerical results
for the polarization of ey in the second reaction. The reason is that the

] ’dififeren‘tial cross section and the photon polarization have invariant meaning,
and thus can be calculated in any convenient coordinate system, but the
helicity of a particle with nonzero mass does not have invariant meaning and
thus can be calculated only in the frame where it is going to be observed (we
call this the laboratory system in this paper which is different from customary

usage where one of the incident particles is at rest).

Nevertheless, for pedagogical reasons we have also calculated the po-

larization of e* in the second reaction in the center-of-mass system [see

Fig.10(c)], which is to be compared with that in the laboratory system [Fig.
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10(a)]. This serves as a textbook illustration of the fact that two successive
Lorentz boosts, not in the same direction, result in a Lorentz boost times a ro-
tation. This phenomenon is usually treated in textbooks [11] under Thomas
Precession. The illustration given here is easier to grasp than the Thomas

Precession.
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Appendix C. Compton Scattering in the p; = (m,0,0,0) Sys-

tem

Let us denote the incident photon energy and the photon scattering
angle in the rest frame of the initial electron by kj and 8" respectively. We

further define K=kj/m and X = cosf#*. We have then

2=1+42K, (c.1)
r=((K+1)X -K)/(1+K(1-X)). (c.2)

Substituting these expressions into Egs.(2.22) through (2.25) we obtain
Ny = 262X (K?X? - 2(K*+ K)X + K* + 2K + 2)/D, (c.3)

N, =261 - X)K(X* - KX + K +1)/D, (c.4)
Dy =28(-KX®+(K*+ K +1)X* - (2K* + K‘)X +K*+ K +1)/D, (c5)
Dy = 26X K(KX?* - (2K +2)X + K +2)/D, (c.6)

where D:-KX+K+1.

For the laser+high energy electron back scattering these expressions
can also be written in the more convenient variables u = w,/FE; and w =

4w, By /m? = up,, using the relations
K =w/2, (c.7)

X =1-2u/(w—wu). (c.8)

i We ;h ave
2u

_ 2 = 2 _
M =262 = 2u+u)(1 - e

)/ (1 —u) (c.9)

50



(2 - u)u 4u? 4u’

Nz = 26%( l1—u (1 —uw)w + (1 - u)2w2)’ (e10)
2 —2u + u? A4u 4u?

Dy = 26X l-u (I -—uww + (1 - u)2w2)’ (e11)

D=2y 2 (c.12)

1—u (1 -uw)w

In the Thomson limit we have K €« 1, w €« 1, u € 1, and X —

o

T (1 =2, thus

Ny — 482X = 4£%(1 - %‘), (c.13)
N2 - 0’
2u  2u?
D, .—>2§2(1 +X2)k= 4£%(1 _E+W)’ (c.14)
D2 — 0

=7+ Egs. (c.3), (c.6), (c.9) and (c.12) show explicitly that the origin for
the zeros for N; and D; is due to 6* being equal to n/2. Our Egs. (c.3)

through (c.6) agree with the results given by Lipps and Tolhoek[19].

Figure Captions

1. Feynman diagrams for the reaction laser (k;\;)+ electron (pA,) —

photon (kyAz)+ electron (pyAs).

2. The center-of-mass system for the reaction laser + electron — photon

+ electron, (s — Mk +p1 =k + 5 =0

3. Energy distribution and polarization of the scattered photon in the
- Compton scattering where v = w,/E;, D; is the energy distribution
" of the scattered photon given by Eq. (2.24), and A, B, and C are the

parameters for polarization defined by Eq. (2.38) for (a) w; = 3.5 eV,
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E; =1 GeV; (b) w; = 1.17 eV, E; = 50 GeV; and (¢) w; = 3.5 eV,
E, =500 GeV.

This graph illustrates that the polarization of scattered photons is
slightly enhanced if the incident electron is also polarized, in addition

to the incident laser whose polarization is the primary factor, with

w; =117 eV, E; = 50 GeV, and £ = 0.01.

Reaction sky; 4+ p1 — ky + p; for a strong laser beam (£ = 1) with
wy =3.5eV and E; =1 GeV, for (a) energy distribution, D, given by
Eq. (2.20) , and (b) polarization, Ny, given by Eq. (2.18).

The Nis, Nas, D1, and D, for laser-electron scattering as given by

Egs. (2.18)—(2.21), with w; = 1.17 eV, E; = 50 GeV, and { = 0.4 for

'- (a,)s:l,(b)S—‘_—Q,&nd(C)S::}‘

10.

Thé Nis, Nas, Dy, and Dy, for laser-electron scattering as given by
Egs. (2.18)—(2.21), with wy = 1.17 eV, E; = 50 GeV, and £ = 1.0 for
(a) s=1, (b) s =2, and (c) s = 3.

The Ni,, Nas, Di,, and D, for laser-electron scattering as given by
Egs. (2.18)—(2.21) with wy = 3.5 eV, E; = 500 GeV, and { = 0.4 for
(a) s=1, (b) s =2, and (c) s = 3.

The Ny, Ny, Dy, and Dy, for laser-electron séatterihg as given by

Eqgs. (2.18)-(2.21) withw;=3.5€eV, Ey = 500 GeV, £ = 1.0for (a) s =1,

r(b)s=2,and(c)s=3.

Feynman diagrams for the reaction laser (k;A;) + photon(kadz) —

electron(pyA4) + positron(paXs).



11.

12.

13.

- 14.

15.

-16.

17.

Kinemetics for laser (sk;) + k; — e*(p1) + e (p2). All momenta and

angles refer to the laboratory system.

Polarization of e* in Laser4++ — ete™ where A, B and C are defined by
Eq. (3.31) and u = E;/w, in the laboratory system for (a) w; = 15 eV,
wy = 50 GeV, s = 1, andé = 0.01; for (b) w; = 15 eV, w, = 500 GeV,
s =1, and ¢ = 0.01; and (c) for polarization of e* in the center-of-mass

system for wy =15 eV, w, =50 GeV, s =1, and £ = 0.01.

Energy distribution of e* in the laboratory system for laser++y — et +e~
with u = E;/w,. Curves plotted are for D, given by Eq. (3.24) for
(a) wiy = 15 eV, w, = 50 GeV, £ = 0.4, and for (b) w; = 15 eV,

wy = 50 GeV, £ = 1.0.

The Ni,, Nas, Dy, and Dy, for Laser+4 — e*e™ as given by Egs. (3.17

)_
(3.20) with wy = 15 eV, W, = 50 GeV, £ = 0.4 for (a) s = 1, (b) s = 2,

and (c) s = 3.

The Nyg, Nys, Dys, and Dy, for Laser++ — ete™ as given by Eqs. (3.17)-
(3.20) with w; = 15 eV, wp = 50 GeV, and ¢ = 1.0 for (a) s = 1,
(b) s =2, (c)'s = 3.

The Ni,, Nag, D15, and Dy, for Laser+v — e*e™ as given by Egs. (3.17)-
(3.20) with wy = 15 eV, wp = 500 GeV, { = 1.0for (a) s =1, (b) s =2,
(c) s =3.

(a) The energy distribution of e* from k + Z — ete™ ..., where Z

is a Tungsten target and u = E4/k, and (b) the polarization of e*

" from k+ Z — e*te” ---. Curves plotted represent P(e*)/P(k) for

k =20 MeV and k = 1.0 GeV respectively.
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