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1. Introduction 

If positrons and electrons can be ma.de circularly polarized and ren- 

dered to collide head on, interesting physics can be learned. Most spectacular 

would be observation of the nonzero annihilation cross section when the he- 

licity of e- is equal to that of e +. This will imply the existence of a spin 0 or 

-.. -- spin 2 particle coupled to the electron. Also in the interaction e+e- + r+~-, 

7* can be made highly polarized; this will give us a. handle to decide whether 
. 

7 is coupled to the right-handed W and the charged Higgs particle in addi- 

tion to the standard left-handed W. Pola.rized T* can also be used to test 

the CP violation in the r deca.y. 

-- In this paper we want to accomplish two goals. The first goal is to 

-: -investigate the properties of the two reactions mentioned in the title’y2. The 
- . 

second is to consider the merits of using these two reactions as sources of 

polarized y, e+ and e- beams. For the near term future, the best source of 

polarized e * beams will n lost likely be ordina,ry pair production of e* using 

the polarized photon from the first reaction. The reason is that for regular 

= pair production, y + 2 + e+e- + 2 + . . ., the threshold energy is only a few 

MeV and thus even a 20 MeV photon is sufficient to produce almost 100% 

polarized e* beams. 

In contrast to this, the pair production using the s.econd reaction 

requires a free electron laser (with photon energy > 15 eV) and a backward- 

scattered high energy 7 of several tens of GeV. The advantage of the latter is 
. -- _.. .-L that the transverse momentum of Pl of e* is much sma.ller than m, wherea.s 

‘t; 
in ordinary pair production PL is caused mainly by the Coulomb multiple 

scatterings of e* in the target, which is given roughly by 14 MeV fi where 

2 



t is the path length of e* in the target in units of radiation length of the 

target material. The transverse momentum Pl, as well as the spread of 

the longitudinal momentum AP, of e* beam, can be greatly reduced by the 

cooling rings, so it is not obvious that the smallness of Pl for e* produced by 

laser + y + e+e- has such a crucial advantage. Obviously, further detailed 

engineering studies must be carried out. 
-” *- 

. . 
When the intensity of the laser beam becomes very high, the coherence 

of laser photons becomes important [2,3]. In fact if the intensity becomes so 

high that the dimensionless parameter (see Appendix A) 

. 
‘_ where ny = number of photons /cm3 in the la.ser bea.m, w1 = laser photon 

-~ - .energy in eV, a=amplitude for the vector potentia.1 in radia.tion gauge, be- . _ 

comes comparable to one, then our treatment of the problem breaks down, 

because we assumed the convergence of a series expansion in E2. The cross 

section is the sum of cross sections, CoS, each of which is produced by s 

coherent incident photons. Roughly speaking the crS is proportional to t2’. 
.-- Thus when t2 - 1, ul,~2,“3,~4 ‘-’ have almost the sa.me ma.gnitudes. 

We follow the work of D. M. Volkov [l], who obtained the solution 

to the Dirac equation in the plane electromagnetic field in 1935, long before 

the invention of laser. Obviously, in order to a.pply his formahsm to the laser 

photon-electron interaction, the laser beam must have a larger dimension 

than that of the electron beam, and the laser photon wave length must be 

:.--.:-short compared with the intersecting length of the electron beam inside the Nit. . 
laser beam, in order to take the time-averaged va.lue of electron momentum 

in the laser field; such as is done in Eq. (40.14) of Ref. [l]. 
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For production of polarized 7 and e* beams, the coherence effects of 

the laser beam [i.e., cross sections with s>2 in Eqs. (2.11) and (3.1)] have 

many undesirable effects. Roughly speaking, the high-energy tips (within 

20 - 30% from the very tip) of the spectra of both reactions have charac- 

teristics of high intensity and high polarization. The locations of the tips 

,-- of the spectrum differ for each s as given by Eq. (2.34) for the reaction 

ski + pl + k2 + p2 and Eq. (3.30) for the reaction slci + k2 + pl + p2. 

. The tip of the spectrum for the s = 1 case is the most important energy, but 
.~ 

this point is somewhat below the energy tips for cross sections with s 2 2. 

Thus the contributions from s>2 do not have good pola.riza.tion character- 

- istics. near the tip of the spectrum for the s = 1 ca.se for both reactions. 

_ When the center-of-mass energies are high compared with the mass of the 
- . 

electron [see Eqs. (2.34) and (3.30)] u,,~ approaches unity for all s’s for both 

reactions, and the objectionable features of higher s contributions disappear. 

For low energies (i.e., when the center-of-mass energ). is not rela,tivistic), one 

should keep t < 0.5 and increase the laser pulse length in order to maintain 

good polarization and good intensity. 

In Sec. 2 we treat the differential cross section and the polarization 

of the scattered photon k2 for arbitrarily pola.rized X-1 and pi in the reaction 

laser (sh) + pl + k2 + p2. Measurement of the electron polarization using 

polarized laser beams is discussed. 

. -- In Sec. 3 we treat the differential cross section and the polarization 
_: .- ~- .-. 

of e& from arbitrarily polarized ICI and k2 in the reaction laser (ski) + k2 --+ 

e+(n) + Qp2). 
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In  S e c . 4  w e  treat th e  e n e r g y  d is t r ibut ion a n d  th e  po lar iza t ion  o f e*  

f rom a n  arbi t rar i ly  po la r i zed  (c i rcular)  p h o to n  in  th e  reac t ion  

k +  Z  -+  e + e -  +  . e  . 7  

w h e r e  Z  is a n  a tom ic  ta r g e t (numer ica l  e x a m p l e s  g i ven  a re  fo r  tu n g s ten) .  

In  S e c . 5  w e  summar i ze  a n d  d iscuss  ou r  results.  

2 . Laser -e lec t ron interact ions. 

.~  W e  fo l low c lose ly  th e  work  o f Vo lkov ,  a .s g i ven  in  R e f. [l]. In  th is  

sect ion,  w e  treat th e  in teract ion ski  +  p 1  --f k2  +  p 2  (see  Fig. 1).  

E a c h  e lec t ron  a n d  p h o to n  c a n  h a v e  two hel ic i ty states, a n d  th u s  th e r e  
. 

a re  a l together  s ix teen hel ic i ty amp l i t udes  fo r  e a .ch s. L e t us  d e n o te  e a c h  
- _ ~  

_  o f th is  .amp l i t ude  by  A S ~ 1 ~ z ~ J ~ 4  w h e r e  X 1 , X 2 , X 3 ! a .n d  X 4  a re  hel ic i t ies o f th e  

inc ident  p h o to n , th e  o u tg o i n g  p h o to n , th e  o u tg o i n g  e lect ron,  a n d  th e  inc ident  

e lec t ron  respect ively.  For  e x a m p l e , A s p n n p  m e a n s  X 1  is posi t ive,  X 2  is n e g a tive, 

X 3  is n e g a tive a n d  X 4  is posi t ive.  B e c a u s e  o f th e  p a ,rity conservat ion ,  w e  h a v e  

A  3x1 & X 3 X 4  =  A ,,-x,r-~ Z ,-~ 3 ,-~ 4 ; th u s  w e  n e e d  to  ca lcu la te  on ly  e i g h t hel ic i t>  

ampl i tudes ,  wh ich  w e  c h o s e  to  b e : 

A  s n n n n  , A  s n n n p  , A  s n n p n  3  A  s n n p p  7  

A  s n p n n  , A  s n p n p  7  A  s n p p n  1  A  S Q P I W  . 

O u r  ca lcu la t iona l  s t rategy is th e  fo l lowing:  w e  c h o o s e  th e  c e n ter-of-  

e  -- m a s s  sys tem to  o b ta in  exp ress ions  fo r  A s ~ ,~ 2 ~ 3 ~ 4  a .n d  th e n  eva lua te  th e s e  
_ : .- _  Ni. ex i ress ions  in  th e  coord ina te  sys tem w h e r e  th e  e x p e r i m e n t is car r ied  o u t. In  

th e  c e n ter -o f -mass system., th e  exp ress ions  fo r  ,4 ,x,x2,\3x4’s a .re th e  s implest .  
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The center-of-mass system we have used differs somewhat from the usual 

one, because of the presence of a laser field in which electrons not only 

acquire additional momentum in the direction of the laser beam but also an 

additional mass due to its helical motion in the laser field. Let us denote the 

four momenta of the laser photon, the outgoing photon, the incident electron, 

and the outgoing electron by ICI, k2, pl, and p2 respectively. Let q1 and q2 be 
-.. e4 

the quasi-four momenta of pl and p2 electrons inside the laser field: 

2 2 

Ql = p1+ ‘m kl, 
2~1 - kl 

(2.1) 

2 2 

Q2 = p2 -I- ‘m kl, 
2~2. kl 

(2.2) 

_ where t2 is the dimensionless parameter representing the intensity of the laser 

defined in Appendix A. 
-~ - 

. . 
From (2.1) and (2.2), we obtain the quasi-mass of the electrons in the 

laser field 

qf = qi = m2(1 + [“) f mf2 . 

-The energy momentum conservation is 

Sk1 + ql = k2 + q2 

or 

(s - v)kl + PI = kz + p2 

where 
2 2 tm 1 

( 

1 
77’2 --- . 

~2 -h PI . x-1 
_ I- 

--.- -.i- _ 
*. ; Our center-of-mass system is defined by 

(2.3) 

(s - q)& + pi = i2 + 52 = 0 . 
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In this system, the four vectors ICI, Icz, pl and p2 have the following compo- 

nents (see Fig 2) 

kl = 
( 

-q 0, 0, -E- 
s--7) S- ) 17 ’ 

(2.6~) 

kz = (p, psin0, 0, pcos8) , (2.6b) 

Pl = (e, 0, 0, -P) 3 (2.6~) 

P2 = (e, -psin6,0, -pcosO) . (2.6d) 

. . Since kl depends upon 17 in the coordinate system, we can substitute the 

expression for kl given above into Eq. (2.5) and solve for 7. We obtain: 

s 
s-q=- 

1SE ’ 

.-.‘. with-i = t2m2/2 x (1 - r)/[(e + p)(e +ps)] a.nd x = cos8. 

(2.7) 

- - a 
. _ A tremendous number of cancellations occur in the course of calcula.- 

tion. Since p and e are related by e2 = p2 + na2, the final expression cannot 

be unique if we treat e and p as independent va.riables. This is remedied by 

using the variable y = (e + p)/m. In terms of y, we have 

4Y2 + 1) e = 
2Y - 

P= 
4Y2 - 11 

2Y . 

(2.8) 

(2.9) 

We used the commercially available computer program [4] called MAPLE to 

obtain all our analytical expressions, as well a.s the numerica. results. The 

helicity amplitudes were obtained by explicitly writing down spinors u, u 

as 4 x 1 arrays, 6. and V as 1 x 4 arrays, and by using explicit representa- --.- -.i- _ 
*. - 

tions for all y matrices. MAPLE handled all the ma.trix multiplications and 

simplifications (see Appendix B). 
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Let the vector potentiairepresenting the laser field be 

A’ = til cos @  + ii2 sin Q’, (2.10) 

where @  = ICI . z = [p/(s - q)] (t - z). For X1 = positive, we have 

ii1 = ai, and ii2 = ai, , 

-., -- and for X1 = negative, we have 

ifi1 = at?, and . 
ii2 = -aey , 

where a is defined by Eq. (1.1). 

The matrix element for laser photon-electron scat,tering-see Eq. (101.9) 

.--. of Ref. [l]-can be written 

(2~)~ Es”_, J4bh + 41 - c/2 - x:2> &A,X~XA , 
(2.11) 

where 

A  S~lh~3~4 = B, Aosx,x,~3~4 + BI, Alsx,~2,\~,\4 + &s &\l~2,\3~4 , (2.12) 

Bl, = -f [Js-l(Z) + Js+1(=)] f 

B2s = ; [L(z) - A++)] , 

J, is a Bessel function of the first kind, 



Notice that we have chosen X1 = (-1) because cases involving X1 = +l can 

be obtained by mirror imaging, which reverses the helicities of all particles. 

-* *- Here, ex2 is the complex conjugate of the polarization vector for the outgoing 

photon. 

. . 
For X2 = positive, 

cosf3 -i -sin8 
f&= o’-p-pJ15 

.--. -- For X2 = negative, 

We notice Ao, Al, A2 are independent of s because only k1 is dependent 

on s and kl appears in both the numera.tor a.nd denomina,tor with equal 

power. The explicit representations of spinors a.re given in Appendix B. 

After obtaining the helicity amplitudes As,jlx,,,3A4 a.s shown in (2.12), 

.we can sum over the helicities of the outgoing electron Xs and obtain 

There are altogether eight Ws~l~z~3 ‘s, but only four of them are inde- 

pendent because of parity conservation, 

--.- -.--- _ 
Ni. - . 

W sflnn = r/r/,,,, ? 

W .?nnp = wppn 7 
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W *npn = wspnp ? 

W sww = wspnn * 

Suppose there are in total N events which are induced by four possible 

combinations of initial helicities N~,J,, . 

-.. *- N = N,+Nn,+Nnp+Np,. 

. . The number of events with X2 = positive is 

No = NPP c, KPPP + Npn Es Kppn + Nnp Es Wnp,, + -Iv,, C, wmpn . 
_ The number of events with X2 = negative is 

Let P(k,) be the polarization of k2. By definition 

P(k2) = z;; = (Npp - Nan) C, Dspp + (-%n - Kp) Es Dspn 
P n (N,, + Nnn) C, Sspp + (Npn + Nzp) C, Sspn ’ (2*14) 

where 

sspp - wsppp + wpnp 7 

Dspn - Wsppn - Wspnn , 

sspn = Kppn + w 

--.- -.L _ 
*. : 

Now the polarization of ICI is defined 

Npn - Nnn 
‘ckl> = Npn + Nnn = 

10 

spnn f 

bY 

Npp - Xtp 

Npp + n:,, ’ 
(2.15) 



and the polarization of pl is defined by 

NPP - NPn 
‘b*) = Npp + Npn = 

Nnp - Nnn 
Nnp + Arm ’ 

(2.16) 

From (2.14)-(2.16), we obtain finally 

P(h) = P@x) Es Ns + P(PI> C, N,, 
Cs Dxs + P(h)J’(px) c, D2s ’ 

(2.17) 

-.. -+- 
where 

. . 
Nxs = (D,,, + Dspn)/m2 , N2s = (Ds,, - Dspn)/m2 , 

Dxs = (sspp + Sspn)/m2 , D2s = (A’,,, - S&)/m2 . 

We let the MAPLE grind through all the a.bove computations and 

-_ .abtain the expressions for N,,, N2,, Dls, and Dzs as follows: 
. _ 

Nxs = {[-(6 + 2~9~3 - (2 - 2Zc>y] 62 + 4y5 - 4y3) ~J,(J,-, - J~+~) 
1 

+{(l + 62 + x2)y4 - (1 -2~ + x2)} ; [J,“_, - J;+,] , (2.18) 
1 

.-- N2.3 =- f-(4 - 4x2)(Y4 - Y’) t2 + (2 - 2x2)y6 - (2 + 4a - &r2)y4 

-(2 - 8~ + 6x2)y2 + (2 - 42 + 2x:‘)) ; J,” + ((2 - 2~)(~” - y> (2 

( sin 19 
+4xy5 - 4xy3) d J~(J,-I + Js+l) 

1 

-(4 - 4x2)(y4 - y”) $ J,ml Js+l 
1 

+(I - 2~ + x2)(y4 - 1) ; (J,“_, + J,:,) , (2.19) 
1 

Dxs = -8Jf + f [(5 + 2x + x2)y4 + (2 - 2x2)y2 
1 

+(l -2x + x2)] [Jim, + Js:1 - ZJ,‘] , ww _ 
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D2s = 6-P - W(Y3 - Y)l t2 + 4(y5 - Y”)} Js(Js-1 - Js+1) y 
1 

-(I - x)2(Y4 - 1) g (J,“_, - J,:,, , (2.21) 

where dr = y2[y2(1 +x) + (1 -x)1, z = cos0, and y = (e+p)/m, z and y will 

be given in terms of laboratory quantities later in Eqs. (2.36) and (2.37). 

-* e4 The lowest order Compton case for Eq. (2.17) can be obtained by 

letting s = 1, J, = ey sin 0[y”( 1 + z) + (1 - z)]-l, Js-l = 1, Js+l = 0, and 

retaining only t2 terms in Nr,, N2S, D1, and Dzs. The result can be written 

Nl = [“[y’(l + x) - 1 + x] 

x[y4(x2 + 2x + 5) + 2y2(1 - x2) + (1 - x)2] y2/& ) (2.22) 

N2 = t2(1 - x) [y6(x2 + 4x + 3) + y4(x2 - 6~ - 3) 
- - 

. . 
-(x2 - 1) y2 - (1 - x)“] y2/& ) (2.23) 

D1 = c2[y6(x3 + 3x2 + 7x + 5) - y4(3n:3 - 5~’ + .I- + I> 

+y2(3x3 - 3x2 - 3x + 3) - (x3 - 3x2 + 3x - l)] y2/d; , (2.24) 

.-. 
D2 = t2[y2(1 + x) - 1 + x] 

x[y4(-x2 - 2x + 3) + y2(2x2 - 2) - (1 - x)~] y2/d; . (2.2.5) 

The differential cross section for the process skr + q1 + k2 + q2 is 

proportional to D1,. 

---- @” d3q2 1 1 [ ( +] da, = 
4kl -91 (2~)~ 342 2420 

b4(skI+q1 -k2-q2) cy 4 TT )” , (2.26) 
. -. 

x which can be simplified into 

do, m2 D -= 
du 4wrEr52 Is ! 

(2.27) 
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where wl and El are laboratory incident photon and electron energies 

respectively and u = w2/El. 

Terms in the square bracket in Eq. (2.26) can be understood in the 

following way: (~47r)~ = e4 comes from incoming and outgoing photons 

coupled to the electron. The m2t2 in the denominator is equal to 47rcta2, 

-.. *- which is put there so that in the limit [ + 0 and s = 1, da, gives the 

Comptin cross section. This factor is evident by inspecting the definition of 

. . Agiven by Eq. (2.10). W e a so notice that in Eq. (2.26) the flux density is 1 

given by 4kl - ql, not by 4skl . ql. Conceptually this is because the number 

of photons acting coherently is not a priori given by the laser beam but is 

determined by the matrix elements of the interaction. The differential cross 

‘---- sect& is obtained by the sum with respect to all s: 
-. - 

. . 

Assuming that the size of the electron beans is much smaller than 

that of the laser beam, the number of events per incident, electron within an 

infinitesimal length dl (cm) of the laser bea.m is 

d2W da 
- = ny dl du , 

du 

where ny is number of laser photons per cm3 given by Eq. (Al). 

(2.29) 

Thus, the total number of scattered photons per incident electron in 

dl is [5] 

adlm2 o. c J urnax 
= 16El 

du 
s=1 

Gin 

1 
197 x lo--l3 cm MeV DI, 

13 



- 
- sm.- 

-.. *- 

a 

= 6.024 x lo3 d1 (cm) C=‘, [I: D1, du . 
G (GeV) 

(2.30) 

Now we see why we have to use the infinitesimal length dl instead of 

the total pulse length L of the laser beam. We know that W cannot exceed 

1, when u is near 1 because of energy conservation. For our purpose, it is a 

good approximation to assume that an electron once it is scattered by the 

laser photon will be lost as a scatterer to produce high energy photon. This 

assumption is justified by the shape of Dls, which has a more prominent peak 

at the high value of u than at the low value of u. If this a.pproximation is 

made, we can use the total cross section u as the coefficient of attenuation. 

We then have 

dW=n, exp{-n,ol} dl $ . 

Integrating the above with respect to 1 and u, we obtain the number of 

scattered photons per incident electron: 

W = (1 - exp{ -n,aL}) ; J,“y du cz, 2 . (2.31) 
mm 

This equation is applicable when both ZJ~,, and u,,, are not much 

smaller than 1. On the other hand, when u is much less than 1, an elec- 

tron can scatter with the incoming la.ser photons ma.ny times before losing 

a substantial fraction of its energy. In this ca.se there can be more than 

one back-scattered photon per incident electron, and thus I/T; can be greater 

than 1. This happens, for example, when El = 1 GeV and wl = 1 eV, 

and thus u,,, = 0.016 for 5 + 0 and s = 1. When the multiple scatter- 

ing is important, we need to consider the stra.ggling instead of the attenua- _: .-- _ Ni. 
tied. The problem of straggling can be handled by the Monte Carlo method 

numerically. 
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T h e  numer i ca l  eva lua t ions  o f Nl,, N ,,, D IS , a n d  D z S  a re  pe r fo rmed  in  

th e  fo l l ow ing  w a y : w e  first speci fy  th e  va lues  o f inc ident  laser  p h o to n  e n e r g y  

(wr)  a n d  inc ident  e lec t ron  e n e r g y  (El) ,  a n d  laser  intensi ty ([). S ince  th is  is 

a  two-body  p r o b l e m , th e  labora to ry  a n g l e  0 1  (wh ich  is th e  a n g l e  b w tween  c2  

a n d  p i )  is re la ted  to  th e  labora to ry  scat tered p h o to n  e n e r g y  w 2  E  E ru  by  

B ,= $ /w($l)  - (1+P) ,  

w h e r e  yi =  E l/m , w  =  4sElw l /m2,  o r  

JJJ2 u = - =  

- E l  

f rom wh ich  w e  o b ta in  u G ;, =  0  

._- 

1  
1  +  (1  +  t2  +  y,28f) /w ’ 

a n d  

1  
-  -  a  u m a x  =  1  +  (1  +  6 ’) /w . 

- . 
T h e  a r g u m e n t fo r  th e  Besse l  fu n c tio n  is 

z  =  2 W i(l/U - 1 )  . 

(2 .32)  

(2 .33)  

(2 .34)  

(2 .35)  

T h e n  y a n d  x a p p e a r i n g  in  Ni,, Iv,,, D IS , a n d  Dzs  c a n  b e  wri t ten in  te rms  

o f - laboratory q u a n tities  as  

e + P  
[ I 

1 1 2  

yr -TT= 1 + w + &  i 

w ;e ; l i2 
x E c o s e = -  l-- 

(  )  P 2  
s ign  , 

(2 .36)  

(2 .37)  

w h e r e  s ign  =  [u  - 0 .5  (1  - y W 2 ) ]/ 1 ~  - 0 .5  (1  - ye2) l ,  a n d  p  =  m (y2 - 1)/2y. 

For  c o n v e n i e n c e  o f d iscuss ion  w e  h a .ve spec i f ied  E l, wi, u , a n d  t as  __ -  .-- _  x  
i n & t var iab les  fo r  eva lua t ing  D IS , D z S , Nl,, a n d  A l,,. H o w e v e r , th e s e  func -  

tio n s  d e p e n d s  o .n ly  o n  c e n ter-of-  m a s s  ene rg ies  2 0 , u . a n d  [. In  o ther ,  words ,  
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these functions depend only the product Elwl, but not El and wl separately. 

Here u,, depends only on w and [, as seen from Eq. (2.34). Thus, as long 

as Urnax and [ are given, the functions Dls, Dzs, N,,. a.nd N2S are specified. 

From the definitions of Nl,, Ns,, Dls, and Dzs given in Eq. (2.17), 

we obtain 

. . 

-* *- A = 

= 

B’ = 

_- = 

-~ a 
. . 

c = 

= 
do(X1 = X4) - da& = 4) 
da( Xl = X4) + da(X1 = --A,) ’ 

(2.40) 

where, for example, da(X1 = X2) means the differential cross section (da/du) 

Es Nls 
Es as 

d&b = A,) - da(Xl = -X2) 
da(X1 = X2) + dn(& = -X2) ’ 

da(X4 = X2) - da&, = 4,) 
da(X4 = X2) + da(X4 = -4) ’ 

Cs D2s 

C, 4s 

(2.38) 

(2.39) 

.-- 
in which As and X4 are summed and Xi and X2 are set either both positive 

or both negative. From the parity conserva.tion, the two possibilities have 

equal probability. These relations tell us that A, B, a.nd C are not just the 

coefficients of P(kl), P(pl), and P(kl)P(pl) in the definit,ion of P(kz), 

P(k,) = P(h)A+P(pl)B 
1 + P(h) P(pl) c * 

(2.41) 

_ -- ---..-~ but also that they have definite physical meanings. In fact, the quantity C 
x -; 

defined in Eq. (2.40) plays a very crucial role in the measurement of helicity 

of electrons using the polarized laser photon bea.ms shown in the following. 
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Measurement of Helicity of e* - using circularly polarized laser beams 

At SLAC the helicity of the electron bea.m is measured in two ways: 

one by the Meller scattering on the polarized atomic electron target and the 

other by the Compton scattering on the circularly polarized laser beam. Here 

we describe the latter. Let the number of events induced by the positive 

,c- @l 
= p) and negative (Xl = n) helicity laser beam be N(p) and N(n) 

respectively. We have 

-~ a 
. . 

N(P) = Nw c hv + c h.w 
s s 

+ Nnn c Wnpn + C r/r/‘,,,, . 
s s 

(2.42) 

(2.43) 

Then the asymmetry can be written 

A N(P) - NW P(h) + P(PI> c 

sym E N(p) + N(n) = 1 + P(kl)P(pl) C __f ‘(“)’ ’ 
(2.44) 

If we let the number of positive helicity photons used to mea.sure N(p) be 

equal to that used to measure N(n), then P(k,) becomes zero, and the last 

expression results. Since C as given by Eq. (2.40) is a. calculable function, we 

can obtain the polarization of the electron P(pl) bJ. mea.suring A,,. This 

technique is well known. Our contribution here is to include the effects due 

to contributions from s 2 2. In the measurement of the polarization using 

--.- -.2 the asymmetry, the energy of the outgoing electron E2 is measured. Since 

= E2-i El(l -u) , we can see the E2 dependence of Asym from graphs shown 

in Figs. 3 and 6 through 9. The most interesting fea,tures of these curves a,re 

17 



that D2., and Nld have zeros at the same value of u, which corresponds to 

the photon scattering angle of 90” in the rest frame of the initial electron, 

given by 

I& = 
1 - (1+ ;w + fr’,-l 

l+$ ’ 
(2.45) 

where w = (4swlEl)/m 2. The value of u. increases as s is increased, but 

-* *- it decreases as [ is increased. When [ is large and the s > 2 contribution 

becomes important, the zero in the s = 1 contribution becomes partially 

filled. We also notice that in the Thomson limit, 20 + 0, we have DzS = 0, 

and thus the method cannot be used in this limit. 

There must be a simple reason why these zeros occur for Nl, and _. 

‘-- D2,;.but not for N2,. At this moment, this author is una.ble to find a simple 
- - 

-~ - explanation. . . 

Observations: 

1. From the expression of urnax given by Eq. (2.34). we see that if the 

.-- center-of-mass energy is much greater than the effective mass m*, then 

urnax approaches unity. On the other hand, if 4Elwls << ~2~(1 +r”), we 

have u,,, --t 0. If 4Elwl > m2( 1 + t”), then PL,,,, approaches unity for 

all s. On the other hand, u,, changes greatly for different s’s when the 

center-of-mass energy is comparable to or less than 772*. In the latter 

case, the modes with s 2 2 spoil both the energy distribution and the 

quality of polarization of the scattered photon beam. Thus [ should be --.- -.2 _ 
3&f. . 

chosen much less than 1, but the laser pulse length should be increased 

to obtain high luminosity. See Eq. (2.31). 
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2. The CT, is roughly propdrtional to J*‘. Thus when [* is much less 

than unity, only o1 survives, and it reduces to the Compton scattering 

cross section. In the Compton limit (i.e., <’ --+ 0) we may write the 

polarization of the scattering photon [see Eq. (2.17)] 

-- -- 

+I )A + %I )B 
p(k2) = 1 + P(k,) P(p,)C ’ 

(2.46) 

with A = N,/D,, B = N,/D,, and C = D2/D1, where N1, N2, D1, and 

. . D2 are given respectively by Eqs. (2.22-2.25). In Fig. (3) we show A, 
.- B, and C in Eq. (2.38) for th ree sets of energies: (a) w1 = 3.5 eV and 

El = 1 GeV, (b) w1 = 1.17 eV, and El = 50 GeV, and (c) w1 = 3.5 eV 

and El =. 500 GeV. The values of u,,,, for each case indicate how 
. 
relativistic the reaction is in the center-of-ma.ss system. (a) is the low- 

-~ 
. _ energy case and almost the Thomson limit, which is characterized by D1 

being symmetric with respect to u = urnax/ andA being antisymmetric 

with respect to u = u,,, /2 and B = C = 0. In t,he Thomson limit, the 

polarization of k2 is opposite to that of kl a.t the high-energy end, but at 

the low-energy end it is the other way. The pola.riza,tion of the incident 

electron does not contribute to the polariza.tion of X-2 in the Thomson 

limit because B ---f 0. As the center-of-mass energy is increased, the 

energy distribution (i.e., 01) gets skewed towa.rd the high-energy end 

and B becomes more prominent and A becomes less s.0. This means 

that at high ceriter-of-mass energy the polariza.tion of k2 is dominated 

by the polarization of the incident electron (pl). 

. -- --.- -.:- _ 
Nii> - 

- Figure 4 illustrates that at an intermedia.te center-of-mass energy 

(WI = 1.17 eV, El = 50 GeV), if th e incident electron (yl) and the laser 
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photon (ICI) are polarized, it somewhat improves the polarization of the out- 

going photon (k2). 

Figure 5 illustrates the effect of high t. The energy is the same as 

in Fig. 3(a); i.e., almost the Thomson limit. For simplicity we consider that 

only the laser beam is polarized, so that the polarization of k2 is 

-- -- P( kz) = P(h) CL, ha/ CL, D1, . (2.47) 

The denominator of the Eq. (2.39) g ives the energy distribution-Di, 

for s = 1, 2, and 3 are displayed in Fig. 5(a), and Ni, is displayed in Fig. 5(b) 

for [ = 1. We first notice that higher s contributions to the numerator and 

._,I the denominator tend to spoil the characteristics of polarization and the 

_ energy distribution respectively. We conclude that a. high value of E is not 
- . 

desirable at low center-of-mass energy. 

In Figs. 6-9 we present graphs for Ni,, Al,,, and DIS, 0x9, defined by 

Eqs. (2.18)-(2.21) f or t wo set of energies, two values of [ and three values of 

s. The most interesting characteristics of cases with Y 2 2 is that at u = urnas 

and u = 0, all these functions are zero, whereas for s = 1 these function have 

maximum at u = u,,,. This is because the Bessel function at the origin is 

nonzero only for Jo(O) + 0, w ic h h can happen only when s = 1 for JS-l (0). 

Thomson and Pseudo-Thomson limit 

Let us denote the limits t -+ 0 and w - 4zui El/m* + 0 as the 

. -- ;.. -.:- Ill omson limit, and 20 + 0 but [ is not small as the Pseudo-Thomson limit. 
w. -; 

For example, scattering of a laser beam by an electron beam of less than 

100 MeV belongs to the Pseudo-Thomson limit. In the Pseudo-Thomson 
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limit we have 

y* = G/m 
d-v’ 

Y2 = 1+w-t*u, 

. .--. 73: = -(+-&) ’ 

(2.4s) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

_~ 
. . 

N, = [ -4t3sin8 + (F) xe*] J, (Js-, - J,+,) , (2.53) 

N2s = 0, 

D1, = -8Jf + 4[* [J;wl + J;+l - 2 J;] . (2.54) 

Dzs = 0. 
.-- 

When ~~8, << 1, we have z + 0 and thus only s = 1 is important, and 

furthermore J, = z/2, Js-l = 1, and J,+l = 0. In this limit, we have 

Nl, = 4t*x ) (2.55) 

Dll = x2 (1 + x’) . (2.56) 

;fr:- T& polarization of k2 is thus independent of the polariza.tion of p1 and 

P(b) = + P(h) . 
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The energy and angle of k2 are related by 

U 1 
- = 1+ y+20; ’ U max 

with u,, = 4wlElfrnq. 

The differential cross section is 

do 
25 (1 + 22) . 

du= w 
(2.59) 

(2.58) 

The Thomson limit is obtained by setting t = 0 in Eqs. (2.57) and (2.59). 

We have used the rest frame of (p2 + k2) to obtain the relatively com- 

pact expressions for Ni,, N2s, DIS, DzS as shown in Eqs. (2.18) through (2.21). 

The-simplification occurs because in this frame the complicated expression 

-(s - ~),occurs only in the definition of kl as shown in Eq. (2.6) and ICI ap- 
. 

pears with equal power in the numerators and the denominators of A,-,, Al, A2 

defined by Eq.(2.12). Thus A,-,, Al,Az do not contain the factor (s - 77) in 

this frame. In the Compton limit s - 77 = 1, so we do not have to resort to 

this frame. Actually we can obtain simpler expressions for Ni, N2, D1, 02 in 

the rest system of the initial electron pl = (m,O,O,O). In Appendix C we 

give expressions for Ni, N2, D1, D2 in the rest system of the initial electron 

and also in terms of the variables u = 02/El and w = 4&i El/m*. 

3. Laser (ICI)+ high energy photon (kz) --+ e+ + e-. 

Our purpose here is to investigate the properties of e+ or e-, 

including their polarization when both ICI and k2 are circularly polarized. --.- -.L _ 
*. - 

The initial state can have an even or odd number of photons in the reaction 

ski + k2 t pl + ~2. Since amplitudes for different s’s do not interfere, the 

. -- 
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final state has a definite charge parity for a given s; thus one cannot distin- 

guish e- from e+ in this problem. However, we sha.11 call pl positron and 

p2 electron for convenience in applying the substitution rule to the previous 

problem. The Feynman diagrams for the present problem (Fig. 10) and the 

previous problem (Fig. 1) are related by the substitution rule: k2 + -kz, 

Pl -i -P1, u(n) + v(-pl), and E; + c2. 

.Let us denote the helicity amplitude in the laboratory system by 

. T S~l~z~B~l for the reaction ski + k2 + e+ + e-, where X1, X2, X3 and X4 

are laboratory helicities of ICI (laser), k2 (high energy -/), p2 (electron) and 

p1 (positron) respectively. Again out of 16 helicity a.mplitudes, only 8 are 

independent because of the parity conserva.tion, which results in TS~l~z~J~, = 

.--- T,,-x,,-A,,+,+. 
-. - 

. . The matrix element for laser photon plus high-energy y -+ e+e- can 

be written 

(27d4 CL, 64(skl+k2-Q1 92) TsA1X2X3X4 , (3.1) 

where qlo, q20 and w2 are all laboratory energies of ql, q2 a.nd k2 respectively. 

The helicity amplitude TS~l~z~J~, can be writt,en as 

T Sh~2~3~4 = &To+ ~2x3~4 + BdLl~\2~\3,\4 + B2s T2S,i&x\3,i4 3 (3.2) 

where B,, Bl,, and BzS are the same as those defined in &,q. (2.12). The 

_ - 

argument of Bessel functions z is now 

be, 
z = 2wr(l-4 ’ (3.3) 

-.--- -ir;; 
where 19~ is the laboratory angle between pi and c2 (see Fig. 11)) wl is the 

energy of the laser photon, and u = E r / w2 with El a.nd w2 being the energy 
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of the outgoing positron and the incident high energy y respectively, and 19~ 

is related to u by 

1 
81 = - 

UW2 
4SWlW2U( 1 -u) - m*(l + [*)]l’* , 

and t is the parameter defined in Appendix A. 

T OSXl x2 x3 x4 = $P*, ~3Mx27+Pl, x4> , (3.5) - 

,. 

_~ 

T tm 
lSx1~2%,& = qp2, x3> - 2 

(3.6) ; 

T b-n 
2SXl A2 x3 x4 = c(p2,.x3) - 2 

[ 
&gYYBlbh2 + &$A2k,] c-P17 X4). 

P-7) 

‘-- Here, ex2 is the polarization vector for the high energy incident photon k2: 
_ - e .- _ for X2 * positive, 

ex2 = (O,&,-&,O) ; 

for X2 = negative, 

ex2 = (0’5, fi > --2 0). P-9) 

2 2 

Ql = Pl + ‘m kl. 
331 . h 

2 2 

42 = P2 + ‘m k 
2p2. k1 ’ ’ 

(3.10) 

(3.11) 

The explicit representations of spinors are given in Appendix B. Using 
. -- 

-<Y- the-notations of (B.l) through (B.4)) we have 

U(P2, h> = U(P*,t92, TIT, f.5) , (3.12) 
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“F-PI, i, = “(Pdd, f.5) . (3.13) 

The ~2, 62, pl, and 01 can all be written as functions of u, wr, ~2, and [. 

Equation (3.4) gives 81. 

Assuming w2 >> wr, El >> m, E2 > 112, 02 << 1, and Or << 1, we have: 

El = w2u , (3.14) 

E2 = w2(l - u) , (3.15) 

_~ 62 = 01E1/E2 . (3.16) 

Using exactly the same argument as in Set . 2, we obtain the differential 

- cross section and the polarization for the positron (also applicable to the 

-electron because of charge symmetry). - 
- _ 

From the helicity amplitudes, we obtain the differential cross section 

and the polarization for the positron (also applicable to t#he electron because 

of charge symmetry) in terms of Nr,, N2,, Dlsr a.nd DzS defined a.s follows: 

N2s = & cx1x3(%nx311 + TsZX,pX3p - ChpAsn - cAln,A3J ’ (3.13) 

D1s = & CA1XZh3XI Tszw2A3A4 ’ (3.19) 

D ss = & CX3~4(TSZnnx3x4 + T&x3x4 - TsZ,Pxsx4 - Ts2pnX;X4) , (3.26) 

where n and p refer to negative and positive helicities respectively. 

. -- _: .-- _ The differential cross section for ea.ch s is 
&. .- 

do, = -!- 1 ~ 6 [(Sk1 + k2 - ql)* - m;] 
8~1~2 (2~)~ 2qlO 

[(o4~)*+$] , (3.21) 
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which can be simplified to 

da, ml2 
du= 4ww2t2 

Dls . 

. . 

The total cross section is 

(3.22) 

where urnax and uhn are given by Eq. (3.30). 

The polarization of e+ (or e-) is 

%d = P(p2) = 
W) x.9 Nls + P( X:2) c, N2, 

c, Dls + P( b,)P( A-,) C, Dzs ’ 
(3.23) 

. -- 
_: .-- _ 
‘fI. : 
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We notice that in Dr, and &, the spins of both the electron (A,) 

and positron (As) are summed, and hence they ca.n be calculated in any 

frame. We have calculated these two quantities in both the center-of-mass 

and the laboratory system. The numerical results agree completely. In the 

center-of-mass system, simple analytical expressions for Dr, and DzS can be 

obtained: 
-* -+- 

4, = J,24 + 2t2 ‘:: “ $;: ( J;sl + Js:1 - 2J3 . (3.24) 
. 

. 

D2s = -JS(JS-l - JS+l) $$ ( e2 + p2x2) 

+(J,“_, - J,:,) “m 
-2 e4 - P4X4 

(s - T# 2p2( 1 - x2) * 
_~ - 

. . Here the center-of-mass system is defined as: 

pl = (e,psin8,0,pcos8) , p2 = (e,-psin8,0, -pcos8) , 

h = k, O,O, --4/b - II> , k2 = (e,O,O,e) , 

x = cos 8 ) 
s(e2 - p2x2) 

’ - ’ = (e2 - p2x2) + t2m2 ’ 

2s[mp sin 0 
* = p2sin28+7722(1+[2) ’ 

Here, e, p and x are related to the laboratory qua.ntities by 

(3.25) 

(3.26) 

e2 = w1w2(s - 7) , (3.27) 

sin0 = pl sin&/p , (3.28) 

case= JGFe (u-;)/iu-;i , (3.29) 



. . 

(3.30) 

In Figs. 12 (a,b), we display the polarization of e+ (or e-) in the 

Compton limit ([ = 0.01,s = 1) for low-energy (i~r = 15 eV and w2 = 

-* e4 50 GeV) and high-energy (wi = 15 eV and w2 = 500 GeV) cases, respectively. 

The functions A, B, and C are defined as 

P(e*) = P(h)A + W2)B 

1 + P(k,)P(k,)C’ - 
(3.31) 

where P(e*), P(k,) and P(k2) are longitudinal pola.riza,tions of e*, Icr and 

_,. k2 respectively. From (a) and (b) we see tha,t nea.r the high-energy tip (u E 

-_ .&/w2 * urnax>, P(e*> is d t e ermined most.ly by P( XT,). This is especially\ 
- _ 

true at high energies. 

. 

Figure 12(c) gives the values of A, B, aad C evalua.ted in the center- 

of-mass system. These curves are given purely for peda.gogical purposes. The 

parameters used are the same as those for Fig. 12(a.); namely, w1 = 15 eV, 

w2- = 50 GeV, and [ = 0.01. The fact tha.t .4’s (and B’s) differ in two 

different frames are related to the Thomas precession [II]. It is easy to see 

that a particle having a spin parallel to its direction of motion is not a frame- 

independent concept if m f 0, because one can a.lways go to the particle’s 

rest frame and then boost it in a direction tha,t is different from the spin 

direction. The u = (u,,,, 0.5, urnin) correspond to cos 8 = (l,O, -1). The 

_ -. --...-~ A and B are mirror images of each other in the center-of-mass system, but 
x -; 

not in the laboratory system. The values of A (or B) in both frames are 

similar at u ---f %ax (i.e., 8 --f 0 in the C.M.), but t,hey become opposite near 
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u + Ufin (i.e., 0 + a in the C.M.). This is easy to understand because if the 

spin of a particle is parallel to its direction of motion in the center-of-mass 

system, it will still be parallel near u = u,, in the laboratory system, but it 

will be antiparallel near u = uh,, because the direction of motion is reversed 

by the Lorentz transformation. We also notice that C’s are identical in two 

cases, because both the electron and positron spins are summed in Dls and 

'-- Dzs (C = D2s/D1s with s  = 1). The agreement in numerical values of C 

in two cases gives us a very welcome check on our calculation. We should 

remind the reader that the mass of the electron ca.nnot be ignored in this 

problem because the center-of-mass energy is not high compared with 172, 

even though both e+ and e- have energies of tens of GeV in the laboratory. 

-. In Figs. 13(a,b) we plot Dls, which gives the energy distributions for 

.--.-it ( or e-). We notice that all the graphs are symmetric with respect to 

u = l/2. This can be understood in the following wa.y: the final state 

e+e- must be symmetric with respect to the exchange eS H e- because 

it has a definite charge parity for a given s. Thus in the center-of-mass 

system where e+ c) e- is equivalent to 8 -+ 7r - 8, t,he angu1a.r distribution 

= -must be symmetric with respect to 6 = 7r/2. According to Eqs. (3.4) and 

(3.28,3.29), u = l/2 corresponds to 6 = 7r/2, a.nd the reflection through 

u = l/2 in the laboratory system is the same as reflection with respect to 

8 = 7r/2 in the center-of-mass system. This explains the symmetry of these 

graphs with respect to u = l/2. From these energy distributions we also 

notice that events are concentrated in the high energy and low energy ends. 

As the laser intensity (<) is increased, the range of ‘u decreases for a given s  --.- -.:- 
w [sei.Eq. (3.30)]; b u t events with large s  participating become more prominent, 

and events with jarger s  have a larger range (u,,, - uhn) of u. 
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The number of positron (or electrons) produced per incident high 

energy y (labeled k 2 ) in the laser beam from I to Z+ dl can be obtained from 

Eq. (3.18): 

adlm2 o3 c J wnax 
dW = dln,o = x Dlsdu ( 

1 
2 

.9=1 197 x lo-13 cm MeV ’ %in > 
(3.32) 

where .dl is the longitudinal path length of k2 in laser in cm and n? is the 

. . 
number of photons per cm3 of laser given by Eq. (A.3). We use the ex- 

pression of Dl, given by Eq. (3.24) and u,,, and uh;, given by Eq. (3.30). 

Equation (3.32) can be simplified into 

. 
dW = 6.024 x lo3 

dl (dm) 
w (GeV) 

Es”_, j-1,” Dls du. (3.33) 

Inspection of numerical values of D1, shown in Figs. 13(a,b) tells us - . 
that Eq. (3.33) can be valid only when dl << 10m2 cm even for [ = 0.4, 

otherwise dW is almost equal to unity or even exceeds it. Obviously, it is 

energetically impossible to create more tha,n one high energy e* from one 

single high energy photon. Thus, attenua.tion of t,he x:2 1~ea.m a.s it goes 
.-- through the laser beam must be taken into account. 

Let L be the pulse length of the laser beam in cm (- 0.05 cm, for 

example, used in Ref. [3]), then the total number of e+ (or e-) produced per 

incident k2 with uh,, < u < urnax is 

= (I- exp{-an,L}) i lUrnax du $ . (3.34) 
min 

30 



-  

-  S - L  

This  s h o w s  th a t W  c a n  neve r  e x c e e d  uni ty  as  e x p e c te d  a n d  in  ou r  

e x a m p l e s  s h o w n  in  Figs.  1 3  (a,b),  W  is near ly  unity.  Excess ive  laser  intensi ty 

d o e s  n o t p r o d u c e  m o r e  e  l . W e  a lso  n o t ice th a t th e  a .tte n u a tio n  d o e s  n o t 

a ffect  th e  spect ra l  s h a p e  o f e  l . S u m m ing  th e  c o n tr ibut ion f rom al l  s’s, w e  

s e e  b road ly  speak ing  th a t th e r e  a re  two b u m p s  in  th e  spect rum,  th e  h igh -  

e n e r g y  b u m p  a n d  th e  l ow-ene rgy  b u m p . E q u a tio n  (3.4)  c a n  b e  wri t ten 
-* e 4  

. . 
P 2  1 1  =  4Su+(U- ; )2 ]  -“2 (1+ [2 )  

(3 .35)  

- w h e r e  P ll =  E l&  is th e  t ransverse m o m e n tu m  o f e*. 

- ~  E q u a tio n  (3 .35)  h  s  o w s  th a t th e  t ransverse m o m e n tu m  o f e*  is very  
. . 

smal l  n e a r  u  =  u rnax  o r  u  =  Uminy  a n d  th e  two b u m p s  h a v e  i d e n tical P L  

dist r ibut ions.  For  e x a m p l e , fo r  w 1  =  1 5 e V  a n d  w 2  =  5 0 G e V  w e  h a v e  

P tl =  3 5  x 1 0 1 2 ( e V ) 2 ( u m a , - u ) (u  - hi,) ; (3 .36)  

.-- th u s , n e a r  u  =  urn,,  o r  u  =  u A ;,, w e  h a v e  P II <  m . 

In  c o n trast to  this,  pos i t rons a re  u s u a .lly p r o d u c e d  by  imp ing ing  a n  

e lec t ron  b e a m  o n  a  tu n g s te n  ta r g e t. T h e  e lec t ron  first p roduces  b remss t rah lung  

in  th e  ta r g e t, a n d  th e n  th e  p h o to n  p roduces  a  pair .  T h e  di rect  e lec t roproduc-  

tio n  o f a  pa i r  is usua l ly  neg l ig ib le ,  b e i n g  equ iva len t  to  a b o u t 0 .0 2  rad ia t ion  

l e n g ths  o f ext ra  ta r g e t th ickness,  acco rd ing  to  th e  W e iszacher  W i l l iam’s ap -  

_  -- -..-.- p rpx imat ion  [6 ]. T h  e  e n e r g y  d is t r ibut ion o f pos i t rons by  a  m o n o e n e r g e tic 
Ni. : 

inc ident  e lec t ron  o n  a  ta r g e t o f t rad ia t ion  l e n g ths  c a n  b e  fo u n d  in  Tsa i  a n d  

W h itis [7 ]. T h e  ,P l d is t r ibut ion is m o s tly d u e  to  m u l tip l e  c o u l o m b  scat ter ing 
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of the incident electron and the outgoing positron. The PL is given roughly 

bY 

< PL >ave= 14.1 MeV& , 

where t is the sum of path lengths of the incident electron and the outgoing 

positron in radiation lengths in the target. For example, at SLAC the total 

radiator thickness is 6 rl. Part of this is traversed by the photon, so the 
-- -- 

effective t is 2 - 3 rl. The average Pl of e+ from the pair production in a 

. . thick target is about 20 MeV, whereas from the laser it is less than 0.5 MeV. 

_- Thus, as a positron source, laser + y + e+ + e- is potentially much better 

than the existing method of using the thick ta.rget, provided that we have a 

free electron laser with sufficient intensity and a. very high energy electron 

-‘. acceikrator. 
-~ a 

. . In Figs. 14-16 we show N1,, Nzs, Dls, a.nd Dzs in the laboratory 

system for two sets of energies (wl = 15 eV, w2 = 50 GeV and w1 = 15 eV, 

w2 = 500 GeV) and two laser intensities (t = 0.4 and [ = 1.0). We make the 

following observations on these figures: 

6 Since D1, is symmetric with respect to u = l/2, there are an equa.1 

number of low- and high-energy e* clustered a.round urni, and u,,. 

l The polarization of k2 and e * helicities a.re nea.rly the same near u,,. 

The polarization of e* near urn,, can be increa.sed slightly if kl is made 

to have the same helicity as that of k2, beca.use nils and N2, have the 

_ -. 
same sign near u,,. 

--.--.--- _ 
xi. . 

l Near u = uhn, the quality of polarization is not so good. The polarization 

of ef near. uhn is mostly determined by the polarization of kl (laser 
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beam) and their helicities are opposite. Again, if both kl and k2 are 

polarized and have the same helicity, the polarization of e* near u = 

uk will be slightly enhanced compared with having only kl polarized. 

4. Polarized e* from Pair Production in an Atomic Target 

. . 

-.. *- .Polarized e* from the photopair production was first investigated by 

Olsen and Maximon [8]. They included only the elastic atomic form factor. 

We include here the contribution from the inela.stic atomic form factor in the 

manner of Wheeler and Lamb [9], using the Thomas-Fermi-Moliere model 

of atoms, which are ‘suitable for atoms with 2 > 5 (see Table B.2 of the 

- authpr’s Review-of Modern Physics paper [6]). ._. 

-- - 
. . 

Since the angular distribution of e* from pa.ir production is caused 

mostly by the multiple Coulomb scattering, rather than by the production 

mechanism, the angle can be integrated out so that only the energy distri- 

bution is relevant. Both the energy distribution a.nd the polarization of e* 

can be written in terms of four functions: 

.- 

91 = 20.863 - 2 ln( 1 + b2) 4barctan 0 f t 111 2 - - - 
3 4-f ) (4.1) 

cp2 = 20.196 - 2 ln( 1 + b2) + Sb2 1 - barctan 0 i 

(4.2) 

q!~~ = 28.340 - 2 ln( 1 + !I’~) - 4b’ arcta’n 
0 

f - i In 2 , (4.3) 

I- 
-ii:- -; IJ!J~ = 27.673 - 2 ln( 1 + ,‘2) + NI’~( 1 - b’ arct.an 

0 
b 

-0.75(1 + $) - 5 1112 ) (4.4) 
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where 

b = ,ku;;*~“,;,X, ’ (4.5) 

b’ = ,ku;;2!1;333 ’ P-6) . 

are roughly qdn x atomic radii for elastic and inelastic atomic form factors 

respectively [6]; f is the Coulomb correction to the one-photon exchange 
-- -+- 

approximation worked out by Bethe and Maximon [lo], 

. . 

_- 
f(x) = 1.202x - 1.0369z2 + ‘;yr2 , (4.7) 

where x = (2/137)2 .and 2 is the atomic number; k is the photon energy, 

and u = E/k with E the energy of the e*. 

where 

The differential cross section is then 

The polarization of e* is 

P(e*) = P(k) G , 

(4.8) 

(4.9) 

where 

-. I- 3 G = ~“((2~ - _ -. L lb1 + 5” - 454 + Z((2u - l)& + $1 _ u)$2)]/ F ) 
--.--.--- _ 
x . 

and P(k) is the polarization of the incident photon obtained by the backward- 

scattered laser beam defined by Eq. (2.17). 
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In Fig. 17(a) we have plotted F/78400 for 2 = 74 (Tungsten). The 

number 78400 is a normalization factor in order to make the end points in 

the complete screening limit (k = oo) equal to unity. 

In Fig. 17(b) we plot the polarization of e*, assuming the incident 

photon is completely right-hand polarized; i.e., P(k) = 1 in Eq. (4.9). The 

-.. *- polarization is quite independent of energy-k = 1 GeV and k = 20MeV 

cases are plotted and they are hardly different. Near u,,, the polarization 

is 100%; at u = 0.9, the polarization is 98%; a.t u = 0.8, it is 93%; and at 

u = 0.7, it is 84%. Suppose that we select the energy of e* so that only the 

u > 0.7 portion is accounted for, then the integrated polarization would be 

J& P( e* ) F du 
.-- 

sJ.7 F du * 
(4.10) 

- a 
. . This number would be more than 90% if we ha.ve almost 100% polar- 

ization for the incident photon beam. 

5. Applications 

1. L&ser (kl)+e-(pl) ---f k2 + e- (~2) as a source of pola.rized photon beam. 

Compared with ordinary bremsstrahlung bea,m, the photon beam pro- 

duced in this way has the following characteristics: 

(a) The spectrum here is peaked at both u = urn,, and u = 0. This 

is to be compared with the bremsstrahlung spectrum, which is 

peaked only at u = 0 (the usual l/k spectrum of bremsstrahlung 

--.--.--- _ [6]). See Figs. 3( a-c). 
3&f. . 

(b) Due to the absence of Coulomb multiple scattering, the aver- 

age transverse momentum of the photon here is 5 nz, whereas 
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in the bremsstrahlung the average transverse momentum is a.p- 

proximately 14 MeV fl h w ere t is the radiator thickness in 

radiation lengths. This is important when one needs a beam that 

requires very small P*. 

This process is relatively background free, whereas the ordinary 

bremsstrahlung is accompanied by many e+e- pairs and hadrons, 

especially when the target is thick. 

The u,, for bremsstrahlung is nearly 1, but for the laser electron 

scattering it can be much less thaa 1 if the center-of-mass momen- 

tum is much less than m.‘ As the center-of-mass energy becomes 

much greater than m, u,,, approa.ches 1. With the electron en- 

ergy equal to 50 GeV, we need a Free Electron Laser in order to 

make urnax approach 1. See Eq. (2.34). 

Polarization. From the point of view of intensity a,nd polarization, 

the most important region of the y spectrum from the reaction 

laser + electron t y + electron is within 20 to 30% of the tip of 

the spectrum for the lowest order (s = 1) mode. In this region, 

the contributions from s 2 2 do not have good polarization if 

4w1E1 < m2. Thus, in this case, one should not let [ be greater 

than 0.5 if good polarized y beam is desired. One should increa.se 

the pulse length L in Eq. (2.31) ra .tl ler than having a la.rge [, in 

order to increase the yield of polarized photons. When 401E1 2 

m2(l+t2)7 %ax approaches unity for all s; thus, good polarization 

for all s’s can be obtained. In this ca.se, a large value of t2 can be 

used. .See Eq. (2.34). 
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(f) When 4wiEi < m2, u,, is much less than 1. In this case, an 

electron can scatter laser photons many times, and we can thus 

produce many such scattered photons per incident electron. For 

example, when Ei = 10 MeV and w1 = 1 eV, we have u,,, = 

1.6 x 10m4; thus, even after 600 consecutive scatterings by the 

laser photons, the electron would lose at most 9.6% of its energy. 

The scattered photons will have an energy of about 1.6 KeV on 

the high-energy side. This is definitely a better way to produce 

1.6 KeV x-ray than the conventiona. way of producing x-rays. 

2. Sources of Polarized e* 

-- _ (a) Method I: Laser(Ici) + k2 + e+(pl) + e-(p2) . 
- a (b) Method II: kg + 2 -+ e+e- + . . . . . . 

(c) Existing Method 

At the SLC at SLAC, a polarized e- beam is produced by shining 

a polarized la.ser beam onto a Ga.As Target’ [12]. The maximum 

polarization obtained up to now is 27% at the source and 22% 

at the interaction region where Ze’s are produced. The e+ beam 

is not polarized. It is produced by impinging a. 33 GeV electron 

beam onto a target of 6 rls [13]. Both e+ and e- beams are 

then accelerated and cooled in the cooling rings to reduce their 

temperature. They are then reinjected into the accelerator until 

they reach the final energy. 
.- --.- -.--- _ 

3&f. . 
In Sets. 3 and 4 we discussed the characteristics of Method I and 

Method II, respectively. Method I requires ver?’ high energy back-scattered 
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p h o to n s  ( m a n y  te n s  o f G e V )  a n d  a  h igh -ene rgy  laser  b e a m  (>  1 0  e V )  ach iev -  

a b l e  on ly  by  th e  F ree  E lect ron Laser .  In  c o n tra.& , M e th o d  II requ i res  on ly  

a  backward-sca t te red  p h o to n  b e a m  wi th re lat ively l ow  e n e r g y , b e c a u s e  th e  

th resho ld  e n e r g y  requ i red  is on ly  a  fe w  M e V , 2 0  M e V  p h o to n s  wi l l  b e  m o r e  

th a n  a d e q u a te . S e e  Fig. 1 7 . T h e  on ly  d i sadvan tage  o f M e th o d  II c o m p a r e d  

wi th M e th o d  I is th e  t ransverse m o m e n tu m  dist r ibut ion d u e  to  m u l tip l e  
-* -+ -  

. . 

C o u l o tib  scat ter ing,  b u t th is  p r o b l e m  is less ser ious  h e r e  th a n  in  th e  ex is t ing 

m e th o d  b e c a u s e  th e  ta r g e t th ickness  n e e d e d  is less th a n  o n e  rad ia t ion  l e n g th  

.- i ns tead  o f six [1 3 ]. 

The re  a re  th r e e  reasons  w h y  w e  d o  n o t n e e d , a n d  d o  n o t w a n t to  h a v e , 

a  very  th ick  radiator :  

a  - ~  l  T h e .in c o m i n g  par t ic le  is n o t a n  e lect ron,  b u t a . p h o to n . . . 

l  W e  a re  in terested on ly  in  th e  first g e n e r a tio n  p a .ir, th e  h ighe r  g e n e r a tio n  

pa i rs  d o  n o t possess  des i red  polar izat ions.  

l  If th e  ta r g e t is to o  thick, th e  e*  p r o d u c e d  wi l l  l ose  to o  m u c h  e n e r g y  bJ  

b remsst rah lung .  

kccord ing  to  Fig.  17 (b )  on ly  th e  h igh -ene rgy  e n d  (U =  0 .7  to  1 .0 )  h a s  g o o d  

polar izat ion.  Thus  o n e  m u s t select  th is  h igh -ene rgy  tip  by  a  m a g n e t b e fo re  

acce le ra t ing  th e  b e a m . 

M e th o d  I requ i res  a  F ree  E lect ron Laser ,  a .s we l l  a .s a  very  h i g h  e n e r g y  

_  -. ---..- back-scat te red po la r i zed  y b e a m  ( m a n y  te n s  o f G e \-), to  p r o d u c e  po la r i zed  
x -; 

e*  b e a m s . Its chief  a d v a n ta g e  is th a t th e  a ,ve rage  t.ra .nsverse  m o m e n tu m  is 

m u c h  less th a n  .m  n e a r  u m a x  (at u  =  u ,,,, w e  h a v e  1 1 1  =  0).  H o w e v e r , 
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th is  a d v a n ta g e  m a y  n o t b e  th a t s igni f icant,  b e c a .u s e  th e  coo l ing  r ings  c a n  

r e d u c e  th e  t ransverse m o m e n tu m , as  wel l  as  th e  s p r e a d  in  th e  1 o n g i tu d i n a .l 

m o m e n tu m  o f th e  b e a m . 

T h e  n u m b e r  o f e +  (or  e- )  pe r  inc ident  e lec t ron  in  th e  e n e r g y  in terval  

d E  us ing  M e th o d  II c a n  b e  wri t ten 

d a , ~ 2  d a  
d n f =  dE( l  - exp {  -n,a,L})  $  J w 2 m o r  G  d w z  J, 

E  
$  d E ’ 

J T 
X  

0  
n  exp{-a,nt }  I, ( E ’, E ,T - t) d t (5- l )  

w h e r e  n Y  is th e  n u m b e r  o f laser  p h o to n s  pe r  c m 3  in t roduced  in  A p p e n d i x  A , 

a n d  oc  is th e  to ta l  C b m p to n  cross sect ion:  

_-  6, =  2 m z  ${( l- i -- i )  1 n ( l + w ) + ~ + ~ - 2 ~ l ~ w ) 2 }  , (52 )  

-. - 
. wi th w  =  4w l  E l/m ’; w 1  is th e  laser  p h o to n  e n e r g y  a n d  E l is th e  inc ident ,  

e lec t ron  e n e r g y  in  th e  reac t ion  laser  (ICI) +  p l  t X Y ~  +  p 2 . L  =  laser  pu l se  

l e n g th  in  c m . 

T h e  first par t  o f E q . (5.1)  u p  to  th e  in tegra. t ion wi th respect  to  d w 2  is 

e s s e n ti& lly E q . (2.31),  e x c e p t th a t w e  h a v e  c o n c l u d e d  th a t w e  shou ld  avo id  

th e  s i tuat ion w h e r e  s >  2  is signi f icant,  a n d  th u s  t,h e  C o m p to n  cross sect ion is 

‘u s e d . T h e  back-scat te red p h o to n  wi th e n e r g y  w 2  th e n  e n ters  a  ta r g e t o f to ta . 

I- 

th ickness  T  rad ia t ion  l e n g ths.  T h e  pa i r  p r o d u c tio n  takes  p lace  a t th e  d e p th  

o f t rad ia t ion  l e n g th . T h e  pa i r -p roduc t ion  cross sect ion d a ,/d E ’ is g i ven  by  

E q . (4.8)  w h e r e  u  is E ’/w~; n  =  5 x 0  is th e  n u m b e r  o f ta r g e t par t ic les pe r  

uni t  rad ia t ion  l e n g th ; a n d  exp (  - -apt)  is th e  a tte n u a tio n  factor  o f th e  p h o to n  

‘< ? -  intensi ty a t d e p th  t. T h e  to ta l  pa i r  p r o d u c tio n  cross sect ion is g i ven  by  

5 (k) =  % W P  - W I 7  (5 .3 ) 
3 9  



where ~~(00) = (7/9) (A/XoN) with A th e atomic weight in grams/cm2 and 

C the correction factor tabulated in Table IV.5 of Ref. [6]. The [ can be 

obtained from integration of Eq. (4.8) and I,(E’, E, T - t) is the straggling 

function of an electron whose energy is E’ at production at depth t. The 

electron (or positron) then traverses the remaining target thickness T - t to 

r 

. . 

-* -+- emerge from the target. Then le. E’, E, T - t)dE gives the energy distribution 

of an electron at T whose energy was E’ at t. The straggling is caused by 

the bremsstrahlung emission (for simplicity, we ignore the straggling due to 

ionization and the Landau straggling [14]). The straggling function 1, can 

be written [15] 

)I b(T-t) dub Al x T Xo(T - t> , (5.4) 

where k = E’ - E, X0 is the unit radiation length of the target in g/cm2, _~ a 
- dtrb/dk is the bremsstrahlung cross section related to the pair-production 

cross section by the substitution rule [16] 

dab 
dlc= (5.5) 

and b x 4/3. 

Using Eq. (5.4), the t integration in Ey. (.5.1) can be carried out 

analytically. We have 

J Tn exp{-a,nt} I,(E’,E,T - t) dt = 
0 

$ $[coT(/?T - 1) + l]e-“pnT 

where p = uPn + bln[ln(E’/E)]. 

E H(E’, E, T) , (5.6) 

--.- -.--- _ 
Ni. ; Similarly, the polarization of e* using Method II can be calculated 

by combining the polarization of the back-scattered photon in the Compton 

scattering with the polarization of e* in the pa.ir production. Notice tha.t: 
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(1 )  w h e n  th e  back-scat te red p h o to n  passes  th r o u g h  th e  ta r g e t, its hel ic i ty is 

n o t c h a n g e d , its intensi ty is c h a n g e d  b e c a u s e  o f th e  a tte n u a tio n , a n d  its 

e n e r g y  d is t r ibut ion is s l ight ly c h a n g e d  b e c a u s e  th e  e n e r g y  d e p e n d e n c e  

o f th e  u p  in  th e  a b s o r p tio n  c o e fficient. 

(2)  th e  hel ic i ty o f e*  is n o t c h a n g e d  by  b remss t rah lung  o r  m u l tip l e  C o u l o m b  

scat ter ing as  l o n g  as  e*  r ema ins  relat ivist ic [1 7 ]. T h e  po lar iza t ion  o f 

ek  a t t =  T, wi th e n e r g y  E , is g i ven  by  

P(e* )  =  sE  
W 2 m a x  D 1  A h 2  J i2  G (w2,  E ’) H ( E ’, E ,T) F(w,,E’) d E ’ ,. 

S E W Z r n M  D 1  d w 2  JF H ( E ’, E , T)  F & z , E ’) d E ’ 
_ -  (5 .7 ; 

w h e r e  D 1  is g i ven  by  E q . (2.24),  A  is g i ven  1 ) ~ . N 1 /D1 wi th Iv, a n d  

II1  g i ven  by  E q . (2 .22)  a n d  (2 .24)  respect ively,  G (w2,  E ’) is g i ven  b )  
_.. E q . (4.9),  H ( E ’, E ,T) is g i ven  by  E q . (5.6),  a n d  F(w2.  E ’) is g i ven  by  

-~  a  
- . E q . (4.8).  

6 . Conc lud ing  remarks  

W h e n  dea l i ng  wi th a  p r o b l e m  in  wh ich  m a .ny  p a .rt icles a .re po la r ized,  

it is eas ie r  to  d e a l  wi th ca lcu la t ion  o f m a trix e l e m e n ts direct ly,  ins tead  o f 

.-- m a trix e l e m e n ts s q u a r e d , us ing  dens i ty  m a tr ices a ,n d  pro jec t ion  o p e r a tors.  

Th is  is t rue e v e n  w h e n  dea l i ng  wi th th e  s implest  p r o b l e m , such  as  th e  lowest  

o rde r  C o m p to n  scat ter ing.  W h e n  th e  m a trix e l e m e n t itself is very  compl i -  

cated,  th e  s q u a r e  o f it b e c o m e s  hope less ly  compl ica ted .  It is o fte n  m o r e  

c o n v e n i e n t, o r  e v e n  u n a v o i d a b l e , to  calcula. te  th e  amp l i t ude  direct ly.  Th is  

p a p e r  d e m o n s trates h o w  to  d e a l  wi th th e  t ransi t ion amp l i t ude  direct ly us ing  

M A P L E . For  th e  lowest  o rde r  C o m p to n  scat ter ing,  ou r  E q s . (2 .22)  th r o u g h  
--.- - A  
=  (2% ) p  d  re  ro  u c e  th e  resul ts  g i ven  by  L ipps  a n d  To lhoek  [1 9 ], w h o  a lso  g ives  

ear l ie r  re fe rences  o n  th e  subject .  
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Appendix A. Intensity ot Laser Beam and the Parameter t 

The dimensionless parameter t is related to the intensity of the laser 

beam. The energy density of the electromagnetic field is 

w = E2 + H2 
2 

= E2 = a2w2 1 7 

where the electric field ,?? is related to 2 in the radiation gauge (A0 = 0) by 
-* *- 

. . The number of photons per cm3 is thus 

w 2 ny = - = a w1 , 
Wl 

64.1) 

_ and 
. _. 

- a 
t2 G 

aa247r 
--g- = n-r 

(A.2) 

- Since [ is dimensionless and m and w1 are usually given in electron volts we 

have to convert “per cm3” in the definition of la, into electron volts (eV”) by 

the relation 

1 = tic = 197.3 x 10v7 eVcm . 

.-- Thus 

t2 = ny 
47ro(197.3 x 10-r eV)3 

m2wl (A.3) 

The laser intensity is usually given in units of W/cm2. It is related to the 

photon density by 

I (W/cm2) = nr 4.8 x lo-‘wi (eV) W/cm2 . 

. -- ---..- We finally obtain 
w -.- 

5.64 x 10-l’ . (A.4 
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Appendix B. Spinors for Helicity States and the Use of Maple _ 

MAPLE is a very generic computer program which can handle both 

analytical and numerical manipulations, but it is not specifically written 

for high-energy physics. Therefore, we have to write down explicit repre- 

sentations for 7 matrices as well as for the spinors, and let the computer 

-w *- do the matrix multiplications. In this paper we adopt the explicit repre- 

. . 

sentation of Gamma matrices and the metric used by Bjorken and Drell 

in Ref. [18]. Th e explicit representations for the helicity states for spin- 

l/2 particles and antiparticles with mass m with four momentum p, = 

(e, p sin 8 cos q9, p sin e sin 9, p cos e) are: 

u(P,e,G$ = cl 

( 1 
‘11 PJG, -- 2 > 

= Cl 

cos (O/2) 
ei9 sin (e/a) 
c2 cos (e/a) 

I 

= 
- u+ > 

c2 ei9 sin (e/2) 

P.1) 

r -eei9sin (19/2) 1 

i 

c2 e-i’Psin (e/a) 
-c2 cos (e/a) 

-e-i9 sill (e/2) 1 G ‘+ 7 (B.3) 

v (Pdh-~) = cl 

1 cos (e/2) J 

c2 cos (e/2) 
c2 ei9 sin (e/2) 

cos (e/2) 
1 .- 

E v- ) (B.4) 
ei9 sin (e/2) 

where cl = (e + m)‘i2, c2 = p/(e + m), and (&l/2) denotes the positive and 

negative helicities. 
_: .-- . 3&f. . 

The spinors with a bar are defined as usual, ti = u+ys and c = v+yO, 

where + denotes the hermitian conjugate. Each of the four spinors given 
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above is defined as a procedure in MAPLE, so that we can apply it to rep- 

resent a fermion with any p, m, 8, y, and helicity. It should be noted that 

the phase factor in each of the eight spinors defined above is not relevant to 

our problem, because two different helicity amplitudes do not interfere with 

one another, and only the square of each helicity amplitude contributes to 

the polarization and the differential cross sections. 

-The spinor representations shown above are obtained in the following 

. way : 

From Dirac equations (b - rn)ll = 0, we obtain 

u* = Cl f (B.5) 

_. 
where x+ is a 2 x 1 spinor representing an electron with spin parallel to p’(or -~ - 

- antiparallel when -) in its rest frame, and cl is the norma.lization factor so 

that Uu F 2m and vv = -2m. An explicit expression for x* ca.n be obtained 

by solving ~7. C’x* = fpx*; we have 

and x- = [ -si~o~~~~V ] . (B.G) 

.Since the overall phase is not relevant, we have chosen the form which is the 

simplest. v+ and v- can be obtained by the change conjugation of U+ and 

U-Z 

v+ = zy4 and v- = -iy2u: . 

Again the phases of v+ and v- are arbitrarily chosen. 

The final check on the validity of our expressions for uh and vf can < -- 
-%Y- be-performed using the relations 

75 /h = fu* , (B.7) 
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and 

75 /h = fv* ) (B.8) - 

where s is a four vector having the components: 

sp = 
[ Plm, f sinecosy , f sinesinv, c case 1 . 

. . 

This check shows that indeed u* (and v*) represent states with helicity f. -.. -+- 

Since MAPLE handles both analytic and numerical manipulations, 

we must decide how much we should let the computer do the analytical work 

and at what stage we should do numerical computations. In general, if one 

can obtain a simple analytical expression to describe nature, then one should 

- obtain this expression, but if the expression is too lengthy and complicated, 
_.. 

then we should be satisfied with numerical results. 

In this paper we obtained analytical expressions for differential cross 

sections for both reactions given in the title, as well as the photon polarization 

in the first reaction, but we have to be satisfied with only numerical results 

for the polarization of eh in the second rea.ction. The reason is that the 

= differential cross section and the photon polariza,tion have invariant meaning, 

and thus can be calculated in any convenient coordinate system, but the 

helicity of a particle with nonzero mass does not have inva,riant meaning and 

thus can be calculated only in the frame where it is going to be observed (we 

call this the laboratory system in this paper which is different from customary 

usage where one of the incident particles is at rest). 

--.- -.:- Nevertheless, for pedagogical reasons we have also calculated the po- 
w -; 

larization of e* in the second reaction in the center-of-mass system [see 

Fig.lO(c)], h h t b w ic is o e compared with that in the la.boratory system [Fig. 

4s 



10(a)]. This serves as a textbook illustration of the fa.ct that two successive 

Lorentz boosts, not in the same direction, result in a. Lorentz boost times a ro- 

tation. This phenomenon is usually treated in textbooks [ll] under Thoma.s 

Precession. The illustration given here is easier to grasp than the Thomas 

Precession. 

. . 
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Appendix C. Compton Scattering in the p1 = (m,O,O,O) Sys- _ 

tern 

Let us denote the incident photon energy and the photon scattering 

angle in the rest frame of the initial electron by I;; and O* respectively. We 

further define K=k;/m and X = cosO*. We have then 

y2 = 1 + 211’, (c.1) 

x = ((Ii- + 1)X - A-)/(1 + Ii-(1 -X)). WV 

Substituting these expressions into Eqs.(2.22) through (2.25) we obtain 

Nl = 21$2x(Ii’2x2 - 2(IP + K)X + K2 + 2K + 2)/D, (c.3) 

. _ N2 = 2[2(1 - X)II’(X2 - Ir’X + I< + 1)/D, (c.4) 

D1 = 2ty4x3 + (Ii’” + Ii- + 1)X2 - (211’2 + A-)X + K2 + Ir: + 1)/D, (c.5) 

D2 = 2[2XI+‘X2 - (2Ir’ + 2)X + I< + 2)/D, Cc.6) 

where D=-KX+K+l. 

For the laserShigh energy electron back scattering these expressions 

can also be written in the more convenient va,riables u = d2/E1 and w = 

4wl El/m2 = u,,, using the relations 

I( = w/2, (4 

x = 1 - 2u/(w - wu). (C-S) 
_: .-- _ 
‘fl. We have 

y1 = 2t2(2.- 2u + u2)(1 - (1!$[,)/(1 - u) (c-9) 
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-  

-  S - L  

N 2  =  2 t2F( : -uu)u  +  (1  $ w  +  (1  $2w2) ,  (c.10) - 
- 

2  - 2 2 1 - f u 2  
a  =  X 2 (  1  

.4 u  
u  - (1  -U)W  +  (1  Z)W  ’ 2  >  (c.11)  - 

0 2  =  2 [ 

. . 

In  th e  T h o m s o n  lim it w e  h a v e  K  <  1 , w  <  1 , u  <  1 , a n d  X  +  

I-- (1  - $),  th u s  

Nl  +  4 s 2 X  =  4 t2( l  - $),  (c .13)  

N 2  +  0,  

D 1  4  2 t2( l  +  X 2 )  =  4 t2( l  - ; +  $),  

_. D 2  --f 0 . 
_ . 

E q s . (c.3), (c.6), (c.9) a n d  (c.12)  h  s  o w  expl ic i t ly th a t th e  o r ig in  fo r  - _  
th e  ze ros  fo r  N i  a n d  D 2  is d u e  to  8*  b e i n g  e q u a l  to  7r/2. O u r  E q s . (c.3) 

th r o u g h  (c.6) g  a  r ee  wi th th e  resul ts  g i ven  by  L ipps  a ,n d  Tolhoek[ lS] .  

Figure  C a p tions  

I. F e y n m a n  d i ag rams  fo r  th e  reac t ion  laser  (kiX i)+  e lec t ron  (p i&)  -+  

p h o to n  ( k 2 X 2 ) +  e lec t ron  (p2Xs) .  

c --  _ .’ .-- Nii. 

2 . T h e  c e n ter -o f -mass sys tem fo r  th e  reac t ion  laser  +  e lec t ron  --f p h o to n  

+  e lect ron,  (s - q ) &  +  p i  =  Z 2  +  p i  =  0 . 

3 . E n e r g y  d is t r ibut ion a n d  po lar iza t ion  o f th e  scat tered p h o to n  in  th e  

C o m p to n  scat ter ing w h e r e  u  =  ~ z /E i, D 1  is th e  e n e r g y  d is t r ibut ion 

o f th e  scat tered p h o to n  g i ven  by  E q . (2.24),  a n d  A , B , a n d  C  a re  th e  

p a r a m e ters  fo r  po la r iza t ion  d e fin e d  by  E q . (2 .38)  fo r  (a)  w i  =  3 .5  e V , 
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-  

-  S - C  

4 . 

5 . . . 

6 . 
_  

7 . 

=  
8. 

9 . 

_: .-- _  
& .  . 

1 0 . 

E l =  1  G e V ; (b)  wr  =  1 .1 7  e V , E l =  5 0  G e V ; a n d  (c) w l  =  3 .5  e V , 

E l =  5 0 0  G e V . 

Th is  g r a p h  i l lustrates th a t th e  po lar iza t ion  o f scat tered p h o to n s  is 

s l ight ly e n h a n c e d  if th e  inc ident  e lec t ron  is a lso  po lar ized,  in  a d d i tio n  

to  th e  inc ident  laser  w h o s e  po lar iza t ion  is th e  p r imary  factor,  wi th 

~ 1  =  1 .1 7  e V , E r =  5 0  G e V , a n d  [ =  0 .0 1 . 

R e a c tio n  ski +  p l  --f k2  +  p 2  fo r  a  s t rong laser  b e a m  (6  =  1 )  wi th 

w l  =  3 .5  e V  a n d  E l =  1  G e V , f o r  a  e n e r g y  distr ibut ion,  D 1 , g iven  by  ( ) 

E q . (2 .20)  , a n d , (b)  po lar izat ion,  Nr, g i ven  by  E q . (2.18).  

T h e  Nr,, N z S , Dls, a n d  Dzs fo r  laser -e lec t ron scat ter ing as  g i ven  by  

E q s . (2.18)- (2.21) ,  wi th wr  =  1 .1 7  e V , E r =  5 0  G e V , a n d  [ =  0 .4  fo r  

(a)  s  =  1 , (b)  s  =  2 , a n d  (c) s  =  3 . 

T h e  Ns, K S , h , a n d  Dzs fo r  laser -e lec t ron scat ter ing as  g i ven  by  

E q s . (2.18)- (2.21) ,  wi th wr  =  1 .1 7  e V , E r =  5 0  G e V , a n d  t =  1 .0  fo r  

(a)  s  =  1 , (b)  s  =  2 , a n d  (c) s  =  3 . 

T h e  Nr,, N 2 S , Dls, a n d  D2s  fo r  laser -e lec t ron scat ter ing as  g i ven  by  

E q s . (2 .18) - (2 .21)  wi th wl =  3 .5  e V , E l =  5 0 0  G e V , a n d  [ =  0 .4  fo r  

(a)  s  =  1 , (b)  s  =  2 , a n d  (c) s  =  3 . 

T h e  N ,, K S , D ls a n d  Dzs fo r  laser -e lec t ron scat ter ing as  g i ven  by  

E q s . (2 .18) - (2 .21)  wi th w l = 3 .5  e V , E r =  5 0 0  G e V , <  =  1 .0  fo r  (a)  s  =  1 , 

(b)  s  =  2 , a n d  (c) s  =  3 . 

F e y n m a n  d i ag rams  fo r  th e  reac t ion  laser  (k lX1)  +  p h o to n ( k 2 X 2 )  +  

e lec t ron(prX.J  +  pos i t ron(p2As) .  
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11. Kinemetics for laser (Sk1 j + k2 t e+(pl) + e-(p2). All momenta and 

angles refer to the laboratory system. 

12. Polarization of e* in Laser+y + e + - where A, B and C are defined by e 

Eq. (3.31) and u = El/ w2 in the laboratory system for (a) w1 = 15 eV, 

w2 = 50 GeV, s = 1, andt = 0.01; for (b) w1 = 15 eV, w2 = 500 GeV, 

s = 1, and [ = 0.01; and ( ) f c or o arization of e* in the center-of-mass p 1 

system for wr = 15 eV, 02 = 50 GeV, s = 1, and C = 0.01. 

. . 
13. Energy distribution of e* in the laboratory system for laser+? --f e++e- 

with u = El/w2. Curves plotted are for D1, given by Eq. (3.24) for 

(a) w1 = 15 eV, w 2 = 50 GeV, [ = 0.4, and for (b) w1 = 15 eV, 

w2 = 50 GeV, [ = 1.0. 
_ 

-~ _ 14.. The Nr,, NzS, DIS, and DzS for Laser+? --) e+e- as given by Eqs. (3.17)- 
. . 

(3.20) with w1 = 15 eV, W2 = 50 GeV, < = 0.4 for (a) s = 1, (b) s = 2, 

and (c) s = 3. 

15. The Nr,, Nz,, DIS, and DzS for Laser+? --+ e+e- as given by Eqs. (3.17)- 

(3.20) with wr = 15 eV, w2 = 50 GeV, and [ = 1.0 for (a) s = 1, 

(b) s = 2, (c)‘s = 3. 

.16. The Nr,, N2S, DIS, and D2$ for Laser+7 --f e+e- as given by Eqs. (3.17)- 

(3.20) with wr = 15 eV, w2 = 500 GeV, [ = 1.0 for (a) s = 1, (b) s = 2, 

(c) s = 3. 

_ -- 

17. (a) The energy distribution of e* from k + 2 -+ e+e- . a -, where 2 

is a Tungsten target and u = E*/k, and (b) the polarization of e* 
--.- -.:- 
Nii. -; from k + 2 + e+e- a--. Curves plotted represent P( e*)/P( k) for 

k = 20 MeV and k = 1.0 GeV respectively. 
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