
* Work supported by Department of Energy, contract DE-AC03-76SF00515.

Contributed paper to the Conference on Computing in High Energy Physics, Annecy, France, September 21-25, 1992.

ESTABLISHED
1962

UNIX Code Management and Distribution

Terry Hung and Paul F. Kunz

Stanford Linear Accelerator Center
Stanford University, Stanford CA 94309, U.S.A.

We describe a code management and distribution system based on tools freely available for the UNIX
systems. At the master site, version control is managed with CVS, which is a layer on top of RCS, and
distribution is done via NFS mounted file systems. At remote sites, small modifications to CVS provide
for interactive transactions with the CVS system at the master site such that remote developers are true
peers in the code development process.

*

1. Introduction

A source code management system is a set of tools
keeping track of various versions and configurations of
programs or applications. For the UNIX operating system,
the most frequently used systems are SCCS[1] and
RCS[2]. Of the two, SCCS is more widely known and is
part of the vendor’s software release on most workstations.
We have chosen to use RCS because it is more modern, is
easier to use, has some additional important features, and is
unencumbered by an AT&T source license. At SLAC,
RCS has been used for projects for over three years.

Using SCCS or RCS alone, or with a thin layer of
shell scripts on top, is sufficient for small projects.
However, if the project is large, i.e. contains many
subdirectories, then the thin layer becomes rather thick. For
this reason, we have chosen to use CVS[3], which is a layer
on top of RCS. It handles the multiple subdirectory
problem in an elegant way, and adds additional features
which will be described below. CVS has been in use at
SLAC since July of this year.

The goal of a code distribution system is to provide
source code access to developers at sites remote from the
master source code repository and a means for code
developed at the remote site to be contributed back to the
master site. By use of native UNIX commands, rsh and
rdist, in a set of shell scripts, a remote developer can
perform code management transactions at the master site in

real-time over the Internet. The syntax used at remote sites
is almost identical to that used at the master site. Thus, with
this system, remote developers are truly peers in the code
development process.

Our initial code distribution system, CDS, was used
for over one year. It was then re-written to support CVS, and
called remote CVS. It has been operational since September
of this year. Since these native UNIX tools are not widely
known to the High Energy Physics (HEP) community, this
paper will also introduce some of their concepts where
appropriate.

2. Revision Control System (RCS)

The Revision Control system, RCS, maintains different
versions of source code in a single file by automatically
generating the differences between versions when new
versions are checked in. The files that RCS generates are
clear ASCII text with header and footer information
wrapped around the latest version of the file. The
differences between versions are stored as deltas to go back
to an older version, thus access to the latest version is
always fast.

When a developer checks out a file from RCS for
editing, he issues the check out command with the lock
option and the user is given a writable version. Without
using the lock option, the user is given a read-only version
of the file. When a file is locked, other developers can not

SLAC-PUB-5923
September 1992

(E/I)

UNIX Code Management and Distribution

2 SLAC-PUB-5923

check out the same file with the lock option, thus
preventing overlapping changes. When necessary, the lock
can be broken and mail is sent to the developer who had the
original lock.

Normally RCS revision are numbered sequentially, e.g.
1.1, 1.2, etc. One can check out a previous version using
this revision number, by date, and other means. An
important means is by symbolic tag. A symbolic tag can be
applied to all files of a directory and is used to mark
revisions that belong to a certain release level. At a later
date, after development has continued, one can check out
the revision of each file that belonged to a release level by
using the symbolic tag.

The symbolic tags are used in conjunction with
revision branches in the following manner. Suppose that a
release was made and development towards the next release
has continued, but that a serious bug was found in the
release which must be fixed. One can checkout the
revisions corresponding to the release, fix the bug, then
check in the fixes as a branch to that revision level. Also, at
some later time, one can merge any branches into the main
development trunk to ensure that any release patches get
into the next release.

Overall, RCS provides a quite flexible and easy to use
code management system. It is freely available from the
Free Software Foundation, runs on most UNIX platforms
(even on MS-DOS), and development work continues on it.
It has a large following of professionals in well known
software companies and could be said to be an industry
standard.

RCS is not without deficiencies, however, which
should a lso be ment ioned here. A l though RCS
documentation mentions configuration management it
does not handle configuration of source code to take into
account operating system differences. Under UNIX, such
dependencies are usually handled by a preprocessor to the
compiler, such as cpp. In HEP, similar preprocessors have
been developed for FORTRAN[5][6]. Also RCS works on
only one directory of files at a time. If a project requires
multiple hierarchical directories to build a program, then
RCS needs a layer on top of it, typically implemented with
shell scripts. One such layer is the CVS system which will
be described in a following section.

3. Code Distribution With RCS (CDS)

The first iteration of our Code Distribution System
(CDS) was designed to support the very thin layer on top of
RCS that had been used for two years. With this layer, a

developer’s working directory consisted of symbolic links
to the master source code repository. The repository itself
consisted of a read-only reference copy of the latest
revisions of the source files and an RCS directory
containing the RCS “,v” files used to store all revision
levels. From his working directory, the developer could
then issue the check out command, e.g. co -l foo.c, and he
would receive a writable copy for editing. When he
compiled and linked using make, the symbolic links
supplied all source that had not been checked out.

The check in procedure required the only shell script
that was needed in this scheme. The check in script had
three steps. First an RCS check in command was issued
which updated the RCS revision control files. Then, a
checkout was performed in the repository to update the
reference copy. Finally, a new symbolic link was
established in the developer’s working directory.

This scheme of using RCS was carried across the
network to remote sites by the CDS system. On a daily
basis, it would make an update of the master repository’s
reference files on remote clients. The UNIX rdist command
was used for these updates. It made a clone copy of a
directory across the network by comparing the dates and
times of files, taking into account time zone differences,
and transferring files that were newer at the source. The
remote developers could then link against this reference
copy in the same way as developers at the master site. CDS
also provided an update command to force an immediate
update in case a developer didn’t want to wait for the next
scheduled update.

Remote check in and check out were handled with the
rsh command. On check out, the remote developer issues a
CDS command on his machine, which performed a check
out on the master site machine and returned the source code
to his working directory. On check in, the CDS command
did the check in at the master site, updated the reference
copy at both the master and remote sites and re-established
the symbolic link in the caller’s working directory.

Thus, with CDS complete network transparency was
achieved. The remote developers were true peers to those at
the master site. They received both the benefits and
deficiencies of the code management system. Even at
remote sites with relatively poor Internet connections,
response time was adequate. For example, McGill
University used to have a ping echo time of over 1 second
(for reference the echo time between SLAC and CERN is 0.3
seconds), but could still do an update of the reference copy
in 30 seconds. A check in or check out of any single file was
essentially immediate. Naturally, the “closeness” remote

SLAC-PUB-5923 3

UNIX Code Management and Distribution

developers felt to the master site made them much more
productive members of the global development team. This
CDS scheme was used for one full year without problems.

4. Concurrent Versions System (CVS)

The Concurrent Versions System, CVS, is a front end
to the RCS system which extends it in a number of ways.
The two most important are the notion of concurrent
development and the extension of a project from a
collection of files in a single directory to a hierarchical
collection of directories each containing RCS managed
files. There is also support for merging updated third party
releases with local modifications, a modules facility for
combining components in the repository in different ways
according to a project’s needs, producing a patch format
file[4], preparing a release for distribution and some other
tools. Space permits only a discussion of the first two items.

In large software development projects, it is not
uncommon for two or more people to have a need to
modify the same file at the same time. With RCS or SCCS,
this is prohibited because files are checked out locked, thus
giving only one person a writable copy of a working file.
Although desirable in theory, locking has undesirable
consequences such as the serialization of the development
process, with some developers waiting on others to finish
their modifications and check in the needed files. It may
also lead to cheating whereby developers make their own
modifications on an unlocked version with the intent of
merging their changes with others at a later time.

With the CVS system, each developer checks out a
writable version of all the source code of a project into his
working directory. For larger projects, the hierarchy of the
working directory reflects the hierarchy of directories
containing the RCS files in the repository. The modules
facility allows including additional directories in the
working directory hierarchy. No lock information is
generated in the repository. The developer can then proceed
to modify any file he requires. One immediate benefit is
stability, no changes in the repository will affect his or her
current development. Another benefit is that the developer
has all the source code he may need to browse available in
his working directory. Optionally, a developer can check
out only those files that he plans to edit and make use of
libraries to link a program, but this is not as safe as
checking out everything that is needed.

At any time, the developer can update his working
directory with any changes made to the repository since he
last checked out or updated his files. CVS will update the

working directory in a number of ways. First, any files
added or removed from the repository are also added or
removed from the working directory. Secondly, any files
updated in the repository and not modified in the working
directory will simply be updated. Thirdly, any files not
updated in the repository but modified in the working
directory are left alone. Finally, any files that are updated in
the repository and modified by the developer undergo a
three-way merge while the original working file is moved
to the side for reference.

The three-way merge (using the rcsmerge command)
involves the original version the user checked out, the latest
version in the repository, and the working file. In practice,
merging is not needed very often and, when it does occur,
the merge most frequently involves different areas of the
file. Occasionally, the attempted merge involves the same
lines in the source file, and in this case, the developer is left
with a file containing both sets of modifications with a clear
indication which lines came from which source and a
renamed copy of his working file. It is his responsibility to
resolve the conflicts.

It is actually beneficial for true conflicts to be plainly
visible to the developer. If two developers modified the
same lines of code, someone has to decide which set of
modifications are the correct ones. Without merging, one
developer might fix code and the other break it later, or vice
versa. If one developer doesn’t understand the other’s
modifications, he can go ask. In practice, CVS users have
found that conflicts are usually easy to understand and
resolve.

Once a developer’s working directories are up to date
with respect to the repository, that is his files were derived
from the same version, he can check in his changes using
the cvs commit command. CVS first scans the working
directory recursively to check that the files are up to date,
and make a list of files that need to be checked in. CVS then
prompts the user, once for each directory with modified
files to enter an RCS log message using his favorite editor.
Thus, a consistent set of files are checked in together and
the developer doesn’t have to worry about forgetting some
file. CVS also has hooks just before and after the commit
process that can be used to run custom scripts that do
additional checking or logging on the CVS transaction.

5. Code Distribution with CVS

The goal of the second iteration of a code distribution
system was to provide the same level of network
transparency for a CVS based system as was done for our

UNIX Code Management and Distribution

4 SLAC-PUB-5923

simple RCS based system. At the same time, some of the
administrative details of the system were simplified. For
example, the nightly updating of remote sites is no longer
done. Since remote developers eventually receive their own
copy of source code in their working directory, there is little
need for it. Instead, updates are made on demand as
described below.

The remote CVS check out and update procedures
follow similar patterns. The first step is to run rdist on the
master directory where the CVS modules information is
stored to update the remote site. From the files received, the
directories that are involved in the check out or update are
obtained and the rdist command is run on those. Once
completed, CVS can be run locally to fulfill the developer’s
request. It is estimated that these steps will take 30-60
seconds depending on how out of date the remote site is
with respect to the master. The more active remote
developers have been, the less files in the local repository
will be out of date.

CVS commands that update the master site, such as
commit, are the trickiest. The first step is again to obtain
which directories are involved, but that information has
already been stored in the remote developer’s working
directory by CVS. Next, the remote site is updated with
respect to the master and a cvs commit is run locally against
the updated directories. Finally, the remote site will update
the master. Naturally, CVS locks will need to be applied at
both sites in the correct order to avoid two updates of the
master from occurring simultaneously (CVS already uses
locks for single site updates).

Actually, remote CVS is simpler than CDS. It should
be more robust and easier to maintain. It consists of a set of
modifications to five of the 40 CVS source files. It works
well for sites with reasonable connections to the Internet
such as McGill University which currently has a ping echo
time of about 0.4 seconds. It has even been used with
V.32bis modem connections running SLIP/PPP.

6. Conclusions

We have achieved a code management and distribution
system that allows remote sites to have transparent access
to source code stored at a master site. Transparent access is
important for remote developers so that they can be peers
in the group development process as is very frequently
necessary in HEP. The key elements of our success have
been the quality of connectivity that the Internet provides,
and the underlying UNIX tools that make use of it.

7. Acknowledgments

The original version of CVS was written as a set of
shell scripts by Dick Grune at Vrije Universiteit in Am-
sterdam. The current version (v1.3) was written in C by
Brian Berliner and Jeff Polk while at Prisma, Inc. Many
thanks to Brian Berliner (now at Sun Microsystems) for
consulting with us during the development of remote CVS,
to Dag Brück of the Lund Institute of Technology and Art
Isbell of Cubic Solutions for pointing us in the direction of
CVS, finally to David Britton of McGill University for sto-
ically testing the remote aspects of both the original and
CVS based schemes.

References

[1] Bell Telephone Laboratories, “Source Code Control
System Users’s Guide.”, UNIX System III
Programmer’s Manual, October 1981.

[2] Walter F. Tichy, “Design, Implementation, and
Evaluation of a Revision Control System.”,
Proceedings of the 6th International Conference on
Software Engineering, IEEE, Tokyo, September
1982.

[3] Brian Berliner, “CVS II: parallelizing software
development.” Proceedings of the Winter 1990
USENIX Conference. Washington, DC, January
1990. USENIX, 1990.

[4] Larry Wall, The patch program is a tool for applying
a diff file to an original and can be found on
uunet.uu.net in ~ftp/pub/patch.tar

[5] Fermilab Computing Division, “Expand”, Report
PU0093, Fermilab, 1990.

[6] Adam Boyarski, “FPP”, SLAC report (to be
published).

