
* Work supported by Department of Energy, contract DE-AC03-76SF00515.

Contributed paper to the Conference on Computing in High Energy Physics, Annecy, France, September 21-25, 1992.

ESTABLISHED
1962

Hippoplotamus

Michael F. Gravina, Paul F. Kunz,
Tomas J. Pavel, and Paul E. Rensing

Stanford Linear Accelerator Center
Stanford University

Stanford, CA 94309, U.S.A.

Abstract

Hippoplotamus is a library package which manages and displays tables of data. It is written in ANSI C
and has been tested on a large number of computer architectures. Hippo has a number of design features
which make it unique. Data is saved in a binary, machine-independent format using the industry-standard
XDR. Hippo supports graphics on many devices, but does not use any high-level graphics package. Even
though it is written in ordinary C, the functions are all coded in an “object-oriented” manner. All the
display functions have been optimized to allow for maximum interactivity.

*

SLAC-PUB-5921
September 1992

(E/I)

1. Description

Hippoplotamus (or Hippo for short) is an n-tuple
management and display package with object-oriented
flavor. The package is written in ANSI C and comes in two
parts. The first part is the n-tuple manager and it is designed
to be user friendly, since it is likely to be incorporated into
a user’s analysis programs. In principle, the user only needs
to know three functions in the package: one for creating an
empty n-tuple, one for filling it, and one for writing it to a
disk file. Optionally, the user might use two additional
functions to give the n-tuple a title and label the columns.
FORTRAN bindings for the n-tuple functions are provided
with the package. Utilities to convert files in a simple text
format to Hippo binary format and vice versa are also
provided as part of the package, as well as a utility to
convert n-tuples in HBOOK4[1] format to Hippo format.

The display part of the Hippo package is designed to
be friendly to the programmer who implements an
interactive n-tuple display program. Thus, it consists of a
library of functions to create and manipulate displays of the
n-tuple data in the form of 1D and 2D histograms, x-y plots,

scatter plots, and strip charts. These functions are at a rather
low level. For example, there is a function to change the
number of bins in a histogram display while leaving all
other characteristics alone. In a display application which
has a graphical interface (such as HippoDraw, see ref [2]),
a slider which controls the number of bins could easily be
connected to this function. Other sliders could be hooked to
the functions which control the lower and upper limits, etc.
All calculations which are required to create a display, such
as binning the data, are delayed until a request for the
display to be plotted is made. If changes which might affect
the bins have been made to the display since the last time it
was plotted, the bins are automatically updated before
being plotted.

The entire Hippo package, including the external
utilities, is about 10K lines of code. It has proven to be
highly portable using very few conditional compilation
statements. It was developed on the NeXT and Sun
platforms, but has been tested on IBM RS/6000,
DECStation, Silicon Graphics, DEC VAX/VMS , and IBM
VM/CMS. Since it is self-contained (apart from requiring
XDR, which is discussed in a following section), it could be

Hippoplotamus

2 SLAC-PUB-5921

used easily for many data collection purposes, for example,
small embedded processors used in experiments.

2. Code Example

Figure 1 shows an example C program which
generates an n-tuple and writes it to a file. The call to
h_new() creates a new empty n-tuple structure, which will
have 2 column, and returns a pointer to it. The user then
uses this pointer in all subsequent calls which deal with this
n-tuple. The two following calls in the example set the title
of the n-tuple and label the columns. Then, the program
puts data into the n-tuple using h_fill() , which can take
a variable list of arguments, depending on the n-tuple’s
number of columns. As the program is finishing, it saves
the n- tup le us ing h_wr i te () , wh ich wr i tes a
NULL-terminated list of n-tuples to the named file.

3. Important Features

3.1 Object-oriented approach

Hippoplotamus is written in ANSI C, but uses an
object-oriented approach. The primary objects are
ntuple s and display s. Almost every function in
Hippoplotamus has as its first argument either an ntuple

or a display , on which the function performs some

Figure 1. Basic n-tuple creation steps.

#include <stdio.h>
#include <math.h>
#include "hippo.h"
main()
{

ntuple ntlist[2];
 float x, y;
 int rc;

ntlist[0] = h_new(2);
h_setNtTitle(ntlist[0], "My Tuple");
h_setAllNtLabel(ntlist[0], "Angle",

"Sin");
for (x = 0; x < 1000.; x++) {

y = sin(x);
rc = h_fill(ntlist[0], x, y);

}
ntlist[1] = NULL;
h_write("test", NULL, ntlist);

}

operation. Hippo itself maintains absolutely no state. This
means that it is the responsibility of the user or application
to keep track of the existing ntuple s and display s, while
the ntuple or display maintains everything there is to
know about an n-tuple or plot.

There are certain advantages of this approach. One is
the enormous saving in bookkeeping work. Once a new
structure is created, Hippo does not remember anything
about it. When a function is called to perform an operation,
it works only on the current structure. Thus, writing the
code to handle dozens of n-tuple is the same as to handle
one. Another advantage is flexibility in how multiple
n-tuples and plots are managed. It is up to the user or
application to decide what is the best way to manage and
group ntuple s and display s.

3.2 File format

The n - tup le da ta a re saved to fi l es in a
machine-independent format. Hippo uses the industry
standard XDR[3] format which is available on all UNIX
machines and on other systems as part of a TCP/IP
networking package. XDR is also available with Sun’s free
RPC 4.0 source distribution. Thus, to transfer a Hippo file
between machines of different architectures, the standard
FTP program can be used in binary mode, or one could
write a client-server interface. Also, files that reside on
NFS-mounted file systems can be shared even by machines
of different architectures. When XDR is not installed, a
plain ASCII text representation of the n-tuple can be used.

The performance cost of using XDR is generally not
significant. The files are no bigger than one would get using
direct binary format, since Hippo data is mostly floating
point numbers for which XDR adds no overhead. Reading
an XDR file from disk can be about 5 times slower than
reading a similar direct binary file. However, on machine
architectures whose floating point format is known to be
the same as XDR’s canonical format (i.e. IEEE floating
point), Hippo can read the majority of the file directly into
memory, bypassing the XDR conversion routines. Even if
this can not be done, the time penalty is only paid when the
file is read in, which is generally done only once during a
program’s execution.

3.3 Graphics Drivers

Hippoplotamus provides routines for displaying plots
on a variety of graphics devices. Supported are ordinary
PostScript to a file, Display PostScript (for NeXT

SLAC-PUB-5921 3

Hippoplotamus

computers), plain X-Windows, X-Windows under
InterViews, UNIXPlot (Tektronix 4014 and others), and
line printer mode.

The package does not make use of any high-level
graphic packages such as GKS. Since there are only a small
number of basic functions which need to be coded, it is
straightforward to write the set for a new driver. In
particular, there are basic routines to define the local
co-ordinate system, to plot text at a given position, to draw
a line connecting an arbitrary list of points, and to plot a list
of symbols at specified positions. In addition there are a
few routines which perform more complicated functions,
such as plotting tick marks, which can be performed faster
if done as a group. All calls to plotting functions are made
through a set of routines which simply select the correct
routine depending on the currently selected graphics driver.
Thus Hippoplotamus achieves a high degree of portability
because it does not depend on licensing or availability of
external packages.

3.4 Cuts and Functions

Hippo supports the application of cuts to the n-tuple
data used in displays. Each display has a null-terminated
list of pointers to functions which determine whether a row
should be used. Standard cut functions, such as less than
some value or within two bounds, are provided. The user
can also provide his own functions. Also, each display can
have a null-terminated list of function pointers that are used
to draw an arbitrary function on the plot.

This system of using pointers to functions which have
a specific format allows great flexibility while not
compromising the performance; no expression parser is
needed to provide flexibility. One application that uses
Hippo (HippoDraw[2]) invokes the C compiler and uses
dynamic linking to allow the user to input an arbitrary
function. While not portable, this technique can be applied
on a wide variety of platforms.

4. Future Plans

We have recently developed a set of routines to deal
with 3 dimensional plots, i.e. 3D histograms (legoplots),
mesh plots, and scatterplots, with full perspective. All the
calculations to transform the 3D co-ordinates to 2D are
done in reasonably well-optimized C code. It only relies on
the ability of the graphics device to draw filled polygons
when doing plots with hidden lines. The user or application
has full control over the view angles and distance, plus the

amount of perspective. At the moment, we have only
implemented the graphics code on a NeXT computer, but
we expect the code to work on most other platforms. Our
experience with the NeXT has shown us that the time
needed to perform the transformation from 3D to 2D
co-ordinates is frequently quite small compared to the time
needed to draw the lines. Hopefully, the use of perspective
in 3D plots will enhance the view of the data in subtle ways.

5. Summary

The Hippoplotamus library is an n-tuple management
and display package which was designed to be light-weight
and to allow a high degree of interactivity. It breaks new
ground in High Energy Physics in that it is written in C and
that it has an object-oriented flavor. Hippo is fast, easy to
use, and self-contained (apart from XDR). The source
dis t r ibut ion is avai lab le by anonymous FTP at
HEPLIB.SLAC.Stanford.EDU.

Acknowledgments

The initial design of Hippoplotamus was done by
Jonas Karlsson when he was employed as a summer
student. Tony Johnson wrote the X-Windows graphics
driver. Other contributions to the design of Hippo came
from William Shipley and Gary Word. The routines to
perform the matrix transformations in the 3D plotting code
came from Douglas M. Bates and Murray K. Clayton of the
University of Wisconsin.

References

[1] R. Brun and D. Lienart, HBOOK User Guide: CERN
Computer Center Program Library Long Writeup:
Version 4, CERN-Y250, Oct 1987. 108pp.

[2] M.F. Gravina, P. F. Kunz, and P. E. Rensing, Proc.
HippoDraw in Proc. Computing in High Energy
Physics, Annecy, Sept 1992 (CERN Report) and
SLAC-PUB-5922, (SLAC) 1992.

[3] Sun Microsystems, Inc., XDR External Data
Representation Standard, RFC1014, (see also man
pages on UNIX systems).

