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ABSTRACT -

Non-perturbative effects can arise in beam lines
from strong chromatic and nonlinear elements or

" from large lattice errors. We present a general
- approagh using Lie algebra methods which pro-
. vides analytic treatment of beam lines with strong

elements or large errors. In addition to affording
insight into lattice design and performance, these
techniques can answer a broad spectrum of toler-
ance questions without use of numerical simula-

“tions. We give several detailed examples.

\

" INTRODUCTION

- Lie algebra calculations are usually regarded as

perturbative, since they rely strongly on the
Campbell-Baker-Hausdorff (CBH) theorem,
which is a perturbative composition rule.l
However the similarity transformation,2 which is
exact, is another very powerful algebraic tool that
can be used in composing elements and finding
the generator of a beam line. The requirement for
the applicability of the similarity transformation,
that a particular transformation be followed in the
beam line with the exact inverse of the same trans-
formation, seems unlikely. However, as we will
show, this situation occurs far more often than one
may imagine. In a sensitive beam line like the
Final Focus Test Beam (FI-’I'B),3 where fifth-
order terms play a major role in optimizing the
design, it is possible to identify and compute all
important terms using only first order CBH.

The principal reason that strong transformations
are invariably followed by their inverse is that,
whether the beam line be circular or linear, one
wishes to find a configuration, or correct to a sit-
uation where the sum of all aberrations in the line
is small. In the Lie algebra language, each distinct
aberration corresponds to a unique monomial in
the beam line generator, so within this framework
one reqi¥res that"all monomials have small coef-
ficients. If a large aberration occurs somewhere in
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the line, by design or as a result of an error, then it
must be canceled at another place in the line,
cither by a specifically designed element or
corrector, or in the most complex situation, a
series of elements or correctors. This element, or
combination of elements thus contains the inverse
of the aberration source. These conditions are
exactly the conditions that establish the applica-
bility of the similarity transformation rule.

There are a set of important tolerance questions
faced by designers, which are of the form, “How
far from design can parameters vary before the
line no longer functions adequately?” Using simi-
larity-transformation techniques these questions
can usually be answered analytically, alleviating
the need for numerical simulations.

The power and generality of this method is per-
haps best communicated through examples. These
examples fall into two types: non-interleaved and
interleaved. In the interleaved case two or more
large non-commutative aberrations must be
present.

NON-INTERLEAVED EXAMPLES

Steering Correction

The well-known steering-correction procedures
can be viewed from this perspective. Suppose that
a linear lattice contains a badly-displaced quadru-
pole, and suppose there are two steering-correc-
tion dipoles in the line. How far can this quadru-
pole be displaced and steering corrected before
complications arise?

The generator for a steering dipole is 8;x; for a
kick of angle 8; at a longitudinal location desig-
nated by i=1 or i=2. The correctors must be non-
degenerate, which in Lie algebra language means
[x1,x2]=0. The kick due to a displaced quadrupole
may be written, kqAxq Xq. Because of the non-
degeneracy condition, xq may be written as a
linear combination of the two correctors,
Xq=a1x]+a2x2. Since the Poisson bracket for two
linear operators is a constant, the Lie operator
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exp[:a1x1+a2x2:]=exp[:a1x1:] exp[:a2x2:]. If we .

choose 61= -a1 kqAxq and 62=-ap kqAxq, the
mis-steering of the quadrupole will be corrected.

Assuming for the moment that the intermediate
chromatic corrections are small, the generator for
the linear lattice between corrector and displaced
quadrupole can be found using the first order CBH
theorem, and will be of the form

H=1/2¢110 x12 +¢128x1x1'+1/2¢226 x1’2

The beam line between the displaced quadrupole
. and the steering cotrector, including the corrector
is thus given by

exp[:-01x1:] exp[:H(x1,x1'):] exp[:081x1:]

" which, using the similarity transformation, may be
‘evaluated exactly as exp[:H(xl,xl’-el):].2 This

~ generator now has an additional term of the form
{c12+ c22) 81 & x1, which is a dispersion term. As

- -~ is well known, the limit on the strength of steering

‘errors is set by the limit on the tolerable disper-
sion, given explicitly by this term.

Dispersion Cerrection

Dispersion correction follows almost exactly the
discussion above. If the beam line has provisions
for dispersion correction one could proceed now,
in identical manner, to set the dispersion corrector
to cancel this dispersion. Again a similarity trans-
formation arises, now of the form

exp[:-£18 x1:] exp[:H(x1,x1'):] exp[£18 x1:],

which may be evaluated exactly as exp[:H(x1,x1’-
£198):] . This generator has an additional term
proportional to &1 82 x1, which is a second-order
dispersion term. In a case where a beam line has
provisions for first-order dispersion correction, but
not second-order, the magnitude of this term sets
the limit on dispersion that can be corrected,
which in turn sets the limit on the amount of
steering error which can be corrected.

Chromatic Correction

To corr®t chromiaticity it is usual to introduce a
pair of sextupoles at -1. In the FFTB there is a pair
of sextupoles for horizontal chromatic correction
and a pair for vertical chromatic correction. Since
the two pairs are not interleaved the similarity

transformation may be applied. The full generator
from the sextupole, with horizontal dispersion
present is

Hg= 1/3! kg {x3-3xy2 +3 1 (x2-y2) + 3 n26°%x }

At -I from this point x -> -x, y -> -y, and typically
1 -> n, so the second generator is not exactly -Hs.
To treat such situations it is necessary to introduce
a unit operator at the second sextupole in the form

exp(:-nd ks(xz-yz): ) exp(:4+md ks(x2-y2): ).

Combining the first factor with Hg, we now obtain
a generator which is the exact inverse of the first
sextupole generator. This has a physical interpre-
tation. The chromaticity generated at the first
sextupole is large, as well as the geometric sex-
tupole terms, and both must be propagated across
the -1. After this has been done we still have
exp(:+nd ks(xz-yz): ) following

exp[:-Hs:] exp[:HJ:] exp[:Hs:].

In other words the chromaticity of the two sex-
tupoles has been added together, and remains at
the position of the second sextupole. This large
term is intended to compensate the chromaticity of
the final doublet. This chromatic correction is now
amenable to calculation with a similarity trans-
formation. The intermediate generator of the final
transformer looks the same as the intermediate
generator of our first examples, and for example, a
new term coming from exp[:H(x1,x1'+21nd
kgx,y,y'-an ksy):] is proportional to n k52 83
X

INTERLEAVED EXAMPLES

Large-Small Factorization
Interleaved examples proceed as above with the
additional need to compute products of the form

exp:A: exp:B: exp:-A: exp:-B:,

where A and B are large generators. The product
of the first three factors is a similarity transforma-
tion and can be calculated exactly. The result will
be of the form

exp(:B+AB:) exp:-B:.



To proceed further it is necessary to extract A
from the first generator. This is possible, to first
order in AR ,4 which is what we desire. The an-
swer may be written in the factored form exp:A”:
exp:B: with

’ :#B:
A = [dte™a,

Typically B is a kick, and AB a monomial or a
sum of monomials, hence the integral above may
be easily evaluated.

Also this large-small factorization is required in
the setup of a similarity transformation structure
when a large monomial occurs in a generator with
other small but non-negligible terms. For example
the large chromaticity of the final doublet in the
FFTB occurs in a generator with another much

" smaller first-order chromatic term and a small
‘second-order chromatic term.

CONCLUSION

“Large qc}nlinear elements and large errors in beam
lines can be grouped so that Lie operators for
these large aberrations are paired with their in-
verses. Unit operators of the form exp:-A: exp:A:
may be needed and inserted as appropriate. The
large-small factorization described above may be
necessary to extract small residuals occurring in
generators with large terms. Between operators
with large generators, generators for beam-line
segments can be found using first-order, or if nec-
essary, second-order CBH. Large pairs together
with intermediate beam-line generators can then
be collapsed using the similarity transformation.
This method of composing beam-line generators
offers insight into the optical system and is useful
in tolerance calculations.
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