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_ ABSTRACT- 

Non-perturbative effects can arise in beam lines 
from strong chromatic and nonlinear elements or 

- from large lattice errors. We present a general 
appra@ using Lie algebra methods which pro- 
vides analytic treatment of beam lines with strong 
elements or large errors. In addition to affording 
insight into lattice design and performance, these 

. . _ techniques can answer a broad spectrum of toler- 
ance questions without use of numerical simula- 

-tions. We give several detailed examples. 

INTRODUCTION 

_~ Lie algebra calculations are usually regarded as 
perturb&e, since they rely strongly on the 
Campbell-Baker-Hausdorff (CBH) theorem, 
which is a perturbative composition ru1e.l 
Howevtr the similarify transformation,* which is 
exact, is another very powerful algebraic tool that 
can be used in composing elements and finding 
the generator of a beam line. The requirement for 
the applicability of the similarity transformation, 
that a particular transformation be followed in the 
beam line with the exact inverse of the same trans- 
formation, seems unlikely. However, as we will 
show, this situation occurs far more often than one 
may imagine. In a sensitive beam line like the 
Final Focus Test Beam (FFI’B),3 where fifth- 

. order terms play a major role in optimizing the 
design, it is possible to identify and compute all 
important terms using only first order CBH. 

>e principal reason that strong transformations 
are invariably followed by their inverse is that, 
whether the beam line be circular or linear, one 
wishes to find a configuration, or correct to a sit- 
uation where the sum of all aberrations in the line 
is small. In the Lie algebra language, each distinct 
aberration corresponds to a unique monomial in 

- ihe beq.line generator, so within this framework 
one req%es that%11 monomials have small coef- 
ficients. If a large aberration occurs somewhere in 
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the line, by design or as a result of an error, then it 
must be canceled at another place in the line, 
either by a specifically designed element or 
corrector, or in the most complex situation, a 
series of elements or correctors. This element, or 
combination of elements thus contains the inverse 
of the aberration source. These conditions are 
exactly the conditions that establish the applica- 
bility of the similarity transformation rule. 

There are a set of important tolerance questions 
faced by designers, which are of the form, “How 
far from design can parameters vary before the 
line no longer functions adequately?” Using simi- 
lririty-transformation techniques these questions 
can usually be answered analytically, alleviating 
the need for numerical simulations. 

The power and generality of this method is per- 
haps best communicated through examples. These 
examples fall into two types: non-interleaved and 
interleaved. In the interleaved case two or more 
large non-commutative aberrations must be 
present. 

NON-INTERLEAVED EXAMPLES 

Steering Correction 

The well-known steering-correction procedures 
can be viewed from this perspective. Suppose that 
a linear lattice contains a badly-displaced quadru- 
pole, and suppose there are two steering-correc- 
tion dipoles in the line. How far can this quadru- 
pole be displaced and steering corrected before 
complications arise? 

The generator for a steering dipole is Oixi for a 
kick of angle 8i at a longitudinal location desig- 
nated by i=l or i=2. The correctors must be non- 
degenerate, which in Lie algebra language means 
[xl,x2]~0. The kick due to a displaced quadrupole 
may be written, kqAxq x9. Because of the non- 
degeneracy condition, x9 may be written as a 
linear combination of the two correctors, 
xq=alxl+a2x2. Since the Poisson bracket for two 
linear operators is a constant, the Lie operator 
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.’ exp[:alxl+a2x*:]=exp[:alxl:] exp[:a2x2:]. If we . transformation may be applied. The full generator 
choose 81= -al kq+cq and 02= - a2 kqAxq, the from the sextupole, with horizontal dispersion 
m&steering of the quadrupole will be corrected. present is 

Assuming for the moment that the intermediate 
chromatic corrections are small, the generator for 
the linear lattice.between corrector and displaced 
quadrupole can be found using the first order CBH 
theorem, and will be of the form 

H = l/2 cl1 6 xl2 + cl2 6 xl xl’ t l/2 ~22 6 xlf2 

. . 

The bejm line between the displaced quadrupole I 4 
and the steering corrector, including the corrector 
is thus given by 

exp[:-81x1:] exp[:H(xl,xl’):] exp[:0lxl:] 

which, using the similarity transformation, may be 
evaluated exactly as exp[:H(xI,xI’-OI):].* This 
generator now has an additional term of the form 
(~12’ ~22) 81 6 x1, which is a dispersion term. As 

-- is well known, the limit on the strength of steering 
-errors is .set by the limit on the tolerable disper- 
sion, given explicitly by this term. 

Dispersion Correction 

Dispersion correction follows almost exactly the 
discussion above. If the beam line has provisions 
for dispersion correction one could proceed now, 
in identical manner, to set the dispersion corrector 
to cancel this dispersion. Again a similarity trans- 
formation arises, now of the form 

exp[:-El6 xl:] expcH(xl,xl’):] exp[:Ei6 XI:], 

. which may be evaluated exactly as exp[:H(xI,xl’- 
&S):] . This generator has an additional term 
proportional’to g1 6* xl, which is a second-order 
dispersion term. In a case where a beam line has 
provisions for first-order dispersion correction, but 
not second-order, the magnitude of this term sets 
the limit on dispersion that can be corrected, 
which in turn sets the limit on the amount of 

- steering error which can be corrected. 

Chromatic Correction 
_ -- --.- -.:- 

To co&& chromaticity it is usual to introduce a 
pair of sextupoles at -1. In the FFTB there is a pair 
of sextupoles for horizontal chromatic correction 
and a pair for vertical chromatic correction. Since 
the two pairs are not interleaved the similarity 

HS= l/3! kS {x3-3xy2 t3 q6 (x2-y2) t 3 q26*x } 

At -I from this point x -> -x, y -> -y, and typically 
q -> q, so the second generator is not exactly -HS. 
To treat such situations it is necessary to introduce 
a unit operator at the second sextupole in the form 

exp(:-y6 kS(x2-y2): ) exp(:t@ kS(x2-y2): ). 

Combining the first factor with HS, we now obtain 
a generator which is the exact inverse of the first 
sextupole generator. This has a physical interpre- 
tation. The chromaticity generated at the first 
sextupole is large, as well as the geometric sex- 
tupole terms, and both must be propagated across 
the -I. After this has been done we still have 
exp(:ty6 kS(x2-y2): ) following 

exp[:-HS:] exp[:HI:] exp[:HS:]. 

In other words the chromaticity of the two sex- 
tupoles has been added together, and remains at 
the position of the second sextupole. This large 
term is intended to compensate the chromaticity of 
the final doublet. This chromatic correction is now 
amenable to calculation with a similarity trans- 
formation. The intermediate generator of the final 
transformer looks the same as the intermediate 
generator of our first examples, and for example, a 
new term coming from exp[:H(xI,xI’t2 6 

1 ksy):] is proportional to q kS* o3 

INTERLEAVED EXAMPLES 

Large-Small Factorization 

Interleaved examples proceed as above with the 
additional need to compute products of the form 

exp:A: exp:B: exp:-A: exp:-B:, 

where A and B are large generators. The product 
of the first three factors is a similarity transforma- 
tion and can be calculated exactly. The result will 
be of the form 

exp(:BtAB:) exp:-B:. 



- 

-  - s -C  

T o  p r o c e e d  fu r th e r  it is necessary  to  extract A B  _  
f rom th e  first g e n e r a to r . This  is possib le,  to  first 
o r d e r  in  A B  ,4  wh ich  is w h a t w e  desi re.  T h e  a n -  
swer  m a y  b e  wri t ten in  th e  fac to red  fo r m  e x p :A ’: 
e x p :B : wi th 

A ’ - f o  d te ”B ’A , 

Typical ly B  is a  kick, a n d  A B  a  m o n o m ial o r  a  
s u m  o f m o n o m ials, h e n c e  th e  in tegra l  a b o v e  m a y  
b e  easi ly  eva lua te d . 

A lsq_th_is  la rge-smal l  factor izat ion is r e q u i r e d  in  
th e  se tup  o f a  sim ilarity t ransformat ion structure 
w h e n  a  l a rge  m o n o m ial occurs  in  a  g e n e r a to r  wi th 
o th e r  smal l  b u t non-neg l ig ib le  te rms . Fo r  e x a m p l e  

. . th e  l a rge  c h r o m a ticity o f th e  fina l  d o u b l e t in  th e  
F F T B  occurs  in  a  g e n e r a to r  wi th a n o th e r  m u c h  

--  smal ler  f i rst-order c h r o m a tic te r m  a n d  a  smal l  
s e c o n d - o r d e r  c h r o m a tic te r m . 

C O N C L U S IO N  

- L a r g e  non l i nea r  e l e m e n ts a n d  la rge  er rors  in  b e a m  
l ines c a n  b e  g r o u p e d  so  th a t L ie  o p e r a tors  fo r  
th e s e  l a r g e a b e r r a tio n s  a r e  p a i r e d  with the i r  in-  
verses;  Unit  o p e r a tors  o f th e  fo r m  e x p :-A : e x p :A : 
m a y  b e  n e e d e d  a n d  inser ted as  a p p r o p r i a te . T h e  
la rge-smal l  factor izat ion desc r ibed  a b o v e  m a y  b e  
necessary  to  extract smal l  res idua ls  occur r ing  in  
g e n e r a tors  with l a rge  te rms . B e tween  o p e r a tors  
with l a rge  g e n e r a tors, g e n e r a tors  fo r  b e a m - l i n e  
s e g m e n ts c a n  b e  fo u n d  us ing  f irst-order, o r  if nec -  
essary,  s e c o n d - o r d e r  C B H . L a r g e  pa i rs  to g e th e r  
with in termedia te  b e a m - l i n e  g e n e r a tors  c a n  th e n  
b e  co l lapsed  us ing  th e  sim ilarity t ransformat ion.  
This  m e th o d  o f c o m p o s i n g  b e a m - l i n e  g e n e r a tors  

. o ffers  ins ight  into th e  o p tica l  system a n d  is u s e fu l  
in  to le rance  calculat ions.  
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