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i. INTRODUCHON the digital filter y(tn) is given by a discrete-time 
convolution The PEP II B Factory requires a feedback system to 

damp out longitudinal synchrotron oscillations. A time- 
dpmain bunch-by-bunch feedback system has been 
proposed;iffwhich each bunch is treated as an oscillator 
being driven by disturbances from the other bunches. 
This is shown in Figure 1. 
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_~ Figure 1: Conceptual diagram of bunch-by-bunch 
feedback. The phase-of each bunch is detected and a 

feedback signal particular to that bunch is produced by 
the filter and is applied via the kicker. _~ 

The phase is.. dejected, filtered, and the feedback 
correction signal is applied by the kicker. Since we are 
damping energy oscillations using measurements of 
phase, the required feedback signal must be proportional 
to the amplitude of the phase oscillations but phase 
shifted by 90 degrees. This signal must be calculated for 
each of the 1658 bunches, in parallel. In the original 
proposal, it was estimated that a farm of approximately 
480 digital signal process.ors (DSPs) would be required 
to impJement the feedback system. However, using the 
technique of downsampling, this number can be reduced 
to about 50 DSPs. In what follows, we will briefly 
explain the basic idea of downsampling and its 
implementation. 

2. DIGITAL FILTERS 

The filtering of the detected phase signals is,done in the 
DSPs. These compute the correction signal using a finite 
impulse response (FIR) digital-filter algorithm. If the 
input to the digital filter is a sequence of samples of the 
phw oscillations-of a bunch $( tn)then the output of 
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where h(k), k = O... N - 1, are the coefficients of the 
digital filter. So basically, the present output is given by 
the weighted sum of past inputs. An important thing to 
note about the equation is that the summation requires N 
multiplications and N additions or N MACs. Figure 2 
shows an N-tap FIR digital filter implemented as a 
tapped-delay line. 

The approach of using digital filters to compute a 
feedback signal which is simply 90 degrees out of phase 
with its input may seem like a very complicated solution 
to a very simple problem. For example, one could argue 
that a simple cable-delay line would achieve the same 
thing. However, in PEP II each bunch will be riding on 
its own synchronous phase (with respect to the RF), 
especially if they are close to the gap and hence a 
different DC offset must be subtracted from the phase of 
each bunch. The digital filters proposed in [l] and [3] 
are very simple yet they provide DC rejection and the 
proper phase shift. Also, their coefficients, h(k), are 
programmable, which makes the system versatile and 
easy to adjust to different operating conditions and even 
to different machines. The reader is referred to [3] for 
more details on the digital filters to be used in PEP II, 
and to [6] for basics of digital filters. 

Input 
Bunch Phase 

9-92 output 
7258A2 Feedback Signal 

Figure 2: an N-tap FIR digital filter. Delta indicates a 
unit time delay. 
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3. IDEA BEHIND DOWNSAMPLING 

In PEP II, each bunch crosses the detector about 20 
times per synchrotron oscillation period. In the original 
system design it was suggested that the 20 past-phase 
measurements should be used in equation (1) to compute 
the feedback correction signal. However, the Nyquist 
Sampling Theorem states that it is possible to completely 

-recover a signal Tom its samples provided that the signal 
is band-limited and that the samples are taken at least at 
twice the highest frequency present in the signal 
(Nyquist frequency). In particular, if the signal is a pure 
sinusoid, then it is possible to detect its amplitude and 
phase u&g as little as two samples per period. In 
practice, however, sampling rates of twice the Nyquist 
frequency are used (using two samples per period is not 
reliable since sampling exactly at the zero crossings of 

-‘the sinusoid could give no signal). Twice the Nyquist 
frequency corresponds to four samples per period, so 20 
is clearly redundant. 

Simulations on PEP II show that the least number of 
samples per period that could be used is five (the 
-oscillations were not pure sinusoids). This corresponds 
to using five coefficients in equation 1, i.e., a five-tap 
FIR filter. Therefore only every fourth measurement of 
phase (out of-the 20 measurements of phase per period) 
is used and thethree in between are simply rejected. This 
is called downsampling by a factor of 12 = 4. 

4. IMPLEMENTATION OF DOWNSAMPLING 

Downsampling is incorporated into the original feedback 
system by modifying the loop in Figure 1 with two new 
components: the down sampler and hold buffer, see 
Figure 3~(the ADC and DAC are also shown). 

Figure 3: The down sampler allows the DSP to operate 
at a much lower rate and the hold buffer repeats the most 

recent kick until the next one is computed. 

The down sampler passes only every n th measurement 
to the digital filter. The filter will compute a new 
feedback signal every nth turn. In the meantime the 
h&l-buffer-repeats the last correction signal for n - 1 
turns until t& next filter update. In this way the filter 
processes only lln times the amount of data and has n 

times longer to compute the feedback signal. So the 
overall reduction in the number of MACs is l/ y1’. 

5. EFFECTS OF DOWNSAMPLING 
ON BEAM DYNAMICS* 

In this section, the performance of a non-downsampled 
feedback system is compared to n=2 and n=4 
downsampled systems. 

Computer simulations were performed on an accelerator 
model with ten bunches in which all bunches but the 
fifth start at equilibrium [3]. The fifth bunch is perturbed 
by 100 mrad to simulate injection. The whole system is 
then observed until all bunches are damped to steady 
state. The simulations included 5% of full-scale white 
noise in the phase measurements and a single higher- 
order mode in the cavity. Table 1 shows the feedback 
system parameters which were kept constant for all three 
cases. 

Table 1: Simulation system parameters 

The effects of downsampling on the beam dynamics 
were compared quantitatively using figures of merit. 
These are shown in Figure 4. The slope in the saturated 
feedback region is a measure of the the efficiency of the 
feedback during the period when the phase deviation is 
so large as to saturate the feedback system. The slope 
upper bound is determined by the kicker power while an 
incorrect phase shift in the filters can reduce it. An 
exponential fit to the region where the feedback system 
is operating linearly gives an exponential damping time 
constant. This is determined by the overall gain of the 
system at the synchrotron frequency. The steady state 
behavior is quantified by the rms of the phase deviations 
from the equilibrium phase. I 

Table 2 shows the figures of merit for the transient 
behavior. These figures remain essentially constant as 
the downsampling factor is increased. We conclude that 
n=2 and n=4 downsampling has no significant effect on 
the transient damping dynamics of the beam. 

* These results were also presented in [l]. 
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Figure 4: fiat of the phase-space error amplitude for an 
injected bunch, indicating the operating regimes used to 

compare filters. 

. . Table 2: Simulation saturation slopes 
and exponential decay time-constants _- 

20-tap NJ-tap 5-tap 
( 1) n= ( 2) ll= ( 4) ll= 

Saturation slope 
- (mradltum) -41 -41. -38 _ 

Exponential time- 
constant (turns) 1098  1102 1111 

Figure 5 shows the rms phase error in steady state 
versus downsampling factor for four bunches roughly 
equally spaced through the bunch train of the ten 
bunches. The rise in rms phase error with 
downsampling factor is mainly the result of the 
downsampled filters being more broad band than the 
non-downsampled one (see Figure3). An equivalent time 
domain argument is that- for higher n, we have fewer 
coefficients, and are therefore sampling fewer data 
points and thus less able to average out the uncorrelated 
noise (see Equationl). However, although the rms phase 
error-for each bunch rises with downsampling, they are 
all kept to within 0.65 mrad, one-half of the quantizing 
resolution of the input. Thus we conclude that for n = 2 
and n = 4 the downsampling has no significant effect on 
the steady state characteristics of the beam. 

The effect of the hold buffer on the final feedback signal 
in the time domain is shown in Figure 6 (a). The 
repetition introduces some coarseness into the signal. 
Thefourier transform of these signals, shown in 
Frgure 6 (b&sh ows the same effect in the frequency 
domain. ) 
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Figure 5. Performance comparison, for several bunches, 
of the three filters (n=1,2,4) in terms of equilibrium rms 

phase noise. 
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Figure 6. (a) nondownsampled and downsampled kicker 
outputs for a particular bunch- time domain; (b) non- 

downsampled and downsampled kicker outputs - 
frequency domain. 

This shows that there are new harmonics present in the 
feedback signal, but the important thing to note is that 
the fundamental at the synchrotron frequency of 7 KHz 
is almost unaffected so the bulk of the power of the 
feedback signal is still at the fundamental, as it should 
be. Also, since the beam has such a narrow band 
response, it will couple very ;poorly to these new 
harmonics and hence their effect on the beam dynamics 
is minimal. 

6. CONCLUSION 

We  have discussed briefly some of the basic principles 
behind down sampling and its implementation in the 
bunch-by-bunch feedback system for PEP II. 



Figures of merit defined on the transient and steady state REFERENCES 
dynamics of the beam have allowed a quantitative 
evaluation of the performance of the feedback system 
with various down sampling factors. These results show 
that for n = 2 and n = 4 down sampling has virtually no 
adverse effects on the beam transients or the steady state 
behavior. These results, together with the large savings 
in technical complexity of the hardware due to the 

-reduced computational load on the DSP processors, 
suggest that down sampled processing is an important 
development for the practical implementation of the 
digital feedback system. 
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