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ABSTRACT

The quantization of gauge theory at fixed light-cone time 7 = ¢ — z/c provides
new perspectives for solving non-perturbative problems in quantum chromodynam-
ics. The light-cone Fock state expansion provides both a precise definition of the
relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a
general calculus for predicting QCD processes at the amplitude level. Applica-
tions to exclusive processes and weak decay amplitudes are discussed. The problem
- of computing the hadronic spectrum and the corresponding light-cone wavefunc-
tions of QCD in one space and one time dimension has been successfully reduced
to the diagonalization of a discrete representation of the light-cone Hamiltonian.
- 7 The problems confronting the solution of gauge theories in 3 + 1 dimensions in
the light-cone quantization formalism, including zero modes and non-perturbative
renormalization, are reviewed.

1. Introduction

A primary goal of particle physics is to understand the structure of hadrons
in terms of their fundamental quark and gluon degrees of freedom. It is important
to predict not only the spectrum of the hadrons, but also to derive from first princi-
ples the hadron structure functions that control inclusive reactions, the form of the
hadron distribution amplitudes that control exclusive processes, and the behavior of
the fragmentation functions which control the transition between quark and gluon jets
and hadrons. Such questions will evidently require an understanding of confinement
and other properties of non-perturbative quantum chromodynamics at the amplitude
level. The first, but non-trivial, step toward this goal is to give a consistent defi-
nition of hadron wavefunctions, the amplitudes which describe a composite system
consisting of an arbitrary number of confined relativistic quarks and gluons.

There are many reasons why detailed information on hadron wavefunctions in
QECD is critical for future progress in particle physics. For example, in electroweak
theory, the central unknown required for reliable calculations of weak decay ampli-
tudes are the hadronic matrix elements: the computation of the B meson decay into
particular hadron channels requires detailed knowledge of both the light and heavy



hadron wavefunctions. The coefficient functions in the operator product expansion
" needed to compute leading and higher twist structure functions and other inclusive
cross sections are also essentially unknown. Form factors and exclusive scattering
processes depend in detail on the basic amplitude structure of the scattering hadrons
in a general Lorentz frame. Even the calculation of the proton magnetic moment
" requires an understanding of hadron wavefunctions in a boosted frame.

In this talk I will discuss the light-cone quantization of gauge theories from
two perspectives: as a language for representing hadrons as QCD bound-states of
relativistic quarks and gluons, and also as a novel method for simulating quantum
field theory on a computer. The light-cone Fock state expansion of wavefunctions at
fixed light-cone time in fact provides a precise definition of the parton model and a
general calculus for hadronic matrix elements. The Hamiltonian formulation of quan-
tum field theory quantized at fixed light-cone time has led to new non-perturbative

calculational tools for numerically solving quantum field theories. In particular, the

“discretized light-cone quantization,” method (DLCQ)2 has been successfully applied
to several gauge theories, including QCD in one-space and one-time dimension, and
quantum electrodynamics in physical space-time at large coupling strength. Other
non-perturbative methods based on light-cone quantization, such as the transverse

lattice’ and the Light-Front Tamm-Dancoff method” are also being developed as
new alternatives to conventional lattice gauge theory.

- -,‘" There have been relatively few calculations of the wavefunctions of hadrons
from first principles in QCD. The most interesting progress has come from QCD sum

rule (:alculations,5 and lattice gauge theorys’7 both of which have provided predic-
tions for the lowest moments (z?) of the proton’s distribution amplitude, ¢p(z:, Q).
The distribution amplitude is the fundamental gauge invariant wavefunction which

describes the fractional longitudinal momentum distributions of the valence quarks

in a hadron integrated over transverse momentum up to the scale Q8 However, the
results from the two analyses are in strong disagreement: the QCD sum rule analysis
predicts ‘a strongly asymmetric three-quark distribution (see Fig. 1), whereas the

lattice results,7 obtained in the quenched approximation, favor a symmetric distribu-
tion in the z;. Models of the proton distribution amplitude based on a quark—di-quark
structure suggest strong asymmetries and strong spin-correlations in the baryon wave-

functions? Even less is known from first principles in non-perturbative QCD about
the gluon and non-valence quark contributions to the proton wavefunction, although
data from a number of experiments now suggest non-trivial spin correlations, a signif-
icant strangeness content, and a large = component to the charm quark distribution

in the proton.m

It is also interesting to note that light-cone wavefunctions of the projectile
hadren in large measure control the distributions of final state hadrons produced in
the fragmentation region of inclusive processes AB — CX. At high energies, the
Fock states of large invariant mass M survive for times T = 2P,/ M? and are ma-
terialized by the interactions of the slowest parton spectators in the target. Because
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Figure 1. The proton distribution amplitude ¢p(z;, 1) evaluated at the scale u ~ 1%eV

from QCD sum rules’ The enhancement at large z; correspond to a strong correlation between
the a high momentum u quark with spin parallel to the proton spin.

. .

of color screening, small color singlet configurations in the projectile Fock state can
penetrate the target with minimal QCD interactions whereas large transverse size



color fluctuations interact strongly in the target. These considerations can help ex-
plain many of the features of Feynman-scaling distributions, including the nuclear
dependence on zr and the size of the multiplicity fluctuations and leading charm
production. Further details may be found in Ref. 11.

2. Quantization on the Light-Cone

By far the simplest and most intuitive representation of relativistic bound state

wavefunctions is the light-cone Fock expansion. In 1949 Dirac' showed that there
are remarkable advantages of quantizing relativistic field theories at fixed “light-cone
time” 7 = t+2/crather than ordinary time. In the traditional equal-time Hamiltonian
formulation none of the Poincare operators that generate Lorentz boosts commute
with the Hamiltonian; thus computing a boosted wavefunction is as complicated
a dynamical problem as diagonalizing the Hamiltonian itself. On the other hand,
~ quantization on the light-cone can be formulated without reference to the choice of a
specific Lorentz frame; the eigensolutions of the light-cone Hamiltonian, the genera-
tor of translations in 7, describe bound states of arbitrary four-momentum, allowing
the computation of scattering amplitudes and other dynamical quantities. Another
remarkable feature of this formalism is the apparent simplicity of the light-cone vac-
uum. In many theories the vacuum state of the free Hamiltonian is an eigenstate of
the total light-cone Hamiltonian. In principle, the Fock expansion constructed on this
vacuurn state provides a complete relativistic many-particle basis for diagonalizing the
full theory.

There are advantages of light-cone quantization even in ordinary quantum
mechanics. Consider an experiment which could specify the initial wavefunction of a
multi-electron atom. Determining ¥(7;,¢ = 0),¢ = 1,...n would require the simulta-
neous measurement of the positions of the n bound electrons. In principle this could
“be carried out by the simultaneous Compton scattering of n independent laser beams
on the atom. In contrast, determining the initial wavefunction at a fixed light-cone
time 7 requires only the scattering of one plane-wave laser beam since the signal
reaching each of the electrons is received along the light front at the same light-cone
time 7 = t; + z;/e. '

In the case of perturbation theory, light-cone quantization has overwhelming
advantages over standard time-ordered perturbation theory. In order to calculate a
Feynman amplitude of order ¢" in TOPTH one must suffer the calculation of n time-
ordered graphs, each of which is a non-covariant function of energy denominators
which, in turn, consist of sums of complicated square roots p? = \/P2+m?. On
the other hand, in light-cone perturbation theory (LCPTH), only a relatively few
graphs give non-zero contributions, and those that are non-zero have light-cone energy
d@ominators which are simple sums of rational forms p~ = (15'3_1-|—m,2)/p;F An analog
of light-cone perturbation theory has in fact been used to calculate the anomalous

magnetic moment to two loops in QED. 13



In light-cone quantization, a free particle is specified by its four momentum
“k* = (k*, k™, k) where k* = k® £ k®. Since it has positive energy, its light-cone
energy is also positive: k= = (k% + m?)/k* > 0. In perturbation theory, transverse
momentum 3 k; and the plus momentum ) k% are conserved at each vertex. The
light-cone bound-state wavefunction thus describes constituents which are on their
- mass shell, but off the light-cone energy shell: P~ < > k.

In principle, the problem of computing the spectrum in QCD and the corre-
sponding light-cone wavefunctions for each hadron can be reduced to the diagonal-
ization of the Fock state matrix representation of the QCD light-cone Hamiltonian
in_analogy to Heisenberg quantum mechanics. Any hadron state must be an eigen-
state of the light-cone Hamiltonian. (For convenience we will work in the “standard”
frame where P, = (P*,P;) = (1,0,) and Py = M2.) Thus the state |r) satisfies
an equation

(Mz — HLC) |7) = 0.

Projecting this onto the various Fock states (¢g|, (¢gg| ... results in an infinite number

of coupled integral eigenvalue equations,8 '

: z;
1
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~ where V' is the interaction part of Hpc. Diagrammatically, V involves completely
irreducible interactions—i.e. diagrams having no internal propagators—coupling Fock
states. (See Fig. 2.) The explicit forms of each -matrix element of V are given in
Ref. 2. In principle,the solutions to these equations determine not only the hadronic
spectrum of QCD but also the light-cone wavefunctions needed to compute hadronic
amplitudes. )

Recently a new numerical method, discretized light-cone quantization (DLCQ),
has been developed to diagonalize the light-cone Hamiltonian on a covariantly regu-
lated discrete basis’ By imposing periodic or anti-periodic boundary conditions of
the fields in z~ and z, and an upper bound on the invariant mass of the particles
in éhe Fock space

MZ___zn: ki_{_mz <A2
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Figure 2. Coupled eigenvalue equations for the light-cone wavefunctions of a pion.

(the “global cutoff”), one obtains a discrete momentum space matrix representation
of the light-cone Hamiltonian. The DLCQ method thus provides a new type of com-
puter simulation of quantum field theories in momentum space. Since only relative
coordinates appear, the formulation is completely independent of the total momen-
tum pt and ') of the system. By using light-cone gauge, only the minimum number
of physical degrees of freedom appear in the simulation. Unlike lattice gauge theory,
DLCQ has no fermion doubling problem.

The DLCQ method thus converts the problem of solving a quantum field

theory to the diagonalization of the light-cone Hamiltonian on a discrete Fock-space
basis

(n|Hpc |m) (m|p) = M*(n]p) .

Its most dramatic success has been the applications to quantum field theories in
one-space and one-time dimensions. The DLCQ method was first used to obtain
‘the mass spectrum and wavefunctions of Yukawa theory, )¢, in one-space and one-

time 7dirr71ensii)ns.14 This success led to further applications including QED(1+1) for
general mass fermions and the massless Schwinger model by Eller et al.,15 é* theory
in 141 dimensions by Harindranath and Vary,16 and QCD(1+1) for N¢ = 2,3,4 by

Hornbostel et al’" Complete numerical solutions have been obtained for the meson
and baryon spectra as well as their respective light-cone Fock state wavefunctions
for general values of the coupling constant, quark masses, and color. Similar results

for QCD(1+1) were also obtained by Burkardt '® by solving the coupled light-cone
integral equation in the low particle number sector. Burkardt was also able to study
non-additive nuclear effects in the structure functions of nuclear states in QCD(1+41).
In each of these applications, the mass spectrum and wavefunctions were successfully
obtained, and all results agree with previous analytical and numerical work, where

th‘ety were available. More recently, Hiller™ has used DLCQ and the Lanczos algo-

rithm for matrix diagonalization method to compute the annihilation cross section,
structure functions and form factors in 141 theories. Although these are just toy



models, they do exhibit confinement and are excellent tests of the light-cone Fock
methods.

In the case of gauge theories in one-space and one-time dimension, there are no
physical gluon degrees of freedom in light-cone gauge. The computatlonal problem is
thus tractable, and it is possible to explicitly diagonalize the light-cone Hamlltoman

and solve these theories numerically. In the work of Hornbostel et al, complete
numerical solutions for the spectrum and light-cone wavefunctions in QCD(1+1) can
be obtained for any value of the coupling strength and quark masses and any number
of flavor and color numbers.

o

A related approach, the light-front Tamm-Dancoff method (LFTD),4 has also
been proposed to solve the light-cone equation of motion. Asin the traditional Tamm-
Dancoff method, the light-cone Fock space is truncated to a fixed particle number,
-.and cutoffs are imposed on the maximum transverse momentum and minimum k,~+ .
Renormalization counterterms are then introduced to restore the QCD symmetries
violated by the Fock space truncation.

. The application of the DLCQ and LFTD methods to QCD in physical space-
time is a highly challenging problem. The size of the quark and gluon Fock space and
the discretization of the transverse momenta leads quickly to very large matrices. A
more subtle difficulty is the necessity to include zero mode contributions enforced by
the equations of motion and the imposed boundary conditions. The effective Hamilto-
nian must also be supplemented by terms specified by the ultraviolet renormalization
procedure. Despite these challenges, the light-cone methods have been successfully

been applied to QED(3+1)20,21,22

Pauli’’ have computed the structure functions of QED bound states, the lepton
-and photon light-cone momentum distributions of positronium. I will return to the
discussion of the successes and problems of the DLC(Q method in section 7.

at couplings a ~ 0.3. For example, Kaluza and

It is thus natural to employ the light-cone Fock expansion as the basis for
representing the physical states of QCD. For example, a pion with momentum P =

(Pt, F_L) is described by expansion over color-singlet eigenstates of the free QCD
light-cone Hamiltonian:

dz;d®k
[ : E) Z/H\j—w:i*

n,A;

n: IL’Z'P+,$1'T))_L + /%l,',/\,‘> U /x(Tis ELi,Ai)

where the sum is over all Fock states and helicities, and where
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The wavefunction Pz (Tis ki, Ai) is the amplitude for finding partons in a specific

light-cone Fock state n with momenta (z; P, x;?_;_—{-lgh) in the pion. The Fock state
is off the light-cone energy shell: Y~ k7 > P~. The light-cone momentum coordinates

z;, with Y1, z; and Eu, with Y0, E_J_i = —(?L, are actually relative coordinates;
i.e. they are independent of the total momentum PT and P, of the bound state.
The special feature that light-cone wavefunctions do not depend on the total mo-
mentum is not surprising, since z; is the longitudinal momentum fraction carried by
the ith—pe}rton (0 < 2; <1), and Eu’ is its momentum “transverse” to the direc-
tion of the meson. Both of these are frame-independent quantities. The ability to
specify wavefunctions simultaneously in any frame is a special feature of light-cone
quantization.

The coefficients in the light-cone Fock state expansion thus are the parton
wavefunctions ¥, g (i, ELi, Ai) which describe the decomposition of each hadron in
terms of its fundamental quark and gluon degrees of freedom. The light-cone variable
0 < z; < 1 is often identified with the constituent’s longitudinal momentum fraction
z; = kf/P,, in a frame where the total momentum P* — inf. However, in light-cone
‘Hamiltonian formulation of QCD, z; is the boost-invariant light-cone fraction,

kX kD + k2

— 1

xi:P-{-:—PO_*_PZ’

independent of the choice of Lorentz frame.

Given the light-cone wavefunctions, '(/)n/H(lfi,]—(;J_i, Ai), one can compute vir-
tually any hadronic quantity by convolution with the appropriate quark and gluon
matrix elements. For example, the leading-twist structure functions measured in
deep inelastic lepton scattering are immediately related to the light-cone probability
diﬁséribht,ions:

)z
'@ ~ Zez Ga/p(x’Q)

2M Fl(:I?,Q) =



where

‘1/17 Z/H dmlzﬂ_];ll |¢n :t,, k_Ln | Z(S :Cb — x

is the number density of partons of type a with longitudinal momentum fraction z
in the proton. This follows from the observation that deep inelastic lepton scattering
in the Bjorken-scaling limit occurs if z;; matches the light-cone fraction of the struck
quark. (The >, is over all partons of type a in state n.) However, the light-cone
wavefunctions contain much more information for the final state of deep inelastic
scattering, such as the multi-parton distributions, spin and flavor correlations, and
the spectator jet composition.

The spacelike form factor is the sum of overlap integrals analogous to the

23
correspondlng nonrelativistic formula:

dz; d? kJ_z {A)* e (A) 7
Z Z e [T1 T =6 v o a0 o B )
Here e, is the charge of the struck quark, A% > (j’f_, and

7 l_c‘_]_,' —z;¢L + ¢ for the struck quark
l: = -
kii—xiqL for all other partons.

 The general rule for calculating an amplitude involving wavefunction ¢,(,A),

describing Fock state n in a hadron with P = (PT, ?J_ , has the form® (see Fig. 3):
; , g

duid?ky ; - -
Z/H \;—16:3 oS0, Briy i) TV (@iP i P 1+ Fuiy )

where T( ) is the irreducible scattering amplitude in LCPTh with the hadron replaced
by Fock state n. The light-cone Fock expansion thus allows a definition of the parton
mipdel and wavefunctions. By using the light-cone gauge, AT = 0, only physical non-
ghost degrees of freedom appear in the Fock expansion even for non-Abelian theories.
Furthermore in this gauge, the numerator couplings of soft gluons inserted into hard
scattering expansions remain finite in the high momentum transfer limit. Thus this

10
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Figure 3. Calculation of hadronic amplitudes in the light-cone Fock formalism.
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formalism is ideal for proving factorization theorems, i.e. the isolation of hard and
soft contributions at high momentum transfer.

3. Exclusive Processes and Light-Cone Wavefunctions

The dynamics of exclusive reactions reflect not only the behavior of quark-
gluon scattering processes at the amplitude level, but also the fundamental structure
of the hadron wavefunctions themselves. In a relativistic quantum field theory, a
bound state cannot be described in terms of a fixed number of constituents. However,
in the case of exclusive reactions at large momentum transfer, there is an enormous
simplification: only the lowest valence-quark light-cone Fock state of each hadron
contributes to a high momentum transfer exclusive scattering process. It is easy to
show that in the light-cone gauge, AT = 0, higher Fock state contributions involving

extra gluons are always suppressed by powers of the momentum transfer Q.24 Fur-
thermore, the absence of gluon radiation into the final state demands that the valence
quarks in the hadron wavefunction must be at relative transverse separation bf,_ of
order 1/Q; thus small color-dipole configurations of the hadron wavefunction control

large momentum transfer exclusive processes.2 5% Thus at high momentum transfer
exclusive reactions provide an important testing ground for light-cone wavefunctions
since in the light-cone gauge only the simplest valence wavefunction is involved.

“On the other hand, many properties of large momentum transfer exclusive re-
actions can be calculated without explicit knowledge of the form of the non-perturba-
tive light-cone wavefunctions. The main ingredients of this analysis are asymptotic
freedom, and the power-law scaling relations and quark helicity conservation rules of
perturbative QCD. For example, consider the light-cone convolution formula for the
meson form factor at high momentum transfer Q2. If the internal momentum transfer
is large then one can iterate the gluon-exchange term in the effective potential for
the light-cone wavefunctions. The result is the hadron form factors can be written in

a fagtorized form as a convolution of quark “distribution amplitudes” ¢(z;, @), one

for-each hadron involved in the amplitude, with a hard-scattering amplitude TH.S’26

The distribution amplitude is the fundamental gauge invariant wavefunction which
describes the fractional longitudinal momentum distributions of the valence quarks

11



in a hadron integrated over transverse momentum up to the scale Q.8 The pion’s

. . 8,26,27
electromagnetic form factor, for example, can be written as

R(Q) = /1 dr /1 4y (5, @) T (2,9, Q) #x(2, Q) (1+o(5))-
0 0

Here Ty is the scattering amplitude for the form factor but with the pions replaced by
¢Ollinear ¢§ pairs—i.e. the pions are replaced by their valence partons. We can also
regard Ty as the free particle matrix element of the order 1/Q? term in the effective

Lagrangian for v*qq — qq.m

_ The process-independent distribution a,rnplitude8 éx(z, Q) is the probability
amplitude for finding the ¢g pair in the pion with 4 =  and z7 = 1 —=z. It is directly
related to the light-cone valence wavefunction:

.‘ ¢7r(w?Q) :/dukl ¢(Q) (:E’ E_L)

1673 9@/~

-0 ' : dz” opt.- A N
=R [ e 050 ) @)

¥ =7Z=0

The k| integration in the above equation is cut off by the ultraviolet cutoff A =

@ implicit in the wavefunction; thus only Fock states with invariant mass squared
7M2 < @? contribute.

The above result for exclusive amplitudes is in the form of a factorization
theorem; all of the non-perturbative dynamics is factorized into the non-perturbative
distribution amplitudes, which sums all internal momentum transfers up to the scale
Q2. On the other hand, all momentum transfers higher than Q? appear in Ty, which,
because of asymptotic freedom, can be computed perturbatively in powers of the
QCD running coupling constant as(Q?).

Isgur and Llewellyn Smith®® and also Radyushkin29 have raised the concern
that important contributions to exclusive processes could arise from non-factorizing
end-point contributions of the hadron wavefunctions with  ~ 1 even at very large
momentum transfer. However, recent work by Botts, Li, and Sterman’" has now
shown that such soft physics contributions are effectively eliminated due to Su-
dakev suppression. I will briefly review this work below. In addition, Kronfeld and
Nizic®! have shown how one can consistently integrate over on-shell singularities in

the hard-scattering amplitude for Compton processes involving baryons. Thus the
QCD predictions based on the factorization of long and short distance physics are

12



reliable and should be valid for momentum transfers in the experimentally accessible

-~ domain beyond a few GeV. It is clearly important to test these predictions as precisely
as possible.

Given the factorized structure of exclusive amplitudes at large momentum

transfer, .one can read off a number of general features of the PQCD predictions;

" e.g. the dimensional counting rules, hadron helicity conservation, color transparency,

etc?* In addition, the scaling behavior of the exclusive amplitude is modified by
the logarithmic dependence of the distribution amplitudes in Q2 which is in turn
determined by QCD evolution equations.8

v

Because of asymptotic freedom, the nominal power-law fall-off M ~ Q*=" of
an exclusive amplitude at large momentum transfer reflects the elementary scaling of
the lowest-order connected quark and gluon tree graphs obtained by replacing each of
the external hadrons by its respective collinear quarks. Here n is the total number of
initial state and final state lepton, photon, or quark fields entering or leaving the hard
scattering subprocess. The empirical success of the dimensional counting rules for the
power-law fall-off of form factors and general fixed center-of-mass angle scattering
amplitudes has given important evidence for scale-invariant quark and gluon inter-

actions at short distarices’” QCD also predicts calculable corrections to the nominal
dimensional counting power-law behavior due to the running of the strong coupling
constant, higher order corrections to the hard scattering amplitude, Sudakov effects,
pinch singularities, as well as the evolution of the hadron distribution amplitudes,
g (z;, Q), the basic factorizable non-perturbative wavefunctions needed to compute

s

. . 2
exclusive amplitudes.

The fundamental non-perturbative quantities which control large momentum
transfer exclusive reactions in quantum chromodynamics are the hadron distribution
amplitudes8: ép(zi, Xi, Q), for the baryons with x; + z2 + 23 = 1, and ¢y (i, Ai, Q),
for the mesons with 1422 = 1. The distribution amplitudes are the hadron wavefunc-
tions which interpolate between the QCD bound state and their valence quarks. The
constituents have longitudinal light-cone momentum fractions z; = (k% + &%);/(p° +
p?), helicities A;, and transverse separation by ~ 1/Q). If one can calculate the dis-
tribution amplitude at an initial scale @, then one can determine ¢(z;, Q) at higher
momentum scales via evolution equations in log @2 or equivalently, the operator prod-
uct expansion. Thus far the most important experimental constraints on the hadron
distribution amplitudes has come from the normalization and scaling of form factors
at large momentum transfer.

The data for hadron form factors is consistent with the onset of PQCD scaling
at a momentum transfers of a few GeV, as expected from the parameters which de-
termine the mass scales of QCD. Recently Stoler®® has shown that the measurements
of ke transition form factors of the proton to the N(1535) and N(1680) resonances
are con51stent with the predicted PQCD Q~* scaling to beyond Q% = 20 GeV?. The
normalization is also in reasonable agreement with that predicted from QCD sum
rule constraints on the nucleon distribution amplitudes, allowing for uncertainties

13



from higher order QCD corrections. In the case of the proton to A(1232) transition,
~ the form factor falls faster that Q~*. This anomalous behavior is in fact predicted by
the QCD sum rule analysis since unlike the proton, the A has a highly symmetric
distribution amplitude with a small coupling to the QCD hard scattering amplitude.
The observed scaling pattern of the transition form factors gives strong support to
the QCD sum rule predictions and PQCD factorization.

The hadron distribution amplitudes can also be used for calculating weak de-
cay transitions, structure functions at z ~ 1, fragmentation distributions at large z,

and higher twist correlations’® For example, strong higher twist effects are observed
im-the angular and Q? dependence of Drell-Yan processes and deep inelastic scatter-

ing at  ~ 1. In each of these applications, one can use factorization theorems
to separate the perturbative quark and gluon dynamics which involves momentum
transfer higher than () from the non-perturbative long-distance physics contained
in ¢(z;, Q). These analyses parallel the developments in leading-twist inclusive reac-
tions, where one factorizes hard-scattering quark-gluon subprocess cross sections from
the long-distance physics contained in the hadron structure functions. However, in
the case of exclusive processes at large momentum transfer, the scale-separation and
factorization are done at the amplitude level.

Exclusive reactions involving two real or virtual photons provide a particularly
interesting testing ground for QCD because of the relative simplicity of the couplings
of the photons to the underlying quark currents and the absence of significant ini-
tial state interactions—any remnant of vector-meson dominance contributions is sup-
pressed at large momentum transfer. The angular distributions for the hadron pair
production processes vy — HH are sensitive to the shapes of the hadron wavefunc-
tions>® Lowest order predictions for meson pair production in two photon collisions
using this formalism are given in Refs. 36 and 5; the analysis of the v+ to meson pair

process has been carried out to next to leading order in as(Q?) by Nizic.

The simplest example of two-photon exclusive reactions is the v*(q)y — M°
process which is measurable in tagged ete™ — eTe™ MO reactions. The photon to
neutral meson transition form factor F,_, po(@?) is predicted to fall as 1/@Q*—modulo
calculable logarithmic corrections from the evolution of the meson distribution am-
plitude. The QCD prediction reflects the scale invariance of the quark propagator
at high momentum transfer, the same scale-invariance which gives Bjorken scaling of
the deep inelastic lepton-nucleon cross sections. The existing data from the TPC/~~y
experiment are consistent with the predicted scaling and normalization of the tran-
sition form factors for the 7%, g, and n'. The Mark II and TPC/yy measurements of
vy — 7t~ and vy — Kt K™~ reactions are also consistent with PQCD expectations.
A review of this work is given in Ref. 38.

4.‘{(30mf)ton Scattering in Perturbative QCD

Compton scattering vp — vp at large momentum transfer and its s-channel

14



crossed reactions vy — pp and pp — <~ are classic tests of the perturbative QCD
- formalism for exclusive reactions. At leading twist, each helicity amplitude has the

factorized forrn,24 (see Fig. 4)

~ ~

Mzzj(svt) = Z/[dx][dy]¢i($lam2,m3sQ)in(d)(xaha/\;y7h’,AI;S»t)(ﬁi(ylay?ayii;Q) .
d,i

The index : labels the three contributing valence Fock amplitudes at the renormal-
Ization scale é The index d labels the 378 connected Feynman diagrams which con-
tribute to the eight-point hard scattering amplitude ¢gqqy — ¢gg~v at the tree level;
i.e. at order aag(@). The arguments Cj of the QCD running coupling constant can
be evaluated amplitude by amplitude using the method of Ref. 39. The evaluation of

" the hard scattering amplitudes Ti(d)(:v, h,X;y,h', ) s,t) has now been done by several

40,41,31,42
groups.
k k'
p p'
= + ..
X1p bALY
X2op yap
X3p yap et

Figure 4. Factorization of the Compton amplitude in QCD.

An important simplification of Compton scattering in PQCD is the fact that
pinch singularities are readily integrable and do not change the nominal power-law

behavior. of the basic a,mplitudes.3 ! Physically, the pinch singularities correspond to
the existence of potentially on-shell intermediate states in the hard scattering am-
plitudes, leading to a non-trivial phase structure of the Compton amplitudes. Such
phases can in principle be measured by interfering the virtual Compton process in
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. Figure 5. Comparison of the QCD prediction for the scaled unpolarized proton Comp-
ton scattering differential cross section s®do/dt(yp — vp) with experiment. The experimental

data® are at s = 4.63 GeV (circles) s = 6.51 GeV (triangles), s = 8.38 GeV (squares) and

s = 10.26 GeV (asterisk). The QCD prediction is from the calculation of Kronfeld and Nizic>!
The QCD sum rule distribution amplitudes are listed in Ref. 5.

etp — etpy with the purely real Bethe-Heitler bremmstrahlung amplitude.4 5 A care-
~ ful analytic treatment of the integration over the on-shell intermediate states is given

by Kronfeld and Nizic!

7 The most characteristic feature of the PQCD predictions is the scaling of the
differential Compton cross section at fixed t/s or ¢ .

G = ) = Fltfs)

The power s® reflects the fact that 8 elementary fields enter or leave the hard scattering
subproc_:ess.32 The scaling of the existing data™ as shown in Fig. 5 is remarkably

cd%'sistent'g with the PQCD power-law prediction, but measurements at higher energies
and momentum transfer are needed to test the predicted logarithmic corrections to
this scaling behavior and determine the angular distribution of the scaled cross section

over as large a range as possible.
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The predictions for the normalization of the Compton cross section and the
- shape of its angular distribution are sensitive to the shape of the proton distribution
amplitude ¢,(z;, Q). The forms predicted for the proton distribution amplitude by
QCD sum-rules by Chernyak, Oglobin, and Zhitnitskii, and also King and Sachrajda,
shown in Fig. 1, appear to give a reasonable representation of the existing data.
- These -distributions, which predict that 65% of the proton’s momentum is carried
by the u quark with helicity parallel to the proton’s helicity also provide reasonable
predictions for the normalization of the proton’s form factor and the J/¢¥ — pp decay
rate. Kronfeld and Nizic have also given detailed predictions for the helicity and
phase structure of the PQCD predictions for both proton and neutrons. The crossing
behavior from the Compton scattering to the annihilation channels will also provide
important tests and constraints on the PQCD formalism and the shape of the proton
distribution amplitudes. Predictions for the timelike processes have been made by
Farrar et al.,40 Millers and Gunion41, and Hyer.42

It should be emphasized that the theoretical uncertainties from finite nucleon
mass corrections, the magnitude of the QCD running coupling constant, and the

normalization of the proton distribution amplitude largely cancel out in the ratio of
differential cross sections

_ da(pp — vy)/dt
e » : R77/€+8_(8?06m) - dU(]_)p _ 6+€—)/dt,

which is predicted by QCD to be essentially independent of s at large momentum
transfer. (See Fig. 6.) If this scaling is confirmed, then the center-of-mass angular
dependence of R../e+e~(S,0cm) will be one of the best ways to determine the shape
of ¢p(zi,@). The measurement of this ratio appears to well-suited to the Fermilab
antiproton accumulator experiment E760 and SuperLear.

Another important characteristic of the leading-twist QCD predictions for ex-

clusive processes is hadron-helicity conservation.> Because of chiral invariance, the
hard-scattering amplitude is non-zero only for amplitudes that conserve quark he-
licity.  Since the distribution amplitude projects only L, = 0, this implies that the
proton helicity is conserved in yp — 4p. Similarly, the baryon and z anti-baryon
helicities must be opposite in the crossed reactions vy — BB and Bp — 77 at large
momentum transfer. Detailed predictions for each of the leading power Compton

scattering helicity amplitudes are also given by Kronfeld and Nizic>!

5. The Domain of Validity of PQCD Predictions for Exclusive Processes

.. The factorized predictions for the Compton amplitude are rigorous predictions
of §CD at large momentum transfer. However, it is important to understand the kine-
matic domain where the leading twist predictions become valid. As emphasized by

Isgur and Llewellyn Smith,zz’3 this question is non-trivial because of the possibility of
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Figure 6. PQCD predictions for the ratio of the timelike Compton cross section for
Ppp — v to the cross section for pp — ete~ annihilation assuming different model forms for the

proton distribution amplitude at s = 25 GeV2.42‘A The predictions include the effect of Sudakov
suppression in the endpoint region using the Li-Sterman formalism.

significant contributions to the scattering amplitude at the endpoint regions z; — 1
where the PQCD factorization could break down. Because of the denominator struc-
ture of the hard scattering amplitudes, e.g., Ty o as/[(1~z)(1—y)Q?] for the meson
form factor, the endpoint integration region at z ~ 1 and y ~ 1 will be enhanced. Of
more concern is the fact that such endpoint regions are even further emphasized when
one assumes the strongly asymmetric forms for the nucleon distribution amplitude
derived from QCD sum rules.

, It is important to note that the end-point regime corresponds to scattering
- processes where one quark carries nearly all of the proton’s momentum and is at a
fixed transverse separation b, from the spectator quarks. However, if a quark which
is isolated in space receives a large momentum transfer z;(), it will normally strongly
radiate gluons into the final state due to the displacement of both its initial and final

self-field, contrary to the requirements of exclusive scattering.3 * For example, in QED
the radiation from the initial and final state charged lines is controlled by the coherent
sum i—%mqi where ¢; and p; are the charges four-momenta of the charged lines, €
and k are polarization and four-momentum of the radiation, and 7; = £1 for initial
and final state particles, respectively. Radiation will occur for any finite momentum
transfer scattering as long as the photon’s wavelength is less than the size of the initial
and final neutral bound states.

- The radiation from the colored lines in QCD have similar coherence proper-

ties: ™0 because of the destructive color interference of the radiators, the momentum
of the radiated gluon in a QCD hard scattering process only ranges from k of order
1/b, , where color screening occuts, up to the momentum transfer z;Q of the scattered
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quarks. The one-gluon correction to the wavefunction is thus proportional to

0 Q

Cr [ d%q, g aslql) [das

— / _;?:— [3 - ;<j exp(_z(bﬂ — b)) ql»)] 2r q/ a+
1

This result*”*? and unitarity allows one to compute the probability that no radia-
tion occurs during the hard scattering. It is given by a rapidly falling exponentiated
Sudakov form factor S = S(z;Q, by, Agcp); thus at large @ and fixed impact separa-
tion, the Sudakov factor strongly suppresses the endpoint contribution. On the other
hand, when b; = O(z;Q)~!, the Sudakov form factor is of order 1, and the radiation

leads to logarithmic evolution and contributions of higher order in as(Q?) corrections

already contained in the PQCD predictions.g"”’48 This is the starting point of the
detailed analysis of the suppression of endpoint contributions to meson and baryon
form factors and its quantitative effect on the PQCD predictions recently presented

by Li and Sterman’’ This analysis has now also been applied to two-photon reactions

and the timelike proton form factor by Hyer.4 2

It should be emphasized that the standard PQCD contributions to large mo-
mentum-transfer exclusive reactions derive from wavefunction configurations where
the valence quarks are at small transverse separation b) = O(1/Q), the regime where
there is no Sudakov suppression. However, as noted by Li and Sterman, the hard
scattering amplitude loses its singular end-point structure if one retains the valence
quark transverse momenta in the denominators. For example, in the case of the pion
form factor, the hard scattering amplitude is effectively modified to the form

Qg

(1-2)(1 - )Q* + (ki +kg)?

Ty x

Li and Sterman thus find that the pion form factor becomes relatively insensitive
to soft gluon exchange at momentum transfers beyond 20 Agcp. In the case of the

proton Dirac form factor, the corresponding analysis by Li* isin good agreement
with experiment at momentum transfers greater than 3 GeV.

The Botts, Li, and Sterman analysis of the Sudakov suppression of endpoint
contributions makes it understandable why PQCD factorization and its predictions
for exclusive processes are already applicable at momentum transfers of a few GeV,
thus accounting for the empirical success of quark counting rules in exclusive process
phenomenology. The Sudakov effect suppression also enhances “color transparency”
ph¥nomeha, since only small color singlet wavefunction configurations can scatter

at large momentum transfer’> Color transparency in Compton scattering can be
tested by checking for the absence of final state absorption in quasi-elastic yp — vp
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scattering in heavy nuclei. Similarly, QCD color transparency implies that there will
be diminished initial state absorption of the antiproton for large-angle quasi-elastic
Pp — v annihilation in heavy nuclear targets.

In the case of large angle proton-proton scattering, the perturbative predic-
tions for color transparency and the spin-spin correlation Ayy appear to fail at
Ecu ~ 5 GeV; this effect has been attributed to the effect of the threshold for charm

production in intermediate states’” A similar breakdown of the perturbative predic-
tions may also occur at the corresponding energy threshold in pp — v+ at large angles
due to charmed hadron intermediate states.

T Recently Luke, Manohar, and Savageso have shown that the QCD trace
anomaly leads to a strong, attractive, scalar potential which dominates the inter-
action of heavy quarkonium states with ordinary matter at low relative velocity. The
scalar attraction is sufficiently strong to produce nuclear-bound quamrkoniurn.5 ! Thus
it will be interesting to look for strong threshold enhancements for charm produc-
tion near threshold in two-photon reactions, particularly in exclusive channels such
as p°J /1 as well as DD. Predictions for the threshold production of charmed mesons
has also been given in Ref. 52. Evidencefor excess inclusive production of charmed

mesons in photon-photon collisions has been reported by the JADE collaboration ™’

Exclusive processes, particularly two-photon reactions, thus provide one of the
most_important, but least explored frontiers in particle physics. The recent analyses
by Botts, Li, and Sterman and by Kronfeld and Nizic have shown that the predictions
based on QCD factorization theorems are applicable to measurements at present-
day accelerators. It is clearly crucial for a fundamental understanding of both the
perturbative and non-perturbative aspects of QCD that the predictions for exclusive
amplitudes be tested as carefully as possible.

6. Exclusive Weak Decays of Heavy Hadrons

An important application of PQCD factorization is to the exclusive decays
of heavy hadrons to light hadrons, such as B® — 7%z, K"”,K".54 To a good
approximation, the decay amplitude M= <B|Hwk|7r+7r_> is caused by the transition
b — W1a; thus M = f,pﬁ%%x {(x~|Ju|B°) where J, is the b — % weak current. The
problem is then to recouple the spectator d quark and the other gluon and possible
quark pairs in each B Fock state to the corresponding Fock state of the final state
7~. (See Fig. 7.) The kinematic constraint that (pgp — pr)? = m2 demands that at
least one quark line is far off shell: pZ = (ypp — px)? ~ —ump ~ —1.5 GeV?, where
we have noted that the light quark takes only a fraction (1 —y) ~ y/(k3 + m2)/mp
of the heavy meson’s momentum since all of the valence quarks must have nearly
e&?ajl velocity in a bound state. In view of the successful applications55 of PQCD

factorization to form factors at momentum transfers in the few GeV? range, it is
reasonable to assume that <|p%|> is sufficiently large that we can begin to apply
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Figure 7. Calculation of the weak decay B — 77 in the PQCD formalism of Ref. 54.
The gluon exchange kernel of the hadron wavefunction is exposed wherever a hard momentum
transfer is required.

perturbative QCD methods.

The analysis of the exclusive weak decay amplitude can be carried out in

parallel to the PQCD analysis of electroweak form factors™® at large Q2. The first
step-is to iterate the wavefunction equations of motion so that the large momentum
transfer through the gluon exchange potential is exposed. The heavy quark decay
amplitude can then be written as a convolution of the hard scattering amplitude for
Qq — W*qg convoluted with the B and 7 distribution amplitudes. The minimum
number valence Fock state of each hadron gives the leading power law contribution.
Thus Ty contains all perturbative virtual loop corrections of order as(A?). The result
is the factorized form:

1

1
M(B - 1) = ] de [ dypp(y, A)Thds(z, A)
0 0

which is expected to be correct up to terms of order 1/A*. All of the non-perturbative
corrections with momenta |k?| < A? are summed in the distribution amplitudes.

An interesting example of this analysis is “atomic alchemy” ,57 i.e., the ex-
clusive decays of muonic atoms to electronic atoms plus neutrinos. In this case the
calculation requires the very high momentum tail of the atomic wavefunctions, which
ingurn can be obtained via the iteration of the relativistic atomic bound-state equa-
tions. Again one obtains a factorization theorem for exclusive atomic transitions
where the atomic wavefunction at the origin plays the role of the distribution ampli-
tude. :
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7. Discretized Light-Cone Quantization: Applications to QCD

QCD dynamics takes a rather simple form when quantized at equal light-cone
“time” 7 =t + z/c. In light-cone gauge AT = 0, the QCD light-cone Hamiltonian

Hqep = Ho + gH1 + ¢* H,

contains the usual 3-point and 4-point interactions plus induced terms from instanta-
neous gluon exchange and instantaneous quark exchange diagrams. The perturbative
vacuum serves as the lowest state in constructing a complete basis set of color-singlet
Fock states of Hp in momentum space. Solving QCD is then equivalent to solving
the eigenvalue problem:

HQCDI\I’ >= M2|\IJ >

as a matrix equation on the free Fock basis. The set of eigenvalues { M2} represents
the spectrum of the color-singlet states in QCD. The Fock projections of the eigen-
function eorresponding to each hadron eigenvalue gives the quark and gluon Fock
state wavefunctions ¥ (z;, k1, ;) required to compute structure functions, distribu-
tion -amplitudes, decay amplitudes, etc. For example, the eTe™ annihilation cross
section’into a given J = 1 hadronic channel can be computed directly from its 3¢
Fock state wavefunction.

The key step in obtaining a discrete representation of the light-cone Hamil-
tonian in a form amenable to numerical diagonalization, is the construction of a
complete, countable, Fock state basis,

> In)(n|=1.

This can be explicitly done in QCD by constructing a complete set of color-singlet
eigenstates of the free Hamiltonian as products of representations of free quark and
gluon fields. The states are chosen as eigenstates of the constants of the motion,

pt, TJ)L, J., and the conserved charges. In addition, one can pre-diagonalize the
Fock representation by classifying the states according to their discrete symmetries,
as described in the previous section. This step alone reduces the size of the matrix
representations by as much as a factor of 16.

The light-cone Fock representation can be made discrete by choosing periodic
(or, in the case of fermions, anti-periodic) boundary conditions on the fields: (z7) =

+fz” ~ L), and () = Y(z; — L). Thus in each Fock state, P* = 27:’51&’ , and

each constituent kl+ = ZI—J’[n,- , where the positive integers n; satisfy > ,n; = K .

Similarly l_c‘h = ﬁ 71; , where the vector integers sum to F_L in the standard frame.
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The positive integer K is called the “harmonic resolution.” For a given choice
of K, there are only a finite number of partitions of the plus momenta; thus only a
ﬁmte set of rational values of z; = k} /Pt = n;/K appear: z; = &, 12(, %
Thus eigensolutions obtained by diagonalizing Hy¢ on this basis determine the deep
inelastic structure functions Fy(z) only at the set of rational discrete points z;. The
continuum limit thus requires extrapolation to K — co. Note that the value of L is

irrelevant, since it can always be scaled away by a Lorentz boost. Since Hyc, PT,

P 1, and the conserved charges all commute, Hy¢ is block diagonal.

The DLCQ program becomes especially simple for gauge theory in one-space
ofre-time dimensions not only because of the absence of transverse momenta, but
also because there are no gluon degrees of freedom. In addition, for a given value
of the harmonic resolution K the Fock basis becomes restricted to finite dimensional
representations. The dimension of the representation corresponds to the number of
partitions of the integer K as a sum of positive integers n. The eigenvalue problem
thus reduces to the diagonalization of a finite Hermitian matrix. The continuum limit
is clearly K — oo.

Since continuum scattering states as well as single hadron color-singlet hadron-
ic wavefunctions are obtained by the diagonalization of Hyc, one can also calculate
scattering amplitudes as well as decay rates from overlap matrix elements of the
interaction Hamiltonian for the weak or electromagnetic interactions. In principle,
all hlgher Fock amplitudes, including spectator gluons, can be kept in the hght cone
quantization approach; such contributions cannot generally be neglected in decay
amplitudes involving light quarks.

DLCQ has been used to successfully obtain the complete color-singlet spectrum

of QCD in one-space and one-time dimension for N¢ = 2, 3, 4. ' The hadronic spectra
are obtained as a function of quark mass and QCD coupling constant (see Fig. 8).
‘Where they are available, the spectra agree with results obtained earlier; in particular,
~ the lowest méson mass in SU(2) agrees within errors with lattice Hamiltonian results.
The meson mass at N¢ = 4 is close to the value predicted by ’t Hooft in the large N¢
limit. The DLCQ method also provides the first results for the baryon spectrum in a
non-Abelian gauge theory. The lowest baryon mass is shown in Fig. 8 as a function
of coupling constant. The ratio of meson to baryon mass as a function of N¢ also

agrees at strong couphng with results obtained by bosonization methods’® Precise
values for the mass eigenvalue can be obtained by extrapolation to large K by fitting
to forms with the correct functional dependence in 1/K.

When the light-cone Hamiltonian is diagonalized at a finite resolution K, one
gets a complete set of eigenvalues corresponding to the total dimension of the Fock
state basis. A representative example of the spectrum is shown in Fig. 9 for baryon
states (B = 1) as a function of the dimensionless variable A = 1/(147m?/g?). Notice
th¥% spectrum automatically includes continuum states with B =1 .

- The structure functions for the lowest meson and baryon states in SU(3) at
two different coupling strengths m/g = 1.6 and m/g = 0.1 are shown in Figs. 10 and
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Figure 8. The baryon and meson spectrum in QCD(1+1) computed in DLCQ for N¢
2,3,4 as a function of quark mass and coupling constant.
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Figure 9. Representative baryon spectrum for QCD in one-space and one-time dimension.
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Figure 11. The baryon quark momentum distribution in QCD{1+1] computed using
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. Figure 12. Contribution to the baryon quark momentum distribution from ¢qqqqq states
for QCD[1+1].

11. Higher Fock states have a very small probability; representative contributions to
the baryon structure functions are shown in Fig. 12. Although these results are for
oneé-time one-space theory they do suggest that the sea quark distributions in physical
hadrons may be highly structured.

8. The Heavy Quark Content of the Proton

The DLCQ results for sea quark distributions in QCD(1+41) may have impli-
cations for the heavy quark content of physical hadrons. One of the most intriguing
unknowns in nucleon structure is the strange and charm quark structure of the nu-

~cleon wavefunction.” The EMC spin crisis measurements indicate a significant s3
content of the proton, with the strange quark spin strongly anti-correlated with the
proton spin. Just as striking, the EMC measurements . of the charm structure func-
tion of the Fe nucleus at large z; ~ 0.4 appear to be considerably larger than that
predicted by the conventional photon-gluon fusion model, indicating an anomalous
charm content of the nucleon at large values of z. The probability of intrinsic charm

has been estimated60 to be 0.3%.

Figure 13 shows recent results obtained by Hornbostel®' for the structure
functions of the lowest mass meson in QCD(1+41) wavefunctions for N¢ = 3 and two
quark flavors. As seen in the figure, the heavy quark distribution arising from the
¢3QQ Fock component has a two-hump character. The second maximum is expected
since the constituents in a bound state tend to have equal velocities. The result is
indnsitive to the value of the Q? of the deep inelastic probe. Thus intrinsic charm
is a feature of exact solutions to QCD(1+41). Note that the integrated probability
for the Fock states containing heavy quarks falls nominally as gz/m‘iQ in this super-
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: Figure 13. The heavy quark structure function Q(z) = Gg/m(z) of the lightest meson
in QCD(1+41) with N, = 3 and g/m, = 10. Two flavors are assumed with (a) mqg/mg; = 1.001
and (b) mg/m, = 5. The curves are normalized to unit area. The probability of the ggQQ state
is 0.56 x 102 and 0.11 x 10~*, respectively. The-DLCQ method for diagonalizing the light-cone
Hamiltonian is used with anti-periodic boundary conditions. The harmonic resolution is taken
at K =10/2. (From Ref. 17.)

renormalizable theory, compared to g2/ m2Q dependence expected in renormalizable
theories.

In the case of QCD(3+1), we also expect a two-component structure for heavy-
quark structure functions of the light hadrons. The low zr enhancement reflects the
fact that the gluon-splitting matrix elements of heavy quark production favor low
z. On the other hand, the QQqg wavefunction also favors equal velocity of the con-
stituents in order to minimize the off-shell light-cone energy and the invariant mass of
- the Fock state constituents. In addition, the non-Abelian effective Lagrangian analy-
sis discussed above allows a heavy quark fluctuation in the bound state wavefunction
to draw momentum from all of the hadron’s valence quarks at order 1/ mZQ This im-
plies a significant contribution to heavy quark structure functions at medium to large
momentum fraction z. The EMC measurements of the charm structure function of
the nucleon appear to support this picture.

It is thus useful to distinguish eztrinsic and intrinsic contributions to struc-
ture functions. The extrinsic contributions are associated with the substructure of
a single quark and gluon of the hadron. Such contributions lead to the logarith-
mic evolution of the structure functions and depend on the momentum transfer scale
of the probe. The intrinsic contributions involve at least two constituents and are
associated with the bound state dynamics independent of the probe. The intrinsic

gl’ﬁi;ﬁ distributions®” are closely related to the retarded mass-dependent part of the

bound-state potential of the valence quarks.6 3 In addition, because of asymptotic free-
dom, the hadron wavefunction has only an inverse power M ™2 suppression for high
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mass fluctuations, whether one is considering heavy quark pairs or light quark pairs

" at high invariant mass M. This “intrinsic hardness” of QCD wavefunctions leads to

a number of interesting phenomena, including a possible explanation for “cumula-

tive production,” high momentum components of the nuclear fragments in nuclear
collisions. This is discussed in detail in Ref. 64.

9. Renormalization and Ultra-Violet Regulation of Light-Cone-Quantized
Gauge Theory

-

=~ An important element in the light-cone Hamiltonian formulation of quantum
field theories is the regulation of the ultraviolet region. In order to define a renor-
malizable theory, a covariant and gauge invariant procedure is required to eliminate
states of high virtuality. The physics beyond the scale A is contained in the normaliza-
_tion of the mass m(A) and coupling constant g(A) parameters of the theory, modulo
negligible corrections of order 1/A™ from the effective Lagrangian. The logarithmic
dependence of these input. parameters is determined by the renormalization group
equations. In Lagrangian field theories the ultraviolet cut-off is usually introduced
via_a spectrum of Pauli-Villars particles or dimensional regulation.

>

In the case of QCD (3+1), the renormalization of the light-cone Hamiltonian in
light-cone gauge is not yet completely understood, but a number of methods are now
under consideration. In Ref. 8 Lepage and I showed that by using invariant cutoffs
for both the interactions in the light-cone Hamiltonian and the Fock space, one could
verify the renormalization group behavior of the gauge-invariant distribution ampli-
tude. The result is consistent with results obtained from the Bethe-Salpeter equation
or the operator product expansion. Thus one has a reason to believe that a properly
regulated and truncated light-cone Hamiltonian can be constructed consistent with
‘the known renormalization group structure of QCD.

- In DLCQ, one needs to provide a priori some type of truncation of the Fock
state basis. Since wavefunctions and Green’s functions decrease with virtuality, one
expects that states very far off the light-cone energy shell will have no physical effect
on a system, except for renormalization of the coupling constant and mass parameters.
Thus it is natural to introduce a “global” cut-off such that a Fock state |n) is retained
only if

. l_c'z'—}—m2
E MAL LI Y VP U
- Ty

€N

A2V .
Here M is the mass of the system in the case of the bound state problem, or the total
invariant mass /s of the initial state in scattering theory. One can also regulate the
ultraviolet region by introducing a “local” cutoff on each matrix element (n|Hpc|m)
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by requiring that the change in invariant mass squared

I-c.z'-}—m2 l;:‘z'—+-m2
41 i 1t i 2
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This avoids spectator-dependent renormalization counterterms’ Slmllarly, one can

use a lower cutoff on the invariant mass difference to regulate the infrared reglon.6 ]
Global and local cutoff methods were used in Ref. 8 to derive factorization theo-
rems for exclusive and inclusive processes at large momentum transfer in QCD. In
particular, the global cut-off defines the Fock-state wavefunctions IbA(x, k 1,A) and
distribution amplitude ¢(z, A), the non-perturbative input for computing hadronic
scattering amplitudes. The renormalization group properties of the light-cone wave-

functions and the resulting evolution equations for the structure functions and distri-

bution amplitudes are also discussed in Ref. 8. The calculated anomalous dimensions
~n for the moments of these quantities agree with results obtained using the operator

product expansion.
~ In -general, light-cone quantization using the global or local cutoff can lead

to terms in HAC of the form 5md)—+—z/) Such terms arise in order ¢? as a result of
norinal- -ordering of the four-point interaction terms. Although such a term is invariant
under the large class of light-cone Lorentz transformations, it is not totally invariant.

Burkardt and Langnau67 have suggested that the extra counterterms can be fixed by
a posterior:i imposing rotational symmetry on the bound state solutions, so that all
Lorentz symmetries are restored.

10. The Zero-Mode Problem in Light-Cone-Quantized Gauge Theory

"~ The role of zero modes in the light-cone quantization of 1+1 gauge theories has
now been greatly clanﬁed by the work of Helnzl Kruschke, and Werner ® McCartor

and Robertson, Griffin" and Hornbostel." In general, zero mode (field excitations
with k7 = 0) must be retained consistent with the constraints imposed by the field
equations of motion and the imposed boundary conditions. In the case of massless
QED (1+1) (the Schwinger model), one needs to retain the zero-mode at the AT
field, since this degree of freedom leads to the labeling of the degenerate #-vacua of
the theory and the corresponding fermion condensates. In the case of theories such
as ¢*(1 4+ 1), the zero mode of the ¢ field provides the degree of freedom usually
associated with the spontaneous breaking of the vacuum. It is also clear that zero
modes play an important role in implementing the correct degrees of freedom in the
effSEtive light-cone Hamiltonian for quantum field theories in 3+1 dimensions. Again,
one must allow for quantum excitations with &* = 0 and any value of kJ_ so that the
equations of motion and the boundary conditions are fulfilled. In the case of DLCQ,
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the assumed anti-periodic boundary conditions automatically exclude zero modes for
- the fermion fields, but zero modes are generally needed to describe the boson fields.

Hiller and Wivoda™> have shown that in the Aéip theory, the convergence of the
DLCQ solutions to the known Wick-Cutkowsky solutions is greatly increased by the
inclusion of the ¢(k* = 0) modes.

‘Zero modes are also required for the implementation of the light-cone gauge
(At = 0) in gauge theories in 1+1 dimensions. One of the most serious complications
of the light-cone gauge quantization of QED (3+1) is the appearance of an apparently
unregulated 1/k7 singularity in the expression for electron-electron scattering due to
the 1/(k - n) terms in the photon propagator. Although this singularity vanishes for
on-shell scattering, it confounds the proper interpretation of the effective potential for

positronium in the effective light-cone potential. However, Soper73 has now shown
that the Leibbrandt-Mandelstam prescription for the light-cone propagator with

1 k~

K+ bk 1 ic

automatically generates a subtraction term in the QED effective Hamiltonian which
eliminates.the gauge singularity at k* = 0. This solution corresponds to a ghost zero

mode, first identified by Bassetto  to be necessary for the consistent implementation
of the light-cone gauge with periodic boundary conditions. A similar subtraction
at kT = 0 also occurs in the definition of the evolution kernel for the distribution
amplitude.8

11. Advantages of Light-Cone Quantization

As T have discussed in this talk, the method of discretized light-cone quanti-
“zation provides a relativistic, frame-independent discrete representation of quantum
field theory amenable to computer simulation. In principle, the method reduces the
light-cone Hamiltonian to diagonal form and has the remarkable feature of generating
the complete spectrum of the theory: bound states and continuum states alike. DLCQ
is also useful for studying relativistic many-body problems in relativistic nuclear and
atomic physics. In the nonrelativistic limit the theory is equivalent to the many-body
Schrodinger theory. DLCQ has been successfully applied to a number of field theories
in one-space and one-time dimension, providing not only the bound-state spectrum
of these theories, but also the light-cone wavefunctions needed to compute structure
functions, intrinsic sea-quark distributions, and the ete~ annihilation cross section.
Although the primary goal has been to apply light-cone methods to non-
perturbative problems in QCD in physical space-time, it is important to validate
these techniques for the much simpler Abelian theory of QED. The discretized quan-
tization of quantum electrodynamics on the light-cone in principle allows practical
numerical solutions for obtaining its spectrum and wavefunctions at arbitrary cou-
pling strength a. We also have discussed a frame-independent and approximately
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gauge-invariant particle number truncation of the Fock basis which is useful both

~ for computational purposes and physical approximations. In this method?® ultravio-
let and infrared regularizations are kept independent of the discretization procedure,
and are identical to that of the continuum theory. One thus obtains a finite discrete
representation of the gauge theory which is faithful to the continuum theory and is
completely independent of the choice of Lorentz frame.

Light-cone quantization appears to have the potential for solving important
non-perturbative problems in gauge theories. It has a number of intrinsic advantages:

~~~ @& The formalism is independent of the Lorentz frame—only relative momentum
coordinates appear. The computer does not know the Lorentz frame!

e Fermions and derivatives are treated exactly; there is no fermion-doubling prob-
lem.

o The ultraviolet and infrared regulators can be introduced as frame indepen-
dent momentum space cut-offs of the continuum theory, independent of the
discretization. '

‘ o "The field theoretic and renormalization properties of the discretized theory are
. faithful to the continuum theory. No non-linear terms are introduced by the
discretization.

- ‘O"sAQn'e can use the exact global symmetries of the continuum Lagrangian to pre-
diagonalize the Fock sectors.

e The discretization is denumerable; there is no over-counting. The minimum
number of physical degrees of freedom are used because of the light-cone gauge.
No Gupta-Bleuler or Faddeev-Popov ghosts occur and unitarity is explicit.

e Gauge invariance is lost in a Hamiltonian theory. However, the truncation
can be introduced in such a way as to minimize explicit breaking of the gauge

) Vsymmetries.zo

o The output of Hyc matrix diagonalization is the full color-singlet spectrum of

the theory, both bound states and continuum, together with their respective
light-cone wavefunctions.

There are, however, a number of difficulties that need to be resolved:

e The number of degrees of freedom in the representation of the light-cone Hamil-
tonian increases rapidly with the maximum number of particles in the Fock
state. Although heavy quark bound states probably only involve a minimal

~ number of gluons in flight, this is most likely not true for light hadrons.

o Some problems of ultraviolet and infrared regulation remain. Although Pauli-
Villars ghost states and finite photon mass can be used to regulate Abelian

theories, it is not suitable method in non-Abelian theories’’
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The renormalization procedure is not completely understood in the context
of non-perturbative problems. However, a non-perturbative recursive repre-
sentation for electron mass renormalization has been successfully tested in
QED(3+1)”°

The Coulomb singularity in the effective gluon-exchange potential is poorly
approximated in the discrete form. An analytic trick must be used to speed
convergence. Such a method has been tested successfully in the case of the

positronium spectrum in QED(?)—H).22

The vacuum in QCD is not likely to be trivial since the four-point interaction
term in g2wa can introduce new zero-mode color-singlet states which mix
with the free vacuum state. Thus a special treatment of the QCD vacuum
is required. In the case of zero mass quarks, there may be additional mixing of
the perturbative vacuum with fermion zero-modes.

In addition to its potential for solving the problems of the hadronic spectrum

and wavefunctions of QCD, light-cone quantization has already led to many new
insights into the quantization of gauge theories. It has also brought a refocus of both
theory and experiment to the novel features of QCD phenomena at the amplitude

level.
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