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QCD ON THE LIGHT CONE 

STANLEY J. BRODSKY 
Stanford Linear Accelerator Center, Stanford University 

Stanford, CA 94909 USA 

ABSTRACT 

The quantization of gauge theory at fixed light-cone time T = t - Z/C provides 
new perspectives for solving non-perturbative problems in quantum chromodynam- 
its. The light-cone Fock state expansion provides both a precise definition of the 
relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a 
general calculus for predicting QCD processes at the amplitude level. Applica- 
tions to exclusive processes and weak decay amplitudes are discussed. The problem 
of computing the hadronic spectrum and the corresponding light-cone wavefunc- 
tions of QCD in one space and one time dimension has been successfully reduced 
to the diagonalization of a discrete representation of the light-cone Hamiltonian. 
The problems confronting the solution of gauge theories in 3 + 1 dimensions in 
the light-cone quantization formalism, including zero modes and non-perturbative 
renormalization, are reviewed. 

1. Introduction 

A primary goal of particle physics is to understand the structure of hadrons 
in terms of their fundamental quark and gluon degrees of freedom. It is important 

-- to predict not only the spectrum of the hadrons, but also to derive from first princi- 
ples the hadron structure functions that control inclusive reactions, the form of the 
hadron distribution amplitudes that control exclusive processes, and the behavior of 
the fragmentation functions which control the transition between quark and gluon jets 
and hadrons. Such questions will evidently require an understanding of confinement 

- and other properties of non-perturbative quantum chromodynamics at the amplitude 
level. The first, but non-trivial, step toward this goal is to give.a consistent defi- 
nition of hadron wavefunctions, the amplitudes which describe a composite system 
consisting of an arbitrary number of confined relativistic quarks and gluons. 

There are many reasons why detailed information on hadron wavefunctions in 
‘- QC!.D is critical for future progress in particle physics. For example, in electroweak 

thzry, the central unknown required for reliable calculations of weak decay ampli- 
tudes are the hadronic matrix elements: the computation of the B meson decay into 
particular hadron channels requires detailed knowledge of both the light and heavy 
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h a d r o n  w a v e fu n c tio n s . T h e  c o e fficie n t fu n c tio n s  in  th e  o p e r a to r  p r o d u c t e x p a n s i o n  
n e e d e d  to  c o m p u te  l e a d i n g  a n d  h i g h e r  twist s t ructure fu n c tio n s  a n d  o th e r  inclusive 
cross sect ions a r e  a lso  essen tial ly u n k n o w n . F o r m  factors a n d  exclusive scat ter ing 
p rocesses  d e p e n d  in  d e tai l  o n  th e  bas ic  a m p litu d e  structure o f th e  scat ter ing h a d r o n s  
in  a  g e n e r a l  L o r e n tz f rame.  E v e n  th e  calcu lat ion o f th e  p r o to n  m a g n e tic m o m e n t 
requ i res  a n  u n d e r s ta n d i n g  o f h a d r o n  w a v e fu n c tio n s  in  a  b o o s te d  f rame.  

In  th is  ta lk  I wil l  d iscuss th e  l igh t -cone q u a n tiza tio n  o f g a u g e  theo r ies  f rom 
two pe rspec tives: as  a  l a n g u a g e  fo r  r e p r e s e n tin g  h a d r o n s  as  Q C D  b o u n d - s ta tes  o f 
relativistic quarks  a n d  g luons , a n d  a lso  as  a  nove l  m e th o d  fo r  sim u lat ing q u a n tu m  
f? $ d  th e o r y  o n  a  c o m p u te r . T h e  l igh t -cone Fock sta te  e x p a n s i o n  o f w a v e fu n c tio n s  a t 
fixe d  l igh t -cone tim e  in  fact p rov ides  a  prec ise  d e fin i t ion o f th e  p a r to n  m o d e l a n d  a  
g e n e r a l  ca lculus fo r  had ron i c  m a trix e l e m e n ts. T h e  Hami l ton ian  fo r m u l a tio n  o f q u a n -  
tu m  fie ld  th e o r y  q u a n tize d  a t fixe d  l igh t -cone tim e  h a s  l ed  to  n e w  n o n - p e r tu r b a tive  
ca lcu la t ional  too ls  fo r  numer ica l ly  so lv ing q u a n tu m  fie ld  theor ies .’ In  p a r ticular ,  th e  

“discret ized l igh t -cone q u a n tiza tio n ,” m e th o d  ( D L C Q ) 2  h a s  b e e n  successful ly a p p l i e d  
to  severa l  g a u g e  theor ies ,  inc lud ing  Q C D  in  o n e - s p a c e  a n d  o n e - tim e  d i m e n s i o n , a n d  
q u a n tu m  e lec t rodynamics  in  physical  space- t ime a t l a rge  coup l ing  strength.  O th e r  
n o n - p e r tu r b a tive  m e th o d s  b a s e d  o n  l igh t -cone q u a n tiza tio n , such  as  th e  t ransverse 
latt ice 3  a n d  th e  L i g h t-Front  T a m m - D a n c o ff m e th o d 4  a r e  a lso  b e i n g  d e v e l o p e d  as  
n e w  al ternat ives to  c o n v e n tio n a l  latt ice g a u g e  th e o r y . 

- ~  -  .-~  T h e r e  h a v e  b e e n  relat ively fe w  calculat ions o f th e  w a v e fu n c tio n s  o f h a d r o n s  
f rom first pr inc ip les in  Q C D . T h e  m o s t in terest ing p rog ress  h a s  c o m e  f rom Q C D  s u m  
ru le  calculat ions,s a n d  latt ice g a u g e  th e o r y  ‘I7  b o th  o f wh ich  h  a v e  p rov ided  p red ic -  
tio n s  fo r  th e  lowest  m o m e n ts (z;) o f th e  p r o to n ’s dist r ibut ion a m p litu d e , &(z:i, Q ). 
T h e  dist r ibut ion a m p litu d e  is th e  fu n d a m e n ta l  g a u g e  invar iant  w a v e fu n c tio n  wh ich  
descr ibes  th e  f ract ional  long i tud ina l  m o m e n tu m  distr ibut ions o f th e  va lence  quarks  
in  a  h a d r o n  in tegra ted  ove r  t ransverse m o m e n tu m  u p  to  th e  scale  Q .” H o w e v e r , th e  
resul ts f rom t -he two ana lyses  a r e  in  s t rong d i s a g r e e m e n t: th e  Q C D  s u m  ru le  analys is  
pred ic tsa st rongly a s y m m e tric th r e e - q u a r k  dist r ibut ion ( see  Fig. l), w h e r e a s  th e  
latt ice resul ts,7 o b ta i n e d  in  th e  q u e n c h e d  a p p r o x i m a tio n , favo r  a  s y m m e tric d is t r ibu-  
tio n  in  th e  xi. M o d e ls o f th e  p r o to n  dist r ibut ion a m p litu d e  b a s e d  o n  a  quark -d i -quark  
structure s u g g e s t s t rong a s y m m e tries a n d  s t rong sp in-cor re la t ions in  th e  b a r y o n  wave -  
fu n c tio n s .’ E v e n  less is k n o w n  f rom first pr inc ip les in  n o n - p e r tu r b a tive  Q C D  a b o u t 
th e  g l u o n  a n d  n o n - v a l e n c e  q u a r k  c o n tr ibut ions to  th e  p r o to n  w a v e fu n c tio n , a l t hough  
d a ta  f rom a  n u m b e r  o f e x p e r i m e n ts n o w  s u g g e s t n o n - trivial sp in  corre lat ions,  a  signif-  
icant  s t rangeness  c o n te n t, a n d  a  l a rge  x c o m p o n e n t to  th e  c h a r m  q u a r k  dist r ibut ion 

1 0  
in  th e  p r o to n . 

It is a lso  in terest ing to  n o te  th a t l igh t -cone w a v e fu n c tio n s  o f th e  project i le  
h & & & n  in la rge  m e a s u r e  c o n trol th e  dist r ibut ions o f fina l  sta te  h a d r o n s  p r o d u c e d  in  
th e  - f r a g m e n ta tio n  r e g i o n  o f inclusive p rocesses  A B  t C X . A t h i g h  ene rg ies , th e  
Fock sta tes  o f l a rge  invar iant  mass  M  surv ive fo r  tim e s  T  =  2 & ,/M 2  a n d  a r e  m a -  
te r ia l ized by  th e  interact ions o f th e  s lowest  p a r to n  spectators in  th e  ta r g e t. B e c a u s e  
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Figure 1. The proton distribution amplitude 4p(zi,p) evaluated at the scale ,LA - lGeV 
from QCD sum rules.5 The enhancement at large 21 correspond to a strong correlation between 

_ -- the.3 high momentum u quark with spin parallel to the proton spin. _: .-- _ 
3ii. : 

of color screening, small color singlet configurations in the projectile Fock state can 
penetrate the target with minimal QCD interactions whereas large transverse size 
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color fluctuations interact strongly in the target. These considerations can help ex- 
plain many of the features of Feynman-scaling distributions, including the nuclear 
dependence on XF and the size of the multiplicity fluctuations and leading charm 
production. Further details may be found in Ref. 11. 

2. Qtiantization on the Light-Cone 

By far the simplest and most intuitive representation of relativistic bound state 
wavefunctions is the light-cone Fock expansion. In 1949 Dirac 

12 
showed that there 

;afe remarkable advantages of quantizing relativistic field theories at fixed “light-cone 
time” r = t$~/c rather than ordinary time. In the traditional equal-time Hamiltonian 
formulation none of the Poincare operators that generate Lorentz boosts commute 

. . with the Hamiltonian; thus computing a boosted wavefunction is as complicated 
a dynamical problem as diagonalizing the Hamiltonian itself. On the other hand, _- 
quantization on the light-cone can be formulated without reference to the choice of a 
specific Lorentz frame; the, eigensolutions of the light-cone Hamiltonian, the genera- 
tor of translations in 7, describe bound states of arbitrary four-momentum, allowing 
the computation of scattering amplitudes and other dynamical quantities. Another 
remarkable feature of this formalism is the apparent simplicity of the light-cone vac- 
uum. In many theories the vacuum state of the free Hamiltonian is an eigenstate of 
the total light-cone Hamiltonian. In principle, the Fock expansion constructed on this 
vacuum state provides a complete relativistic many-particle basis for diagonalizing the 
full theory. 

There are advantages of light-cone quantization even in ordinary quantum 
mechanics. Consider an experiment which could specify the initial wavefunction of a 
multi-electron atom. Determining Xl!(?i, t = 0), i = 1, . . . n would require the simulta- 
neous measurement of the positions of the n bound electrons. In principle this could 
be carried out by the simultaneous Compton scattering of n independent laser beams 

.- on the atom. In contrast, determining the initial wavefunction at a fixed light-cone 
time r requires only the scattering of one plane-wave laser beam since the signal 
reaching each of the electrons is received along the light front at the same light-cone 
time i = t; + z;/c. 

In the case of perturbation theory, light-cone quantization has overwhelming 
_ advantages over standard time-ordered perturbation theory. In order to calculate a 

Feynman amplitude of order gn in TOPTH one must suffer the calculation of n time- 
ordered graphs, each of which is a non-covariant function of energy denominators 

which, in turn, consist of sums of complicated square roots pp = Jm. On 

the other hand, in light-cone perturbation theory (LCPTH), only a relatively few 
_ -- graphs give non-zero contributions, and those that are non-zero have light-cone energy 

d&minators which are simple sums of rational forms p- = (p’ii+mf)/pt. An analog 
of light-cone perturba.tion theory has in fact been used to calculate the anomalous 
magnetic moment to two loops in QED. l3 
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In light-cone quantization, a free particle is specified by its four momentum 
kfi = (k+, k-, kl) where k * = k” f k3. Since it has positive energy, its light-cone 
energy is also positive: k- = (kf + m2)/k+ > 0. In perturbation theory, transverse 
momentum C kl and the plus momentum C k+ are conserved at each vertex. The 
light-cone bound-state wavefunction thus describes constituents which are on their 
mass shell, but off the light-cone energy shell: P- < C k;. 

In principle, the problem of computing the spectrum in QCD and the corre- 
sponding light-cone wavefunctions for each hadron can be reduced to the diagonal- 
ization of the Fock state matrix representation of the QCD light-cone Hamiltonian 
&analogy to Heisenberg quantum mechanics. Any hadron state must be an eigen- 
state of the light-cone Hamiltonian. (For convenience we will work in the “standard” 
frame where ;I1, = (Ps, P_L) = (1, 0,) and P[ = A@.) Thus the state 1~) satisfies 
an equation 

(MS - HLC) I7r) = 0. 

Projecting this onto the various Fock sta.tes (@I, (@gl . . . results in an infinite number 

of coupled integral eigenvalue equations,s 

. 
9 + m? _~ M; - c I’ a * 

i Xi 

- where V is the interaction part of HLC. Diagrammatically, V involves completely 
irreducible interactions--i. e. diagrams having no internal propagators-coupling Fock 

- states (See Fig. 2.) The explicit forms of each matrix element of V are given in 
Ref. 2. In principle,the solutions to these equations determine not only the hadronic 
spectrum of QCD but also the light-cone wavefunctions needed to compute hadronic 

- amplitudes. 
Recently a new numerical method, discretized light-cone quantization (DLCQ), 

has been developed to diagonalize the light-cone Hamiltonian on a covariantly regu- 
lated discrete basis.2 By imposing periodic or anti-periodic boundary conditions of 
the fields in x- and xl, and an upper bound on the invariant mass of the particles 

I -- in&he Pock space 
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-.. *- Figure 2. Coupled eigenvalue equations for the light-cone wavefunctions of a pion. 

. . (the “global cutoff”), one obtains a discrete momentum space matrix representation 
of the light-cone Hamiltonian. The DLCQ method thus provides a new type of com- 
puter simulation of quantum field theories in momentum space. Since only relative 
coordinates appear, the formulation is completely independent of the total momen- 
tum p+ and pi of the system. By using light-cone gauge, only the minimum number 
of physical degrees of freedom appear in the simulation. Unlike lattice gauge theory, 
DLCQ has. no fermion doubling problem. . 

The DLCQ method thus converts the problem of solving a quantum field 
theory to the diagonalization of the light-cone Hamiltonian on a discrete Fock-space 
basis - 

(n I HLC 14 (m I +> = M2 b I+> . 

Its most dramatic success has been the applica,tions to quantum field theories in 
one-space and one-time dimensions. The DLCQ method was first used to obtain 
the mass spectrum and wavefunctions of Yukawa theory, $$d, in one-space and one- 

l4 time dimensions. This success led to further applications including QED(l+l) for = 
general mass fermions and the massless Schwinger model by Eller et aZ.,” $4 theory 

. in 1+1 dimensions by Harindra.nath and Vary, l6 and QCD(l+l) for NC = 2,3,4 by 

Hornbostel et cd7 Complete numerical solutions have been obtained for the meson 
and baryon spectra as well as their respective light-cone Fock state wavefunctions 

- for general values of the coupling constant, quark masses, and color. Similar results 
for QCD( l+l) were also obtained by Burkardtl* by solving the coupled light-cone 
integral equation in the low particle number sector. Burkardt was also able to study 
non-additive nuclear effects in the structure functions of nuclear states in QCD( l+l). 
In each of these applications, the ma.ss spectrum and wavefunctions were successfully 

_ -. o&&red, and all results agree with previous analytical and numerical work, where 
th:y were’ available. More recently, Hillerlg has used DLCQ and the Lanczos algo- 
rithm for matrix diagonalization method to compute the annihilation cross section, 
structure functions and form factors in l+l theories. Although these are just toy 

7 



- .-.- 

models, they do exhibit confinement and are excellent tests of the light-cone Fock 
methods. 

In the case of gauge theories in one-space and one-time dimension, there are no 
physical gluon degrees of freedom in light-cone gauge. The computational problem is 
thus tractable, and it is possible to explicitly diagonalize the light-cone Hamiltonian 
and solve these theories numerically. In the work of Hornbostel et aLr7 complete 
numerical solutions for the spectrum and light-cone wavefunctions in QCD( l+l) can 
be obtained for any value of the coupling strength and quark masses and any number 

:o^f flavor and color numbers. 

A related approach, the light-front Tamm-Dancoff method (LFTD),4 has also 
been proposed to solve the light-cone equation of motion. As in the traditional Tamm- 
Dancoff method, the light-cone Fock space is truncated to a fixed particle number, 
and cutoffs are imposed on the maximum transverse momentum and minimum kf. 
Renormalization counterterms are then introduced to restore the QCD symmetries 
violated by the Fock space truncation. 

The application of the DLCQ and LFTD methods to QCD in physical space- 
time is a highly challenging problem. The size of the quark and gluon Fock space and 
the discretization of the transverse momenta leads quickly to very large matrices. A 
more~subtle difficulty is the necessity to include zero mode contributions enforced by 
the equations of motion and the imposed boundary conditions. The effective Hamilto- 
nian must also be supplemented by terms specified by the ultraviolet renormalization 
procedure. Despite these challenges, the light-cone methods have been successfully 
been applied to QED(~s~)~“~~‘“” at couplings Q N 0.3. For example, Kaluza and 

Pauli 21 have computed the structure functions of QED bound states, the lepton 
and photon light-cone momentum distributions of positronium. I will return to the 
discussion of- the successes and problems of the DLCQ method in section 7. 

. 
It is thus natural to employ the light-cone Fock expansion as the basis for 

representing the physical states of QCD. For example, a pion with momentum 2 = 

(P+, 21) is described by expansion over color-singlet eigenstates of the free QCD 
light-cone Hamiltonian: 

where the sum is over a.11 Fock states and helicities, and where 
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!t%e wavefunction $n/X(xi, iii, Xi) is the amplitude for finding partons in a specific 

light-cone Fock state n with momenta (x;P+, xiTl+Zli) in the pion. The Fock state 
is off the light-cone energy shell: C ki > P-. The light-cone momentum coordinates 

i;, with CyZl 2; and cl;, with CyZl zli = 31, are actually relative coordinates; 
i.e. they are independent of the total momentum P+ and P_L of the bound state. 
The special feature that light-cone wavefunctions do not depend on the total mo- 
mentum is not surprising, since x; is the Iongitudinal momentum fraction carried by 
the @-parton (0 5 Z; 2 l), and iii is its momentum “transverse” to the direc- 
tion of the meson. Both of these are frame-independent quantities. The ability to 
spe-cjfy wavefunctions simultaneously in any frame is a special feature of light-cone 
quantization. 

The coefficients in the light-cone Fock state expansion thus are the parton 
wavefunctions $n/H (Xi, Zli, A;) which describe the decomposition of each hadron in 
terms of its fundamental quark and gluon degrees of freedom. The light-cone variable 
0 < xi < 1 is often identified with the constituent’s longitudinal momentum fraction 
x; = k;Z/P,, in a frame where the total momentum P” --t inf . However, in light-cone 
Hamiltonian formulation of QCD, xi is the boost-invariant light-cone fraction, 

k;+kt k? o xi= E 
P-t - PO + P” ’ 

- independent of the choice of Lorentz frame. 

Given the light-cone wavefunctions, Gn,H( x;, /Sli, A;), one can compute vir- 
tually any hadronic quantity by convolution with the appropriate quark and gluon 
matrix elements. For example, the leading-twist structure functions measured in 
deep inelastic lepton scattering are immediately related to the light-cone probability 

I I- distributions: 
-I. . 

2M J-‘&r, Q) = F2(x’ ‘) M c e; G,,,(x, Q) 
X a 
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where 

Ga/p(x, Q) = C J n dxii3i I+iQQ,(xi, Zli, Xi)12 C b(xb - 5) 
n,X, i b=a 

is the number density of partons of type a with longitudinal momentum fraction x 
in the proton. This follows from the observation that deep inelastic lepton scattering 
in the Bjorken-scaling limit occurs if Xbj matches the light-cone fraction of the struck 
qark. (The &, is over all partons of type a in state n.) However, the light-cone 
wavefunctions contain much more information for the final state of deep inelastic 
scattering, such as the multi-parton distributions, spin and flavor correlations, and 

. . the spectator jet composition. 

_- The spacelike form factor is the sum of overlap integrals analogous to the 
corresponding nonrelativistic formula: 

23 

Here e, is the charge of the struck quark, A2 >> <j, and 

Zli G 
zli - ziQl + <l for the struck quark 

iii - Xi;1 for all other partons. 

.- (A) The general rule for calculating an amplitude involving wavefunction & , 

describing Fock state n in a hadron with f = (P+, TI), has the form’ (see Fig. 3): 

(Xi, Zli, Xi) Ti”)(XiP+, Xi?* + iii, Xi) 

where TiA) is the irreducible scattering amplitude in LCPTh with the hadron replaced 
by Fock state n. The light-cone Fock expansion thus allows a definition of the parton I -- 
model and wavefunctions. By using the light-cone gauge, A+ = 0, only physical non- 
gh:st degrees of freedom appear in the Fock expansion even for non-Abelian theories. 
Furthermore in this gauge, the numerator couplings of soft gluons inserted into hard 
scattering expansions remain finite in the high momentum transfer limit. Thus this 
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Figure 3. Calculation of hadronic amplitudes in the light-cone Fock formalism. 

formalism is ideal for proving factorization theorems, i.e. the isolation of hard and 
soft contributions at high momentum transfer. 

. . 

.- 3. Exclusive Processes and Light-Cone Wavefunctions 

The dynamics of exclusive reactions reflect not only the behavior of quark- 
gluon scattering processes at the amplitude level, but also the fundamental structure 
of the hadron wavefunctions themselves. In a relativistic quantum field theory, a 
bound state cannot be described in terms of a fixed number of constituents. However, 
in the case of exclusive reactions at large momentum transfer, there is an enormous _~ 
sim*plification: . . only the lowest valence-quark light-cone Fock state of each hadron 
contributes to a high momentum transfer exclusive scattering process. It is easy to 
show that in the light-cone gauge, A + = 0, higher Fock state contributions involving 
extra gluons are always suppressed by powers of the momentum transfer Q.24 Fur- 
thermore, the absence of gluon radiation into the final state demands that the valence 
quarks in the hadron wavefunction must be at relative transverse separation bi of 
horder l/Q; thus small color-dipole configurations of the hadron wavefunction control 

25’24 large momentum transfer exclusive processes. Thus at high momentum transfer 
-- exclusive reactions provide an important testing ground for light-cone wavefunctions 

since in the light-cone gauge only the simplest valence wavefunction is involved. 

. On the other hand, many properties of large momentum transfer exclusive re- 
actions can be calculated without explicit knowledge of the form of the non-perturba- 
tive light-cone wavefunctions. The main ingredients of this analysis are asymptotic 
freedom, and the power-law scaling relations and quark helicity conservation rules of 
perturbative QCD. For example, consider the light-cone convolution formula for the 
meson form factor at high momentum transfer Q2. If the internal momentum transfer 
is large then one can iterate the gluon-exchange term in the effective potential for 
the light-cone wavefunctions. The result is the hadron form factors can be written in 
a -fa&orized form as a convolution of quark “distribution amplitudes” 4(zi, Q), one 

foryach hadron involved in the amplitude, with a hard-scattering amplitude TH. 8,26 

The distribution amplitude is the fundamental gauge invariant wavefunction which 
describes the fractional longitudinal momentum distributions of the valence quarks 

11 
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in a hadron integrated over transverse momentum up to the scale Q.” The pion’s _ 

electromagnetic form factor, for example, can be written as 
8,26,27 

Here TH is the scattering amplitude for the form factor but with the pions replaced by 
bilinear @pairs--i.e. the pions are replaced by their valence partons. We can also 
regard TH as the free particle matrix element of the order l/Q2 term in the effective 

Lagrangian for y*@ + qij. lo 

The process-independent distribution amplitude8 &(z, Q) is the probability 
amplitude for finding the q?j pair in the pion with xq = x and ~7 = l-x. It is directly 
related to the light-cone valence wavefunction: 

. _ = P,+ J dz- eixP,+z-/2 ((-1 qo) Y+Y5 . 
4r 26 z+ = 21 = 0 

The il integration in the above equation is cut off by the ultraviolet cutoff A = 
Q implicit in the wavefunction; thus only Fock states with invariant mass squared 
M2 5 Q2 contribute. 

The above result for exclusive amplitudes is in the form of a factorization 
- theorem-; all of the non-perturbative dynamics is factorized into the non-perturbative 

distribution amplitudes, which sums all internal momentum transfers up to the scale 
. Q2. On the other hand, 11 a momentum transfers higher than Q2 appear in TH, which, 

because of asymptotic freedom, can be computed perturbatively in powers of the 
QCD running coupling constant a,(Q2). 

Isgur and Llewellyn Smith28 and also Radyushkin2g have raised the concern 
that important contributions to exclusive processes could arise from non-factorizing 
end-point contributions of the hadron wavefunctions with x - 1 even at very large 
momentum transfer. However, recent work by Botts, Li, and Sterman 3o has now 
shown that such soft physics contributions are effectively eliminated due to Su- 
dalto_v suppression. I will briefly review this work below. In addition, Kronfeld and 
p&31 - have shown how one can consistently integrate over on-shell singularities in 
the hard-scattering amplitude for Compton processes involving baryons. Thus the 
QCD predictions based on the factorization of long and short distance physics are 
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reliable and should be valid for momentum transfers in the experimentally accessible 
domain beyond a few GeV. It is clearly important to test these predictions as precisely 
as possible. 

Given the factorized structure of exclusive amplitudes at large momentum 
transfer, .one can read off a number of general features of the PQCD predictions; 
e.g. the dimensional counting rules, hadron helicity conservation, color transparency, 

24 etc. In addition, the scaling behavior of the exclusive amplitude is modified by 
the logarithmic dependence of the distribution amplitudes in Q2 which is in turn 

. . 

determined by QCD evolution equations.8 
-* *- 

Because of asymptotic freedom, the nominal power-law fall-off M - Q4-” of 
an exclusive amplitude at large momentum transfer reflects the elementary scaling of 
the lowest-order connected quark and gluon tree graphs obtained by replacing each of 
the external hadrons by its respective collinear quarks. Here n is the total number of 
initial state and final state lepton, photon, or quark fields entering or leaving the hard 
scattering subprocess. The empirical success of the dimensional counting rules for the 
power-law fall-off of form factors and general fixed center-of-mass angle scattering 
amplitudes has given important evidence‘ for scale-invariant quark and gluon inter- 
actions at short distancesa QCD 1 p d’ t a so re rc s calculable corrections to the nominal 
dimensional counting power-law behavior due to the running of the strong coupling 
constant, higher order corrections to the hard scattering amplitude, Sudakov effects, 
pin& singularities, as well as the evolution of the hadron distribution amplitudes, 
$H(x;, Q), the basic factorizable non-perturbative wavefunctions needed to compute 

24,5 
exclusive amplitudes. 

The fundamental non-perturbative quantities which control large momentum 
transfer exclusive reactions in quantum chromodynamics are the hadron distribution 
amplitudes’: d~(zi, A;, Q), for th e b aryons with x1 $ x2 +x3 = 1, and +M(x;, A;, Q), 
for the mesons with xl-i-x2 = 1. The distribution amplitudes are the hadron wavefunc- 
tions which interpolate between the QCD bound state and their valence quarks. The 
constituents have longitudinal light-cone momentum fractions x; = (lc” + Ic”);/(p’ •t 
p”), helicities Xi, and transverse separation bl 21 l/Q. If one can calculate the dis- 

- t-ribution amplitude at an initial scale Qo, then one can determine $(xi, Q) at higher 
momentum scales via evolution equations in log Q2 or equivalently, the operator prod- 
uct expansion. Thus far the most important experimental constraints on the hadron 

- distribution amplitudes has come from the normalization and scaling of form factors 
at large momentum transfer. 

The data for hadron form factors is consistent with the onset of PQCD scaling 
at a momentum transfers of a few GeV, as expected from the parameters which de- 
termine the mass scales of QCD. Recently Stoler 33 has shown that the measurements 

--- of-$&e transition form factors of the proton to the N(1535) and N(1680) resonances 
are consistent with the predicted PQCD Qe4 scaling to beyond Q2 = 20 GeV2. The 
normalization is also in reasonable agreement with that predicted from QCD sum 
rule constraints on the nucleon distribution amplitudes, allowing for uncertainties 

13 
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from higher order QCD corrections. In the case of the proton to A(1232) transition, 
the form factor falls faster that Qm4. This anomalous behavior is in fact predicted by 
the QCD sum rule analysis since unlike the proton, the A has a highly symmetric 
distribution amplitude with a small coupling to the QCD hard scattering amplitude. 
The observed scaling pattern of the transition form factors gives strong support to 
the &CD sum rule predictions and PQCD factorization. 

The hadron distribution amplitudes can also be used for calculating weak de- 
cay transitions, structure functions at x N 1, fragmentation distributions at large z, 

34 and higher twist correlations. For example, strong higher twist effects are observed 
in-the angular and Q2 dependence of Drell-Yan processes and deep inelastic scatter- 
ing at x - 1. 

35 
In each of these applications, one can use factorization theorems 

to separate the perturbative quark and gluon dynamics which involves momentum 
. . transfer higher than Q from the non-perturbative long-distance physics contained 

in 4(x;,&). Th ese analyses parallel the developments in leading-twist inclusive reac- 
tions, where one factorizes hard-scattering quark-gluon subprocess cross sections from 
the long-distance physics contained in the hadron structure functions. However, in 
the case of exclusive processes at large momentum transfer, the scale-separation and 
factorization are done- at the amplitude level. 

. Exclusive reactions involving two real or virtual photons provide a particularly 
interesting testing ground for QCD because of the relative simplicity of the couplings 
of-&e photons to the underlying quark currents and the absence of significant ini- 
tial state interactions-any remnant of vector-meson dominance contributions is sup- 
pressed at large momentum transfer. The angular distributions for the hadron pair 
production processes yy + Hz are sensitive to the shapes of the hadron wavefunc- 

36 
tions. Lowest order predictions for meson pair production in two photon collisions 
using this formalism are given in Refs. 36 and 5; the analysis of the yy to meson pair 
process has been carried out to next to leading order in a,(Q2) by Nizic.37 

.- The simplest example of two-photon exclusive reactions is the y*(q)? + M” 

process which is measura.ble in tagged eSe- -+ e+e-M” reactions. The photon to 
neutral meson transition form factor Fyinlo (Q”) is predicted to fall as 1/Q2-modulo 
calculable logarithmic corrections from the evolution of the meson distribution am- 
plitude. The QCD prediction reflects the scale invariance of the quark propagator 
at high momentum transfer, the same scale-invariance which gives Bjorken scaling of 

- the deep inelastic lepton-nucleon cross sections. The existing data from the TPC/yy 
experiment are consistent with the predicted scaling and normalization of the tran- 
sition form factors for the TO, 70, and 7’. The Mark II and TPC/yy measurements of 
YY--+~ 7r + - and yy t li+li’- reactions a.re also consistent with PQCD expectations. 
A review of this work is given in Ref. 38. 

_ -. --.- .L _ 
4.%om&on Scattering in Perturbative QCD 

Compton scattering yp + yp at large momentum transfer and its s-channel 

14 
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crossed reactions yy + jip and $ip + yy are classic tests of the perturbative QCD 
formalism for exclusive reactions. At leading twist, each helicity amplitude has the 

24 factorized form, (see Fig. 4) 

The index i labels the three contributing valence Fock amplitudes at the renormal- -r -- 
rzation scale Q. The index d labels the 378 connected Feynman diagrams which con- 
tribute to the eight-point hard scatter$g amplitude qqqy + qqqy at the tree level; 
i.e. at order oo~(~). Th . . e arguments Q of the QCD running coupling constant can 
be evaluated amplitude by amplitude using the method of Ref. 39. The evaluation of 

_~ 
the hard scattering amplitudes Tjd’(x, h, X; y, h’, X’; s, t) has now been done by several 

40,41,31,42 groups. 

XSP Y3P 6-92 
7187Al 

Figure 4. Factorization of the Compton amplitude in &CD. 

An important simplification of Compton scattering in PQCD is the fact that 
pinch singularities are readily integrable and do not change the nominal power-law 

I-- behavior. of the basic amplitudes.31 Physically, the pinch singularities correspond to 
thFexist&ce of potentially on-shell intermediate states in the hard scattering am- 
plitudes, leading to a non-trivial phase structure of the Compton amplitudes. Such 
phases can in principle be measured by interfering the virtual Compton process in 
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- Figure 5. Comparison of the QCD prediction for the scaled unpolarized proton Comp- 
ton scattering differential cross section .@da/dt(-yp + yp) with experiment. The experimental 
data44 are at s = 4.63 GeV (circles) s = 6.51 GeV (triangles), s = 8.38 GeV (squares) and 
s = 10.26 GeV (asterisk). The QCD prediction is from the calculation of Kronfeld and 

31 Nizic. 
The QCD sum rule distribution amplitudes are listed in Ref. 5. 

e*p + e*py with th 
43 

e purely real Bethe-Heitler bremmstrahlung amplitude. A care- 
ful analytic treatment of the integration over the on-shell intermediate states is given . 31 
by Kronfeld and Nizic. 

The most characteristic feature of the PQCD predictions is the scaling of the 
differential Compton cross section at fixed t/s or ~CM. 

The power s6 reflects the fact that 8 elementary fields enter or leave the hard scattering 
subprocess. The sca,ling of the existing data44 as shown in Fig. 5 is remarkably I -- 
C  - $stenhwith the PQCD power-law prediction, but measurements at higher energies 

3 an -momentum transfer are needed to test the predicted logarithmic corrections to 
this scaling behavior and determine the angular distribution of the scaled cross section 
over as large a range as possible. 

16 
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The predictions for the normalization of the Compton cross section and the 
shape of its angular distribution are sensitive to the shape of the proton distribution 
amplitude &(zi,Q). Th e f orms predicted for the proton distribution amplitude by 
QCD sum-rules by Chernyak, Oglobin, and Zhitnitskii, and also King and Sachrajda, 
shown in Fig. 1, appear to give a reasonable representation of the existing data. 
These -distributions, which predict that 65% of the proton’s momentum is carried 
by the u quark with helicity parallel to the proton’s helicity also provide reasonable 
predictions for the normalization of the proton’s form factor and the J/$ + pp decay 
rate. Kronfeld and Nizic have also given detailed predictions for the helicity and 
phase structure of the PQCD predictions for both proton and neutrons. The crossing 
b&avior from the Compton scattering to the annihilation channels will also provide 
important tests and constraints on the PQCD formalism and the shape of the proton 
distribution amplitudes. Predictions for the timelike processes have been made by . . 40 
Farrar et al., Millers and Gunionl’, and HyerP2 

_- 
It should be emphasized that the theoretical uncertainties from finite nucleon 

mass corrections, the magnitude of the QCD running coupling constant, and the 
normalization of the proton distribution amplitude largely cancel out in the ratio of 
differential cross sections 

. 

_~ * R yy,e+e+ tf? 7 cm ) = d”JFp + Mdt 
da(pp + e+e-)/dt ’ 

which is predicted by QCO to be essentially independent of s at large momentum 
transfer. (See Fig. 6.) If this scaling is confirmed, then the center-of-mass angular 
dependence of R,,,,+ e- (s, O,m) will be one of the best ways to determine the shape 
of 4&i,&). Th e measurement of this ratio appears to well-suited to the Fermilab 
antiproton accumulator experiment E760 and SuperLear. 

Another important characteristic of the leading-twist QCD predictions for ex- 
45 -- elusive processes is hadron-helicity conservation. Because of chiral invariance, the 

hard-scattering amplitude is non-zero only for amplitudes that conserve quark he- 
licity. _ Since the distribution amplitude projects only L, = 0, this implies that the 
proton helicity is conserved in yp --f yp. Similarly, the baryon and x anti-baryon 
helicities must be opposite in the crossed reactions yy + BB and j~p -+ yy at large 

- momentum transfer. Detailed predictions for each of the leading power Compton 
.-31 

scattering helicity amplitudes are also given by Kronfeld and Nizic. 

5. The Domain of Validity of PQCD Predictions for Exclusive Processes 

. - -c-W1 The factorized predictions for the Compton amplitude are rigorous predictions 
of%CD at large momentum transfer. However, it is important to understand the kine- 
matic domain where the leading twist predictions become valid. As emphasized by 
Isgur and Llewellyn Smitl~~8 this question is non-trivial because of the possibility of 
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Figure 6. PQCD predictions for the ratio of the timelike Compton cross section for 
j?p -+ yy to the cross section for pp -+ e+e- annihilation assuming different model forms for the 
proton distribution amplitude at s = 25 G.zV~.~~ The predictions include the effect of Sudakov 
suppression in the endpoint region using the Li-Sterman formalism. 

. 
significant contributions to the scattering amplitude at the endpoint regions xi + 1 _~ 
wher-e the PQCD factorization could break down. Because of the denominator struc- 
ture-of the hard scattering amplitudes, e.g., TH 0; cyS/[(l -x)(1 - y)Q2] for the meson 
form factor, the endpoint integration region at x N 1 and y - 1 will be enhanced. Of 
more concern is the fact that such endpoint regions are even further emphasized when 
one assumes the strongly asymmetric forms for the nucleon distribution amplitude 
derived from QCD sum rules. 

It is important to note that the end-point regime corresponds to scattering 
processes where one quark carries nearly all of the proton’s momentum and is at a 

- fixed transverse separation bl from the spectator quarks. However, if a quark which 
is isolated in space receives a large momentum transfer xi&, it will normally strongly 
radiate gluons into the final state due to the displacement of both its initial and final 

3o self-field, contrary to the requirements of exclusive scattering. For example, in QED 
the radiation from the initial and final state charged lines is controlled by the coherent 

- sum C; zv;qi where 4; and pi are the charges four-momenta of the charged lines, E 
and Ic are polarization and four-momentum of the radiation, and {i = fl for initial 
and final sta.te particles, respectively. Radiation will occur for any finite momentum 
transfer scattering as long as the photon’s wavelength is less than the size of the initial 
and final neutral bound states. 

-c-.-L The radiation from the colored lines in QCD have similar coherence proper- 
tiey:46 because of the destructive color interference of the radiators, the momentum 
of the radiated gluon in a QCD hard scattering process only ranges from k of order 
l/bl, where color screening occurs, up to the momentum transfer xi& of the scattered 
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quarks. The one-gluon correction to the wavefunction is thus proportional to 

This result 30’42 and unitarity allows one to compute the probability that no radia- 
tion occurs during the hard scattering. It is given by a rapidly falling exponentiated 
%dakov form factor S = S(xiQ, bl, A QCD); thus at large Q and fixed impact separa- 
tion, the Sudakov factor strongly suppresses the endpoint contribution. On the other 
hand, when bl = 0(x;&)-r, th e u a ov S d k f orm factor is of order 1, and the radiation 
leads to logarithmic evolution and contributions of higher order in crs(Q2) corrections 
already contained in the PQCD 8’47’48 predictions. This is the starting point of the 
detailed analysis of the suppression of endpoint contributions to meson and baryon 
form factors and its quantitative effect on the PQCD predictions recently presented 
by Li and Sterman.30 This analysis has no& also been applied to two-photon reactions 

and the timelike proton form factor by 
42 

Hyer. . 
It should be emphasized that the standard PQCD contributions to large mo- 

ment-urn- transfer exclusive reactions derive from wavefunction configurations where 
the valence quarks are at small transverse separation bl = O( l/Q), the regime where 
there is no Sudakov suppression. However, as noted by Li and Sterman, the hard 
scattering amplitude loses its singular end-point structure if one retains the valence 
quark transverse momenta in the denominators. For example, in the case of the pion 
form factor, the hard scattering amplitude is effectively modified to the form 

.- TH cx (1 - x)(1 - y);; + (k; + l&2’ 

Li and Sterman thus find that the pion form factor becomes relatively insensitive 
to soft gluon exchange at momentum transfers beyond 20 AQCD. In the case of the 

proton Dirac form factor, the corresponding analysis by Li3’ is in good agreement 
with experiment at momentum transfers greater than 3 GeV. 

The Botts, Li, and Sterman analysis of the Sudakov suppression of endpoint 
contributions makes it understandable why PQCD factorization and its predictions 
for exclusive processes are already applicable at momentum transfers of a few GeV, 
thus accounting for the empirical success of quark counting rules in exclusive process 
pheaomenology. The Sudakov effect suppression also enhances “color transparency” 
p@homena, since only small color singlet wavefunction configurations can scatter 

25 at large momentum transfer. Color transparency in Compton scattering can be 
tested by checking for the absence of final state absorption in quasi-elastic yp + yp 
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scattering in heavy nuclei. Similarly, QCD color transparency implies that there will 
be diminished initial state absorption of the antiproton for large-angle quasi-elastic 
jjp t yy annihilation in heavy nuclear targets. 

. . 

_- 

_~ 

In the case of large angle proton-proton scattering, the perturbative predic- 
tions for. color transparency and the spin-spin correlation ANN appear to fail at 
ECM ,+ 5 GeV; this effect has been attributed to the effect of the threshold for charm 
production in intermediate statesPg A similar breakdown of the perturbative predic- 
tions may also occur at the corresponding energy threshold in jip + yy at large angles 
due to charmed hadron intermediate states. 

-* *- Recently Luke, Manohar, and Savage 5o have shown that the QCD trace 
anomaly leads to a strong, attractive, scalar potential which dominates the inter- 
action of heavy quarkonium states with ordinary matter at low relative velocity. The 
scalar attraction is sufficiently strong to produce nuclear-bound quarkonium. 51 Thus 
it will be interesting to look for strong threshold enhancements for charm produc- 
tion near threshold in two-photon rea.ctions, particularly in exclusive channels such 
as p” J/lc, as well as 00. Predictions for the threshold production of charmed mesons 
has also been given in Ref. 52. Evidence,for excess inclusive production of charmed 

53 
mesons in photon-photon collisions has been reported by the JADE collaboration. 

. Exclusive processes, particularly two-photon reactions, thus provide one of the 
most-important, but least explored frontiers in particle physics. The recent analyses 
by Botts, Li, and Sterman and by Kronfeld and Nizic have shown that the predictions 
based on QCD factorization theorems are applicable to measurements at present- 
day accelerators. It is clearly crucial for a fundamental understanding of both the 
perturbative and non-perturbative aspects of QCD that the predictions for exclusive 
amplitudes be tested as carefully as possible. 

6. Exclusive Weak Decays of Heavy Hadrons 

.- An important application of PQCD factorization is to the exclusive decays 
of heavy hadrons to light hadrons, such as B” t T+K-, I<+, I(-. 54 

To a good 
approximation, the decay amplitude M= (BIH wk X+R-) is caused by the transition 1 
b+W+u;thusM=f pG +rJzx (dJpIBo) h w ere Jp is the b t u weak current. The 

_ problem is then to recouple the spectator d quark and the other gluon and possible 
quark pairs in each B” Fock state to the corresponding Fock state of the final state 
T-. (See Fig. 7.) Th e k inematic constraint that (pi - pH)2 = mz demands that at 
least one quark line is far off shell: pi = (yp~ - pT)’ - -p??‘AB - -1.5 GeV2, where 

we have noted that the light quark takes only a fraction (1 - y) - dm/mB 
,- of:th_e heavy meson’s momentum since all of the valence quarks must have nearly 

eq%al velocity in a bound state. In view of the successful applications 55 of PQCD 
factorization to form factors at momentum transfers in the few GeV2 range, it is 
reasonable to assume that (jp$) is sufficiently large that we can begin to apply 

20 



- 
- .-.- 

_- Figure 7. Calculation of the weak decay L? -+ ~7r in the PQCD formalism of Ref. 54. 
The gluon exchange kernel of the hadron wavefunction is exposed wherever a hard momentum 
transfer is required. 

perturbative QCD methods. 
. The analysis of the exclusive weak decay amplitude can be carried out in 

parallel to the PQCD analysis of electroweak form factors 56 at large Q2. The first 
s&p-is to iterate the wa.vefunction equations of motion so that the large momentum 
transfer through the gluon exchange potential is exposed. The heavy quark decay 
amplitude can then be written as a convolution of the hard scattering amplitude for 
QT~ -+ W+qq convoluted with the B and 7r distribution amplitudes. The minimum 
number valence Fock state of each hadron gives the leading power law contribution. 
Thus TH contains all perturbative virtual loop corrections of order crS(A2). The result 
is the factorized form: 

.- 
1 1 

M(B + m) = 
J J 

dx &dB(y, A)THbr(x, A) 
0 0 

which is expected to be correct up to terms of order 1/A4. All of the non-perturbative 
corrections with momenta lk2j < A2 are summed in the distribution amplitudes. 

An interesting example of this analysis is “atomic 
57 

alchemy”, i.e., the ex- 
clusive decays of muonic atoms to electronic atoms plus neutrinos. In this case the 
calculation requires the very high momentum tail of the atomic wavefunctions, which 
iri&r+rn can be obtained via the iteration of the relativistic atomic bound-state equa- 
tions. Again one obtains a factorization theorem for exclusive atomic transitions 
where the atomic wavefunction at the origin plays the role of the distribution ampli- 
tude. 
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7. Discretized Light-Cone Quantization: Applications to QCD 

QCD dynamics takes a rather simple form when quantized at equal light-cone 
“time” r = t + z/c. In light-cone gauge A + = 0, the QCD light-cone Hamiltonian 

HQCD = Ho + gH1 + g2H2 

Captains the usual S-point and 4-point interactions plus induced terms from instanta- 
neous gluon -exchange and instantaneous quark exchange diagrams. The perturbative 
vacuum serves as the lowest state in constructing a complete basis set of color-singlet 

. . Fock states of Ho in momentum space. Solving QCD is then equivalent to solving 
the eigenvalue problem: 

HQCD[@ >= M21Q > 

as a matrix equation on the free Fock basis. The set of eigenvalues {M2} represents 
the spectrum of the color-singlet states in QCD. The Fock projections of the eigen- 
function corresponding to each hadron eigenvalue gives the quark and gluon Fock 
state wavefunctions tin(zi, Icli, A;) re q uired to compute structure functions, distribu- 
tion -amplitudes, decay amplitudes, etc. For example, the e+e- annihilation cross 
section‘into a given J = 1 hadronic channel can be computed directly from its $g~ 
Fock state wavefunction. 

The key step in obtaining a discrete representation of the light-cone Hamil- 
tonian in a form amenable to numerical diagonalization, is the construction of a 
complete, countable, Fock state basis, 

This can be explicitly done in QCD by constructing a complete set of color-singlet 
eigenstates of the free Hamiltonian as products of representations of free quark and 
gluon fields. The states are chosen as eigenstates of the constants of the motion, 

P+, 31, Jz, and the conserved charges. In addition, one can pre-diagonalize the 
Fock representation by classifying the states according to their discrete symmetries, 
as described in the previous section. This step alone reduces the size of the matrix 
representations by as much as a factor of 16. 

The light-cone Fock representation can be made discrete by choosing periodic 
(or, in the case of fermions, anti-periodic) boundary conditions on the fields: $J(z-) = 
zI$&$- -J) , and v,!J(x~) = $(sl - Ll). Thus in each Fock state, P+ = %A’ , and 
each constituent kz = Fn; , where the positive integers n; satisfy Ci n; = I< . 

Similarly Zli = & Zli , where the vector integers sum to $1 in the standard frame. 
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The positive integer K is called the “harmonic resolution.” For a given choice 
of I<, there are only a finite number of partitions of the plus momenta; thus only a 
finite set of rational values of xi = kT/P+ = n;/IC appear: xi = &, &, . . . q. 
Thus eigensolutions obtained by diagonalizing HLC on this basis determine the deep 
inelastic structure functions F~(z) only at the set of rational discrete points xi. The 
continuum limit thus requires extrapolation to I( + co. Note that the value of L is 
irrelevant, since it can always be scaled away by a Lorentz boost. Since HLC, P+, 
+ 
PI, and the conserved charges all commute, HLC is block diagonal. 

The DLCQ p ro g ram becomes especially simple for gauge theory in one-space 
&e-time dimensions not only because of the absence of transverse momenta, but 
also because there are no gluon degrees of freedom. In addition, for a given value 
of the harmonic resolution K the Fock basis becomes restricted to finite dimensional 
representations. The dimension of the representation corresponds to the number of 
partitions of the integer Ii’ as a sum of positive integers n. The eigenvalue problem 
thus reduces to the diagonalization of a finite Hermitian matrix. The continuum limit 
is clearly I< + oo. 

Since continuum scattering states as well as single hadron color-singlet hadron- 
ic wavefunctions are obtained by the diagonalization of HLC, one can also calculate 
scattering ‘amplitudes as well as decay rates from overlap matrix elements of the 
interaction Hamiltonian for the weak or electromagnetic interactions. In principle, 
all higher Fock amplitudes, including spectator gluons, can be kept in the light-cone 
quantization approa.ch; such contributions cannot generally be neglected in decay 
amplitudes involving light quarks. 

DLCQ has been used to successfully obtain the complete color-singlet spectrum 
of QCD in one-space and one-time dimension for NC = 2,3,4. l7 The hadronic spectra 
are obtained as a function of quark mass and QCD coupling constant (see Fig. 8). 

~Where they are ava.ilable, the spectra agree with results obtained earlier; in particular, 
the lowest meson mass in SU(2) a g rees within errors with lattice Hamiltonian results. 

-- The~meson mass at NC = 4 is close to the value predicted by ‘t Hooft in the large NC 
limit. The DLCQ method also provides the first results for the baryon spectrum in a 
non-Abelian gauge theory. The lowest baryon mass is shown in Fig. 8 as a function 
of coupling constant. The ratio of meson to baryon mass as a function of NC also 
agrees at strong coupling with results obtained by bosonization 

58 methods. Precise 
values for the mass eigenvalue can be obtained by extrapolation to large Ii’ by fitting 
to forms with the correct functional dependence in l/K. 

When the light-cone Hamiltonian is diagonalized at a finite resolution K, one 
gets a complete set of eigenvalues corresponding to the total dimension of the Fock 
state basis. A representative example of the spectrum is shown in Fig. 9 for baryon 
s@b (8 .= 1) as a function of the dimensionless variable X = l/( 1 + 7rm2/g2). Notice 
th% spectrum automatically includes continuum states with B = 1 . 

The structure functions for the lowest meson and baryon states in SU(3) at 
two different coupling strengths m/g = 1.6 and m/g = 0.1 are shown in Figs. 10 and 
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Figure 8. The baryon and meson spectrum in QCD(l+l) computed in DLCQ for NC = 
2,3,4 as a function of quark mass and coupling constant. 
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Represent,ative baryon spectrum for QCD in one-space and one-time dimension. 
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Figure 12. Contribution to the baryon quark momentum distribution from qqqQQ states 
for QCD[l+l]. 

11. Higher Fock states have a very small probability; representative contributions to _. 
the baryop structure functions are shown in Fig. 12. Although these results are for 
one-time one-space theory they do suggest that the sea quark distributions in physical 
hadrons may be big-hly structured. 

. . 

8. The Heavy Quark Content of the Proton 

The DLCQ results for sea quark distributions in QCD(l+l) may have impli- 
cations for the heavy quark content of physical hadrons. One of the most intriguing 
unknowns in nucleon structure is the strange and charm quark structure of the nu- 
-clean wavefunction.5g The EMC spin crisis measurements indicate a significant sS 

.- content of the proton, with the strange quark spin strongly anti-correlated with the 
60 

proton spin. Just as striking, the EMC measurements of the charm structure func- 
tion of the Fe nucleus at large zbj N 0.4 appear to be considerably larger than that 
predicted by the conventional photon-gluon fusion model, indicating an anomalous 
charm content of the nucleon at large values of X. The probability of intrinsic charm 

_ has been estimated6’ to be 0.3%. 

Figure 13 shows recent results obtained by HornbostelG1 .for the structure 
functions of the lowest mass meson in QCD(l+l) wavefunctions for NC = 3 and two 
quark flavors. As seen in the figure, the heavy quark distribution arising from the 
@Q& Fock component has a two-hump character. The second maximum is expected 

.- sin.ce-the constituents in a bound state tend to have equal velocities. The result is 
in&rsitive to the value of the Q2 of the deep inelastic probe. Thus intrinsic charm 
is a feature of exact solutions to QCD(l+l). Note that the integrated probability 
for the Fock states containing heavy quarks falls nominally as g2/m$ in this super- 
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Figure 13. The hea.vy quark structure function Q(x) = GQIM(Z) of the lightest meson 
in QCD(l+l) with IV, = 3 and g/m, = 10. Two flavors are assumed with (a) mQ/mq = 1.001 
and (b) mQ/m, = 5. The curves are normalized to unit area. The probability of the qijQB state 
is 0.56 x 10S2 and 0.11 x 10m4, respectively. The.DLCQ method for diagonalizing the light-cone 
Hamiltonian is used with- anti-periodic boundary conditions. The harmonic resolution is taken 
at I< = 10/-Z. (From Ref. 17.) . 

renormalizable theory, compared to g2/m 6 dependence expected in renormalizable 
theories. 

In the case of QCD(S+l), we also expect a two-component structure for heavy- 
quark structure functions of the light hadrons. The low XF enhancement reflects the 
fact that the gluon-splitting matrix elements of heavy quark production favor low 
x. On the other hand, the Q&Q wavefunction also favors equal velocity of the con- 
stituents in order to minimize the off-shell light-cone energy and the invariant mass of 
the Fock state constituents. In addition, the non-Abelian effective Lagrangian analy- 

.- sis discussed above allows a heavy quark fluctuation in the bound state wavefunction 
to draw momentum from all of the hadron’s valence quarks at order l/m;. This im- 
plies a significant contribution to heavy quark structure functions at medium to large 
momentum fraction x. The EMC measurements of the charm structure function of 
the nucleon appear to support this picture.60 

It is thus useful to distinguish extrinsic and intrinsic contributions to struc- 
ture functions. The extrinsic contributions are associated with the substructure of 
a single quark and gluon of the hadron. Such contributions lead to the logarith- 
mic evolution of the structure functions and depend on the momentum transfer scale 
of the probe. The intrinsic contributions involve at least two constituents and are 

e- associated with the bound state dynamics independent of the probe. The intrinsic 
gl‘do’n distributions 62 are closely related to the retarded mass-dependent part of the 

63 bound-state potential of the valence quarks. In addition, because of asymptotic free- 
dom, the hadron wavefunction has only an inverse power MT2 suppression for high 
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mass fluctuations, whether one is considering heavy quark pairs or light quark pairs 
at high invariant mass M. This “intrinsic hardness” of QCD wavefunctions leads to 
a number of interesting phenomena, including a possible explanation for “cumula- 
tive production,” high momentum components of the nuclear fragments in nuclear 
collisions. This is discussed in detail in Ref. 64. 

9. Renormalization and Ultra-Violet Regulation of Light-Cone-Quantized 
Gauge Theory 

. . 

_- 

-* *- An important element in the light-cone Hamiltonian formulation of quantum 
field theories is the regulation of the ultraviolet region. In order to define a renor- 
malizable theory, a covariant and gauge invariant procedure is required to eliminate 
states of high virtuality. The physics beyond the scale A is contained in the normaliza- 
tion of the mass m(A) and coupling constant g(A) p arameters of the theory, modulo 
negligible corrections of order l/An from the effective Lagrangian. The logarithmic 
dependence of these input. parameters is determined by the renormalization group 
equations. In Lagrangian field theories the ultraviolet cut-off is usually introduced 
via-a spectrum of Pauli-Villars particles or dimensional regulation. 

. 
In the case of QCD (3+1), th e renormalization of the light-cone Hamiltonian in 

ligl&eone gauge is not yet completely understood, but a number of methods are now 
under consideration. In Ref. 8 Lepa.ge a.nd I showed that by using invariant cutoffs 
for both the interactions in the light-cone Hamiltonian and the Fock space, one could 
verify the renormalization group behavior of the gauge-invariant distribution ampli- 
tude. The result is consistent with results obtained from the Bethe-Salpeter equation 
or the operator product expansion. Thus one has a reason to believe that a properly 
regulated and truncated light-cone Hamiltonian can be constructed consistent with 
the known renormalization group structure of QCD. 

In DLCQ, one needs to provide a priori some type of truncation of the Fock 
state basis. Since wavefunctions and Green’s functions decrease with virtuality, one 
expects that states very far off the light-cone energy shell will have no physical effect 
on a system, except for renormalization of the coupling constant and mass parameters. 
Thus it is natural to introduce a “global” cut-off such that a Fock state In) is retained 

_ only if 

c i:; + rnf 
- M2 < A2 , 

im Xi 

--.- .L _ 

Hze M is’ the mass of the system in the case of the bound state problem, or the total 
invariant mass fi of the initial state in scattering theory. One can also regulate the 
ultraviolet region by introducing a “local” cutoff on each matrix element (nIH~c[m) 
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by requiring that the change in invariant mass squared 

,. 

This avoids spectator-dependent renormalization counterterms.20Similarly, one can 

use a lower cutoff on the invariant mass difference to regulate the infrared 
65 

region. 
Global and local cutoff methods were used in Ref. 8 to derive factorization theo- 
rems for exclusive and inclusive processes at large momentum transfer in QCD. In 
particular, the global cut-off defines the Fock-state wavefunctions $“(z, cl, X) and 
distribution amplitude 4(x, A), th e non-perturbative input for computing hadronic 
scattering amplitudes. The renorma.lization group properties of the light-cone wave- 
functions and the resulting evolution equations for the structure functions and distri- 
bution amplitudes are also discussed in Ref. 8. The calculated anomalous dimensions 
Tn for the moments of these quantities agree with results obtained using the operator 

66 
_~ product expansion. 

. In -general, light-cone quantization using the global or local cutoff can lead 
to terms in Hit of the form srn&$&. Such terms arise in order g2 as a result of 
normal-ordering of the four-point interaction terms. Although such a term is invariant 
under the large class of light-cone Lorentz transformations, it is not totally invariant. 
Burkardt and Langnau67 have suggested that the extra counterterms can be fixed by 
a posteriori imposing rotational symmetry on the bound state solutions, so that all 
Lorentz symmetries are restored. 

30. The Zero-Mode Problem in Light-Cone-Quantized Gauge Theory 

.- The role of zero modes in the light-cone quantization of l+l gauge theories has 
now been greatly clarified by the work of Heinzl, Kruschke, and Werner, 68 McCartor 

- and Robertson,6’ Griffin7’ and Hornbostel.71 In general, zero mode (field excitations 
with Ic+ = 0) must be retained consistent with the constraints imposed by the field 
equations of motion and the imposed boundary conditions. In the case of massless 
QED (l+l) (th e c wm S h ’ g er model), one needs to retain the zero mode at the A+ 
field, since this degree of freedom leads to the labeling of the degenerate o-vacua of 
the theory and the corresponding fermion condensates. In the case of theories such 
as 44(1 + l), th e zero mode of the 4 field provides the degree of freedom usually 
associated with the spontaneous breaking of the vacuum. It is also clear that zero 
modes play an important role in implementing the correct degrees of freedom in the 
elf-%tive light-cone Hamiltonian for quantum field theories in 3+1 dimensions. Again, 
one must allow for quantum excitations with Ic + = 0 and any value of in so that the 
equations of motion and the boundary conditions are fulfilled. In the case of DLCQ, 
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the assumed anti-periodic boundary conditions automatically exclude zero modes for 
the fermion fields, but zero modes are generally needed to describe the boson fields. 
Hiller and Wivoda72 have shown that in the X#J$ theory, the convergence of the 
DLCQ solutions to the known Wick-Cutkowsky solutions is greatly increased by the 
inclusion. of the $( Ic+ = 0) modes. 

.Zero modes are also required for the implementation of the light-cone gauge 
(A+ = 0) in gauge th eories in l+l dimensions. One of the most serious complications 
of the light-cone gauge quantization of QED (3+1) is the appearance of an apparently 
unregulated l/lc+ singularity in the expression for electron-electron scattering due to 
he l/(k*q) t erms in the photon propagator. Although this singularity vanishes for 
on-shell scattering, it confounds the proper interpretation of the effective potential for 
positronium in the effective light-cone potential. However, Soper 

73 
has now shown 

that the Leibbrandt-Mandelstam prescription for the light-cone propagator with 

1 k- 
Ic+* k+k- + ic 

. _. automatically generates a subtraction term in the QED effective Hamiltonian which 
eliminates-the gauge singularity at k + = 0. This solution corresponds to a ghost zero . 
mode, first identified by Bassetto 

74 
to be necessary for the consistent implementation 

of~the light-cone gauge with periodic boundary conditions. A similar subtraction 
at 16-t - 0 also occurs in the definition of the evolution kernel for the distribution 
amplitude! 

11. Advantages of Light-Cone Quantization 

As I have discussed in this talk, the method of discretized light-cone quanti- 
~zation provides a relativistic, frame-independent discrete representation of quantum 

.- field. theory amenable to computer simulation. In principle, the method reduces the 
light-cone Hamiltonian to diagonal form and has the remarkable feature of generating 
the complete spectrum of the theory: bound states and continuum states alike. DLCQ 

- is also. useful for studying relativistic many-body problems in relativistic nuclear and 
atomic physics. In the nonrelativistic limit the theory is equivalent to the many-body 
Schrodinger theory. DLCQ has been successfully applied to a number of field theories 
in one-space and one-time dimension, providing not only the bound-state spectrum 
of these theories, but also the light-cone wavefunctions needed to compute structure 
functions, intrinsic sea-quark distributions, and the e+e- annihilation cross section. 

Although the primary goal has been to apply light-cone methods to non- 
perturbative problems in QCD in physical space-time, it is important to validate 

.e- th-ese techniques for the much simpler Abelian theory of QED. The discretized quan- 
tiz%tion of quantum electrodynamics on the light-cone in principle allows practical 
numerical solutions for obtaining its spectrum and wavefunctions at arbitrary cou- 
pling strength o. We also have discussed a frame-independent and approximately 
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gauge-invariant particle number truncation of the Fock basis which is useful both 
for computational purposes and physical approximations. In this method2’ ultravio- 
let and infrared regularizations are kept independent of the discretization procedure, 
and are identical to that of the continuum theory. One thus obtains a finite discrete 
representation of the gauge theory which is faithful to the continuum theory and is 
completely independent of the choice of Lorentz frame. 

Light-cone quantization appears to have the potential for solving important 
non-perturbative problems in gauge theories. It has a number of intrinsic advantages: 

‘*- l The formalism is independent of the Lorentz frame-only relative momentum 
coordinates appear. The computer does not know the Lorentz frame! 

l Fermions and derivatives are treated exactly; there is no fermion-doubling prob- 
lem. 

l The ultraviolet and infrared regulators can be introduced as frame indepen- 
dent momentum space cut-offs of the continuum theory, independent of the 
discretization. 

l The field theoretic and renormalization properties of the discretized theory are 
. faithful to the continuum theory. No non-linear terms are introduced by the 

discretization. 
-. 

-6 One can use the exact global symmetries of the continuum Lagrangian to pre- 
diagonalize the Fock sectors. 

.- 

l The discretization is denumerable; there is no over-counting. The minimum 
number of physical degrees of freedom are used because of the light-cone gauge. 
No Gupta-Bleuler or Faddeev-Popov ghosts occur and unitarity is explicit. 

l Gauge invariance is lost in a Hamiltonian theory. However, the truncation 
can be introduced in such a way as to minimize explicit breaking of the gauge 

20 
symmetries. 

l The output of HLC matrix diagonalization is the full color-singlet spectrum of 
the theory, both bound states and continuum, together with their respective 
light-cone wa.vefunctions. 

- There are, however, a number of difficulties that need to be resolved: 

l The number of degrees of freedom in the representation of the light-cone Hamil- 
tonian increases rapidly with the maximum number of particles in the Fock 
state. Although heavy quark bound states probably only involve a minimal 

e- n-umber of gluons in flight, this is most likely not true for light hadrons. 
__- -- 
% Some problems of ultraviolet and infrared regulation remain. Although Pauli- 

Villars ghost states and finite photon mass can be used to regulate Abelian 
theories, it is not suitable method in non-Abelian theories.65 
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l The renormalization procedure is not completely understood in the context 
of non-perturbative problems. However, a non-perturbative recursive repre- 
sentation for electron mass renormalization has been successfully tested in 
QED(3+1).20 

l The Coulomb singularity in the effective gluon-exchange potential is poorly 
approximated in the discrete form. An analytic trick must be used to speed 
convergence. Such a method has been tested successfully in the case of the 
positronium spectrum in QED(3+1).22 

l The vacuum in QCD is not likely to be trivial since the four-point interaction 
-.. cm term in s”G& can introduce new zero-mode color-singlet states which mix 

with the free vacuum state. Thus a special treatment of the QCD vacuum 
is required. In the ca.se of zero mass quarks, there may be additional mixing of 
the perturbative vacuum with fermion zero-modes. 

In addition to its potential for solving the problems of the hadronic spectrum 
and wavefunctions of QCD, light-cone quantization has already led to many new 
insights into the qua.ntization of gauge theories. It has also brought a refocus of both 
theory and experiment to the novel features of QCD phenomena at the amplitude 

_~ level. . . 
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3 6 . S . J. B rodsky  a n d  G . P . L e p a g e , P h y s . R e v . D 2 4  ( 1 9 8 1 )  1 8 0 8 . 

. . 3 7 . B . Nizic, Fiz iku 1 8  ( 1 9 8 6 )  1 1 3 . 
3 8 . Fo r  a  r e c e n t rev iew o f exclusive two -pho to n  processes,  s e e  S . J. Brodsky,  S L A C -  

P U B - 5 0 8 8  in  th e  P r o c e e d i n g s  o f th e  T u u - C h a r m  W o rkshop,  S ta n fo r d , C A  
( 1 9 8 9 ) . 

3 9 . S . J. Brodsky,  G . P . L e p a g e , a n d  P . ,B . Mackenz ie ,  P h y s . R e v . D 2 8  ( 1 9 8 3 )  2 2 8 . 
.4 0 . G . R . Far rar ,  e t- al.  NucZ.  P h y s . B 3 1 1  ( 1 9 8 9 )  5 8 5 . 
4 1 . D . M il lers a n d  J. F. G u n ion,  P h y s . R e v . D 3 4  ( 1 9 8 6 )  2 6 5 7 . 

4 2 .---T. Hyer,  S L A C - P U B  5 8 8 9  ( 1 9 9 2 ) . 
4 3 1  S . J. Brodsky,  F. E . Close,  J. F. G u n ion,  P h y s . R e v . D 6  ( 1 9 7 2 )  1 7 7 . 
4 4 . M . A . S h u p e , e t al., P h y s . R e v . D 1 9  ( 1 9 7 9 )  1 9 2 1 . 
4 5 . G . P . L e p a g e  a n d  S . J. Brodsky,  P h y s . R e v . D 2 4  ( 1 9 8 1 )  2 8 4 8 . 
4 6 . S e e  e .g ., S . J. B rodsky  a n d  J. F. G u n ion,  P h y s . R e v . L e tt. 3 7  ( 1 9 7 6 )  4 0 2 . 
4 7 . A . D u n c a n , a n d  A . H . M u e ller, P h y s . L e tt. 9 0 B  ( 1 9 8 0 )  1 5 9 . 
4 8 . A . Szczepan iak  a n d  L . Mankiewicz,  P h y s . L e tt. B 2 6 6  ( 1 9 9 1 )  1 5 3 . 
4 9 : S . J. B rodsky  a n d  G . F. d e  T  e r a m o n d , P h y s . R e v . L e tt. 6 0  ( 1 9 8 8 )  1 9 2 4 . 

5 0 . M . L u k e , A . V . M a n o h a r , M . J. S a v a g e , p rep r i n t U C S D - P T H - 9 2 - 1 2 , ( 1 9 9 2 ) . 

5 1 . S . J. Brodsky,  a n d  G . F. d e  T e r a m o n d , a n d  I. A . S c h m i d t, P h y s . R e v . L e tt. 6 4  
( 1 9 9 0 )  1 0 1 1 . 

5 2 . S . J. Brodsky,  G . K o p p , a n d  P . Zerwas,  P h y s . R e v . L e tt. 5 8  ( 1 9 8 7 )  4 4 3 . 

5 3 . W . B a r tel, e t al., P h y s . L e tt. 1 8 4 B  ( 1 9 8 7 )  2 8 8 . 
5 4 . A . Szczepan iak ,  E . M : Henley ,  S . J. Brodsky,  P h y s . L e tt. B 2 4 3  ( 1 9 9 0 )  2 8 7 . 
5 5 . P . S toler ,  P h y s . R e v . L e tt. 6 6  ( 1 9 9 1 )  1 0 0 3 ; a n d  to  b e  pub l i shed  in  P h y s . R e v . 

D . 
5 6 - .- S . J. Brodsky,  G . P . L e p a g e , a n d  S . A . A . Zaidi ,  P h y s . R e v . D 2 3  ( 1 9 8 1 )  1 1 5 2 . 
% . S . 2  Brodsky,  C . G r e u b , C . M  u n g e r , a n d  D . W yler, to  b e  pub l i shed . 

5 8 . G . D . D a te , Y . F r i shman , J. S o n n e n s c h e i n , NucZ.  P h y s . B 2 8 3  3 6 5 , ( 1 9 8 7 ) ; Y . 
F r i shman , J. S o n n e n s c h e i n  W IS - 9 2 - 5 4 - P H , ( 1 9 9 2 ) . 
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5 9 . Fo r  a  r e c e n t d iscuss ion a n d  fu r th e r  r e fe rences , s e e  C . S . K im, Nucl.  P h y s . B 3 5 3  
( 1 9 9 1 )  8 7 . 

6 0 . J. J. A u b e r t, e t al., Nucl.  P h y s . B 2 1 3  ( 1 9 8 3 )  3 1 . S e e  a lso  E . H o ffm a n n  a n d  
R . M o o r e , 2 . P h y s . C 2 0  ( 1 9 8 3 )  7 1 . 

6 1 . K . H o r n b o s tel, pr ivate c o m m u n i c a tio n ; S . J. B rodsky  a n d  K . H o r n b o s tel, to  b e  
pub l i shed . 

6 2 . S . J. B rodsky  a n d  I. A . S c h m i d t, P h y s . L e tt. B 2 3 4  ( 1 9 9 0 )  1 4 4 ; P h y s . R e v . D 4 3  
( 1 9 9 1 )  1 7 9 . 

. . 

6 3 . G . P . L e p a g e , S . J. Brodsky,  T. H u a n g , P . B . Mackenz ie ,  pub l i shed  in  th e  -.. *- 
P roceedi t igs  o f th e  B u n g  S u m m e r  Insti tute, 1 9 8 1 . 

6 4 . S . J. B rodsky  a n d  P . Hoye r , S L A C - P U B - 5 4 2 2 , ( 1 9 9 1 ) . 
6 5 . It a lso  shou ld  b e  n o te d  th a t in  G r ibov’s a p p r o a c h  to  q u a r k  c o n fin e m e n t, Pau l i -  

V i l lars o r  d imens iona l  r e g u l a tio n  c a n n o t e v e n  b e  u s e d  in  pr inc ip le  fo r  s t rong 
coup l ing  p r o b l e m s  in  Q C D  b e c a u s e  o f th e  way  it e l iminates  th e  n e g a tive  e n e r g y  
s e a . 

. _ _  
6 6 . S . J. Brodsky,  Y . F r i shman , G . P . L e p a g e  a n d  C . S a c h r a j d a , P h y s . L e tt. 9 1 B  

_  ( 1 9 8 0 )  2 3 9 . M . E . Peskin,  P h y s . L e tt. 8 8 B  ( 1 9 7 9 )  1 2 8 . 
6 7 . M . B u r k a r d t, A . L a n g n a u , S L A C - P U B - 5 3 9 4 , ( 1 9 9 0 ) , a n d  to  b e  pub l i shed . 
6 8 . -T. Heinzl ,  S . Kruschke,  E . W e r n e r , P h y s . L e tt. 2 7 2 B  ( 1 9 9 1 )  5 4 . 
6 9 ,. D . G . R o b e r tso n , S M U H E P /9 2 - 0 3  ( 1 9 9 2 ) ; G . M c C a r to r , 2 . P h y s . C 5 2  ( 1 9 9 2 )  

6 1 1 ; G . M c C a r to r  a n d  D . G . R o b e r tso n , Z. P h y s . C 5 3  ( 1 9 9 2 )  6 7 9 . 
7 0 . P . A . G riffin , Universi ty o f F lo r ida  p rep r i n t U F I F T - H E P - 9 2 - 1 7 . 
7 1 . K . H o r n b o s tel, P h y s . R e v . D 4 5  ( 1 9 9 2 )  3 7 8 1 . 
7 2 . J. J. W ivoda  a n d  J. R . Hil ler, Universi ty o f M inneso ta  P r e p r i n t ( 1 9 9 2 ) . 
7 3 . D . S o p e r , to  b e  pub l i shed . 

7 4 . A . B a s s e tto , P a d o v a  p rep r i n t P D F P D /S l/TH/lS ( 1 9 9 1 ) . 
.- 
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