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ABSTRACT

Penguin effects in the CP asymmetries of B0
d → π+π− , B0

d → ρ±π∓ and B0
d →

a±1 π
∓ are studied as function of the CKM unitarity triangle α. Despite a fairly

small penguin amplitude, it leads to quite sizable uncertainties in the determination

of sin(2α) from all but very large asymmetries. This effect is maximal for vanishing

final state interaction phases, for which it can cause, for instance, an asymmetry

of 40% if α = π/2.
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There are two good reasons for which B mesons provide a unique opportunity

for testing the Cabibbo-Kobayashi-Maskawa (CKM) mechanism of CP violation
1

. The CP asymmetries in certain decays, most notably decays to CP- eigenstates,

are expected to be both large and theoretically clean. For instance, in B0
d → ψKS

the time-dependent asymmetry is predicted to oscillate with an amplitude given

directly by sin(2β)
2

, where β is one of the angles of the CKM unitarity triangle.

This relation between a measured asymmetry and a pure CKM phase parameter

follows from having essentially a single weak phase which contributes to the decay.

In the case of B0
d → ψKS , where it is known that sin(2β) ≥ 0.08

1
, this relation is

expected to hold within a 1% accuracy
3

.

Another decay mode which seems to be very promising isB0
d → π+π−, in which

the asymmetry is related to the angle α. In this case the theoretical situation is

somewhat less clean due to the contribution of “penguin” amplitudes
3 4 5

, which

may interfere with the dominant “tree” amplitude through their different weak

phases. Here the ratio of penguin-to-tree amplitudes is roughly estimated to be at

the level of (10−20)%. This estimate may lead one to conclude that an uncertainty

at this level applies also to the relation between the measured asymmetry and

sin(2α). This by itself would not have spoiled the testing power of the asymmetry

measurement. The purpose of this note is to critically elaborate on this question.

We will show that, even with a relatively small penguin contribution and with

small final-state interaction phases, penguin effects on the asymmetry may, in

fact, be quite large for | sin(2α)| ≤ 0.7. Therefore, unless a very large asymmetry

is measured, this would prohibit obtaining a useful value of α from the asymmetry

measurement.

The formalism of studying CP asymmetries in neutral B decays to CP eigen-
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states in the presence of two interfering decay amplitudes was given in
3

. For

completeness, we write down the basic equations and study them for the case

of B0
d → π+π−. We denote the amplitude of B0

d → π+π− by A and that of

B
0
d → π+π− by A. Each of these amplitudes obtains contributions from “tree”

and from “penguin” amplitudes:

A = ATe
iδT eiφT +APe

iδP eiφP ,

A = AT e
iδT e−iφT +APe

iδP e−iφP . (1)

AT,P are real, φT,P are CKM phases and δT,P are strong interaction final state

phases, all corresponding to the “tree” and “penguin” amplitudes, respectively. It

should be mentioned at this point that δT,P stand for soft final state interaction

phases. We neglect a phase due to the absorptive part of the physical cc quark

pair in the penguin diagram
6

. This phase is very small at the inclusive b → uud

level
7

, and is not expected to be considerably larger for exclusive modes such as

π+π−, where the absorptive part picks up contributions from a limited q2 range
8

.

The time-dependent CP asymmetry for a neutral B meson, created at t = 0 as

a pure B0
d and decaying at time t to π+π−, when compared to the corresponding

decay rate of an initially B
0
d, is

3
:

Asym(t) =
1− |AA |2

1 + |AA|2
cos(∆mt)−

2Im(AAe
−2iβ)

1 + |AA |2
sin(∆mt) . (2)

∆m is the mass-difference of the two neutral B mesons. The phase 2β appears in

the B0
d −B

0
d mixing amplitude in the standard CKM phase convention. The two
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terms in Eq.(2) describe two different kinds of CP violating phenomena. The first

cos(∆mt) term, which describes CP violation in the direct decay of B0
d, vanishes

when only a single CKM phase contributes to the decay process. The coefficient of

the well-known sin(∆mt) term, which appears when the mixed B0
d and B

0
d decay to

a comomn final state, is given by sin(2α) when only one CKM phase contributes.

For AP/AT � 1 one finds the following expressions
3

for the two coefficients in

Eq.(2):

1− |AA |2

1 + |AA |2
≈ −2

AP
AT

sin(φT − φP ) sin(δT − δP ) ,

2Im(AAe
−2iβ)

1 + |AA |2
≈ sin(2α) + 2

AP
AT

sin(φT − φP ) cos(2α) cos(δT − δP ) . (3)

In order to evaluate the penguin effects one must know the three quantities (φT −

φP ), AP /AT , (δT − δP ). Only the first quantity can be studied theoretically in a

reliable manner. In the standard CKM phase convention φT = phase(V ∗ubVud) =

γ. The penguin amplitude, on the other hand, obtains contributions from three

diagrams in which u, c, t quarks run in a loop. Denoting the three amplitudes,

from which the CKM factors are omitted, by Pu, Pc, Pt, one notes that within

O(m2
c/m

2
b) one has Pc ≈ Pu. It then follows from the unitarity of the CKM matrix

that φP ≈ phase(V ∗tbVtd) = −β, and therefore

φT − φP ≈ γ + β = π − α . (4)

The ratio AP /AT cannot be calculated reliably at present. We will attempt to

evaluate it in two different manners. To be conservative, we will try not to over-

estimate it. The ratio of loop-induced processes b → dqq (q = u, d, s, c), dg, dgg
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to the tree process b→ uud was calculated perturbatively at the quark and gluon

level for the rates of inclusive charmless-strangeless decays
9

. The penguin pro-

cesses b → dqq dominate the loop induced processes. The penguin-to-tree ra-

tio of rates was found to decrease as a function of |Vub/Vcb| within the range

0.07 < |Vub/Vcb| < 0.20, from a largest possible value of 0.4 to a lowest value of

0.1, depending on mt and on CKM parameters. The quark process b → duu is

likely to be the dominant mechanism for B0
d → π+π−. Its rate is smaller by about

0.3 relative to all b → dqq processes, which leads to a penguin-to-tree ratio of

amplitudes decreasing from 0.35 to 0.15 in the above range of |Vub/Vcb|. This may

be a slight overestimate, since in this calculation the penguin rate was maximized

over the entire acceptable CKM parameter space.

A somewhat different approach which leads to a similar estimate of AP/AT is

based on calculating the low energy effective Hamiltonian for b→ duu in the lead-

ing log approximation
5

. One finds that the penguin operators dLiγ
µbLjuLjγµuLi,

dLiγ
µbLjuRjγµuRi, (i, j are color indices and L,R are left and right projections)

appear with coefficients 0.026, 0.033, respectively, and are multiplied by the CKM

factor VtbV
∗
td. On the other hand, the relevant tree operator has a slightly en-

hanced coefficient (= 1.11) and is multiplied by VubV
∗
ud. Adding up the penguin

coefficients and allowing the ratio |VtbV ∗td/VubV ∗ud| to vary between the values of 1

and 5
1
, one finds at the quark level AP /AT ∼ 0.05 − 0.27. Note that, since the

operator coefficients are all positive, AP /AT (which does not include final state

phases) is positive too.

A very rough and oversimplified approximation, which represents the above

two results, somewhat on the low side, can be obtained by simply using the CKM
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factors and the QCD factor related to the single t-quark penguin diagram:

AP
AT
∼
|V ∗tbVtd|
|V ∗ubVud|

αs
12π

ln(
m2
t

m2
b

) ∼ 0.04− 0.20 . (5)

The ratio of the CKM factors is the ratio of the lengths of two sides of the CKM

unitarity triangle which form the angle α. As noted above, this ratio lies between

the values of 1 and 5
1

. Recent preliminary data
10

, which seem to indicate that

|Vub/Vcb| is only about 0.06 or even smaller, favor a large ratio. For the QCD factor

(αs/12π) ln(m2
t/m

2
b) we took the value 0.04, using αs(m2

b) ≈ 0.2. This value would

be larger if αs were to be taken at (mb/2)2.

A large uncertainty is involved in calculating the tree and the penguin operator

matrix elements between the B0
d and the π+π− states

11
. Certain hadronic models

seem to indicate that penguin operator matrix elements may be enhanced due to

their special chiral structure
12

. Since none of the existing methods of calculating

hadronic matrix elements is very reliable for our case, we will make the most

simplified assumption that the ratio of these matrix elements is one, and will

thus use Eq.(5) as a crude approximation. This assumption has not yet been

tested experimentally even in an indirect way, that is, by comparing tree-dominated

to penguin-dominated processes. We feel that, since the simplified relation (5)

somewhat underestimates the ratio calculated at the quark and gluon level, it

allows a certain amount of penguin matrix element suppression, and does not

overestimate the ratio of matrix elements. We note again that this ratio is likely

to be on the high side of (5) if |Vub/Vcb| is near its present lower limit value of 0.06.

The soft final state interaction phase difference, δT − δP , is basically uncalcu-
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lable. Denoting this phase-difference by δ, one finds from (2)-(4):

Asym(t) ≈ −2
AP
AT

sin δ sinαcos(∆mt)

− [sin(2α) + 2
AP
AT

cos δ cos(2α) sinα]sin(∆mt) .

(6)

We note that the cos(∆mt) term and the sin(∆mt) term have a different and

complementary δ-dependence. The first term, which describes CP violation in

the direct decay, behaves like sin δ, while the correction to the mixing-induced

asymmetry is proportional to cos δ. Thus, as function of δ, the smaller the direct

CP violation cos(∆mt) term, the larger becomes the penguin correction to sin(2α),

and vice versa. In particular, when δ = 0, the cos(∆mt) term vanishes, whereas

the correction to the sin(2α) coefficient becomes maximal.

A heuristic argument for factorization of tree amplitudes in certain two body

B decays
13

implies that δT is negligible and that perhaps also δP is small. If

δ were small, then the cos(∆mt) term may be too small to be observed and the

time-dependent asymmetry measurement would not provide evidence for a penguin

contribution. Still, in this case the penguin amplitude effect on the coefficient of

the sin(∆mt) asymmetry becomes maximal and may be large. This is the danger

of penguin amplitudes.

The crucial point is that, whereas one would naively expect that the penguin

amplitude modifies sin(2α) in a multiplicative manner, the correction is in fact

an additive one and involves a factor of two from the interference with the tree

amplitude. This means that with e.g. AP /AT = 0.2, the correction to sin(2α) can

be as large as ±0.4 and is not merely a relative 20% correction. To be quantitative,

let us assume that δ is negligibly small, and study the consequences of (6) on the
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determination of sin(2α) from an asymmetry measurement. Fig. 1 shows the

coefficient of the − sin(∆mt) term as function of the actual value of sin(2α) for

450 ≤ α ≤ 1350. The range bounded by the two solid lines describes this coefficient

for δ = 0 and for AP/AT in the range (5). The straight dashed line gives the

corresponding relation in the absence of a penguin contribution. The maximal

deviation from the straight line is given by 2AP /AT . We note that points with

largest deviations from this line correspond to the largest value of AP/AT and thus

to the smallest values of |Vub/Vcb|. The danger of the penguin amplitude is best

demonstrated for α = π/2, where its effect on the asymmetry is maximal. For this

case, an asymmetry as large as 0.4 can possibly be measured, although sin(2α) = 0.

Such a substantial CP asymmetry measurement would be an important observation

by itself, however it could not be related to the angle α. The deviation of the

asymmetry from sin(2α) decreases gradually, as one moves away from α = π/2. It

is still at a level of 30% at α = 650, 1150 (sin(2α) = +0.77, −0.77), where one

expects large asymmetries. The effects become much smaller outside the range

450 ≤ α ≤ 1350 plotted in Fig. 1. Unfortunately, the asymmetry measurement,

which is related to the value of sin(2α), cannot distinguish between angles which lie

outside and inside this range. Note that as far as the CP asymmetry measurement

is concerned, the corrections are potentially large for all but very large asymmetries.

The range 650 < α < 1150, where the corrections are larger than 30%
14

, is

presently allowed
1

. It is possible that future theoretical and experimental progress

in quantities such as fB (the B decay constant), |Vub/Vcb| and mt will rule out this

range
15

.

If one takes the very conservative viewpoint that the sign of the penguin ampli-

tude relative to the tree amplitude is unknown, then the uncertainty in determining
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α from the asymmetry becomes twice as large. Reversing the sign of AP/AT cor-

responds to flipping the allowed range for the asymmetry coefficient to the other

side of the straight dashed line. It would therefore be useful to at least theoreti-

cally determine the sign corresponding to δ ≤ π/2. Since the penguin correction

to sin(2α) is proportional to cos δ, it becomes substantially smaller than in Fig. 1

only for large values of the final state phase difference. In this case one expects to

observe also the cos(∆mt) term in the time-dependent asymmetry. This depends,

of course, on the value of α and on the sensitivity of the experiment. With no

observation of such a term, and without a theory of final state interaction phases,

one would have to assume the worst of all cases, namely δ ∼ 0 (or even δ ∼ π, if

the sign of the penguin amplitude is undetermined).

Penguin contributions appear also in B0
d → ρ±π∓ and in B0

d → a±1 π
∓. The

effects on a determination of α from the asymmetry of the related time-dependent

rates is expected to be as large as in B0
d → π+π−. We wish to briefly demonstate

this effect in the decays to ρπ. The general formalism dealing with this kind of

final states (which, although being non-CP-eigenstates, are common to B0
d and B

0
d

decays), was described in
16

. The essential difference with respect to B0
d → π+π−

is that here the tree and penguin amplitudes for B0
d → ρ+π− are not the same as

those for B0
d → ρ−π+. In both cases the corresponding amplitudes carry the same

CKM phases as in B0
d → π+π−, φT = γ and φP = −β, respectively:

Af ≡ A(B0
d → ρ+π−) = AT e

iδT eiφT +APe
iδP eiφP ,

Af ≡ A(B0
d → ρ−π+) = AT e

iδT eiφT +AP e
iδP eiφP . (7)

The corresponding amplitudes for the charge-conjugated processes, Af ≡ A(B
0
d →

9



ρ−π+), Af ≡ A(B
0
d → ρ+π−), are obtained simply by changing the sign of the

weak phases.

One can measure four different time-dependent decay rates, for cases in which

initially B0
d(B

0
d) decay to ρ±π∓. If AP could be neglected then these four rates

would be, in principle, sufficient for a determination of α
17

. As in decays to CP

eigenstates, this method involves a measurement of the coefficient of the sin(∆mt)

term in the time-dependent rate. For an initially B0
d decaying to ρ+π− this coeffi-

cient is given by

Im(
Af
Af

e−2iβ) =
AT
AT

sin(2α + δT − δT ) . (8)

If all final state phases were negligible, this coefficient would determine sin(2α).

(Otherwise, the phase difference δT − δT can be determined separately from the

four rates). In the presence of the penguin amplitudes, this coefficient becomes, to

lowest order in AP/AT and AP /AT , and for negligible final state phases,

Im(
Af
Af

e−2iβ) =
AT
AT

[sin(2α) +
AP
AT

sin(3α) − AP

AT
sinα] . (9)

The correction to sin(2α) can be estimated in a way similar to the correction

in B0
d → π+π−. Within our approximation, Eq.(5) applies to both AP /AT and

AP/AT . In fact, if one takes AP/AT = AP /AT (which should hold only for CP-

eigentates) the correction term obtains exactly the form of the correction term of

Eq.(6). In general, when these ratios are in the range (5), the effect of the penguin

amplitude on determining sin(2α) are expected to be as large as in B0
d → π+π−.

In summary, we have shown that relatively small penguin amplitudes may pro-

hibit a useful determination of sin(2α) from the CP asymmetries of B0
d → π+π−,

B0
d → ρ±π∓ and B0

d → a±1 π
∓. Asymmetries as large as 0.4 may be measured even

10



when sin(2α) = 0. The uncertainty becomes small only for very large asymmeries.

It would decrease if |Vub/Vcb| were found to be on the high side of the presently

allowed range. The penguin complication may be avoided to a large degree if future

studies of the CKM matrix exclude the range 650 ≤ α ≤ 1150 in which the correc-

tions are large. Our analysis was based primarily on the estimate (5) and on the

observation that the correction to sin(2α) in (6) is additive rather than multiplica-

tive, and becomes maximal when δ → 0. We assumed that the hadronic matrix

element of the penguin operator is neither dynamically suppressed nor enhanced

relative to the tree amplitude. It goes without saying that this issue deserves se-

rious studies, both theoretical and experimental. The mere determination of the

sign of the penguin amplitude would be useful.

One way to overcome this potential difficulty is to measure in addition to the

asymmetry inB0
d → π+π− also the rates of B0

d → π0π0, B+ → π+π0. This isospin-

based method
18

can provide a way to eliminate the penguin contribution altogether

and to experimentally determine its magnitude, provided that the integrated rate

into two neutral pions is measurable. A similar isospin analysis for the ρπ modes

is unlikely to work in practice due to the too many amplitudes involved and to

certain ambiguities which appear in the analysis
19

.

I wish to thank J. Bjorken and H. Quinn for useful discussions.
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FIGURE CAPTION

FIG.1. Coefficient of − sin(∆mt) in the asymmetry of B0
d → π+π− as function of

sin(2α) for 450 ≤ α ≤ 1350. We take δ = 0. Area between solid lines

corresponds to AP/AT = 0.04−0.20; dashed line corresponds to the absence

of a penguin amplitude.

14



. 

9-92 
sin(2a) 7249Al 

Fig. 1 

. -. 
_: .-- _ 
‘t; 


