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ABSTRACT 

The propagation of-the electromagnetic wave in an aperiodic disk-loaded ..- 
accelerating section have been studied using field-matching technique. 

-- 
-A- matrix formalism similar to one of the scattering theory is applied. 

The method developed allows study of an arbitrarily large number of 

irises and radial space harmonics. Reflection and transmission coeffi- 

cients of the structure, its wave and coupling impedances, beam loading, 

and other characteristics have been calculated as a function of the wave 

frequency. the modifications of the reflection coefficient by couplers has 

also been studied. Two examples are given: one is a constant impedance 

structure consisting of 30 cells; the other is a detuned accelerating struc- 

ture designed at SLAC for the Next Linear Collider consisting of..over two 

hundred cells. 

_ -- 
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I. INTRODUCTION 

The next generation of linear colliders will most probably utilize disk-loaded 

structures only slightly more complicated than the accelerating sections of the 

SLAC Linear Collider (SLC). Th e main difference being the higher frequency of 

the accelerating field (11.424 GHz), to facilitate a higher accelerating gradient, 

and TGaussian distribution of the dipole mode frequencies of individual cells [l-4] 

(detuned structure) with the aim of suppressing the multibunch beam breakup. For 
. . 

example, the prototype accelerating section designed at SLAC for the Next Linear 

Collider (NLC) is, basically, a cylindrical beam pipe loaded by over 200 irises, 

-producing thus a chain of coupled RF cavities. Each cell consists of a cavity with 
_~ 

a gap-length-g and an adjacent iris of the thickness 1. In each cell the pair of radii 

of a cavity + and an iris a (see Table 1) are chosen to produce the same frequency 

of the fundamental accelerating field. The frequencies of the dipole modes vary 

from cell to cell, minimizing the strengths of the long range transverse wakefield. 

Until now, the design of an aperiodic accelerator section was based on the 

assumption that the parameters of the section at a given point of the structure 

are close to the-corresponding parameters of the cell located there and that they .-- 

- vary only slowly along the structure. In such an approach one essentially assumes 

the local’ field in the aperiodic structure to be that of a corresponding periodic 

structure, with the local dimensions of the aperiodic structure. There are several 

known reliable methods and computer codes [5-71 f or calculations of the infinitely 

_ periodic structures. However, there always arises the question of how good is this 

approximation for the travelling wave structures. The important features arising 
_ “- 

from&e structure ends should also be carefully taken into account. This is why it 

is desirable to develop a straightforward method to calculate the electromagnetic 

(EM) fields excited in the travelling wave structures. 

2 



It is worth mentioning the previous studies [&lo] of the transverse wakefields 

excited in a detuned structure. They are based on an equivalent circuit model. 

However, any such an approach can never include all the characteristics of the real 

structure. Here again, reliable methods are needed that do not depend on model 

considerations. 

~-The aim of the work described here is development of a technique suitable for 

the study of problems arising in the design of aperiodic RF structures. 

. . Simulations of the EM wave propagation in an aperiodic structure is a chal- 

lenging problem. The derivation of the exact system of linear algebraic equations 

for the modal analysis can easily be achieved using the standard field-matching 

technique. However, the solution of such a system is not trivial, even for a single 

iris in-the pipe [11,12]. 

.:A general method for studying the propagation and the excitation of the EM . _ 
fields in an aperiodic structure with piecewise constant radii is described in this 

paper. The computer code PROGON, based on the developed method, has been 

written for the numerical calculations. All the results reported here were obtained 

using this code. The method is based on the field-matching technique (see Sec. 2). 

,The corresponding truncated system of algebraic equations is solved numerically. 

The formalism employes matrices of relatively small sizes that depend only on the 

number -of cavity modes taken into account. Thus the number of cells is relevant 

only for the computational time. In one example given here, the method is applied 

to a detuned SLAC accelerating structure consisting of over 200 cells. 

The matrix formalism developed here is similar to that of the scattering theory 

[13]. It is described in detail in the Appendix to this note. The irises variables are 
e” 

excl&d without increasing the matrix size. The convergence of the method does 

not depend on any special relation [14] b e t ween the number of spatial harmonics 

in the cavities and the irises included in the calculations. It is shown that the 
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larger those numbers are, the better the approximation to the solution that can 

be obtained. In addition, such an exclusion of the irises variables may have a 

future advantage, allowing development of a formalism that can handle more or 

less arbitrary shapes of irises. This could be done by supplying the program with 

a subroutine relating one side of an iris to the other. 

A particular case of the infinite periodic structure is considered in Sec. 3. -.. *- 
The eigenvalue problem is solved in this case to find the dispersion curves and the 

. . -passbands of the section. The results are in agreement with the existing codes. 

Notice that for a detuned structure, the concepts of a dispersion curve, phase and 

group velocity, etc., have limited meaning since all of these parameters change along 

the section. Nevertheless, when the cell dimensions vary along the section slowly 

enough, these concepts preserve their local meaning. The formalism developed 

here% not limited to slow variation of the cell dimensions. 

We next study a scattering problem for a monochromatic RF wave in the 

aperiodic structure (see Sec. 4). The boundary conditions at the ends of the 

accelerating section follow naturally from the general radiation conditions for the 

reflected and transmitted travelling waves. The geometry of the end cells (couplers) 

are chosen to suppress the reflection coefficient for the structure in a broad band .-- 

of frequencies (see Sec. 5). The energy gain by a test particle is found as a function 

of frequency in Sec. 6. 

Next, in Sec. 7, the excitation of the field by a train of point charges is consid- 

ered. The formalism is extended for this purpose onto the inhomogeneous Maxwell 

_ equations. The longitudinal wake function, the corresponding longitudinal cou- 

pling impedance of the structure, and the beam loading by a train of bunches are 

_ U-calcQ&ed. . 

The solution found shows its internal consistency. For example, the num- 

her- and spacing of peaks in the transmission coefficient as a function of the 
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frequency agrees with the estimate that is based on the calculated width of 

the passband; the frequency at which the wave impedance reaches its maxi- 

mum coincides to an accuracy better than 10e4, with the frequency that cor- 

responds to the phase velocity of the wave equal to the velocity of light; 

_ -andsoon. 

; .!The extension of the method onto the transverse wakefields should be straight- 

forward, and is intended for future work. 

. 

_ 2. FIELD MATCHING 

To make our task as simple as possible, consideration here is restricted to 

-the case of the axially symmetric accelerating field (m = 0). The geometry of _~ 
the structure and the coordinate system chosen are shown in Fig. 1. In what 

follo?s, -we consider an ultrarelativistic case v + c, and the lossless structures 
. _ 

with infinite wall conductivity cr + 00. Throughout the note, we deal with the 

Fourier harmonics of the EM fields, and of the current density corresponding to a 

circular frequency w = 27r f. 

Consider a train of pointlike bunches with the charge eNg, each moving along 

the axis of the section at the speed of light c. Let the mth bunch be positioned at .-- 
_ time t = 0 at z = sm. The longitudinal component of the current density of such 

a train is 

- Its Fourier harmonic is 

O” ~(wb,k) = dt j(r, 4, z, t) exp{iwt} _ “- --.- -.A J --oo 
.u -i 

= eNB [Q)/T] b(b) cm exp{ik(z - %I>) 9 

(2.2) 

where k = w/c. 
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The following convention for numbering the cavities and irises is used. The 

cells in the array are numbered by superscript N, N = 1,2, . . . N,, the iris preced- 

ing the Nth cavity having the same number N. The structure starts with a cavity 

(N = 1, actually extending to -co), that is followed by an iris N = 2. Similarly, 

- the section ends with an iris N = NC and a cavity N = NC (that actually extends 

to-“+m). 

For axially symmetric problems, of a possible two sets of the solution of the 

Maxwell equations, only TM monopole (m = 0) modes are essential and sufficient 

to describe the longitudinal field dynamics. 

Inside a cylindrical pipe with constant radius, all the nonzero components 
_~ 

E,, E, and Hd of the T&f type of the EM field can be represented by a sum of a _.. 

particular solution driven by an external current density j(r, r$, z, k) and a general - 

solution of the homogeneous equations. The latter part can be represented as an 

expansion into a series of cylindrical waves with unknown complex amplitudes. For 

example, for the region inside the Nth cavity of the radius bN, the longitudinal 

Fourier harmonic of the electric field E, on the frequency f = kc/2r can be 

represented as .-. 

(24 

Similarly, for the Nth iris with the radius uN, 

Here z is the distance from the left end of a cavity or an iris. The expansion 

of all the essential field components can be found in the Appendix. Each of the 
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propagation functions, z:(z) or t:(z), is a superposition of two waves travelling 

in +z (forward wave) or in --z (backward wave) directions: 

c%> +N tN 
= D ,, exp{iprz} + D ,, exp{-ipfz} , 

where the propagation constants are 
. . 

O<z.<gN (2.5) , 

O<%<lN (2.6) 3 

AN = n II k2 - (v,/bN)2 , 

+Jle2--(v,laN)z. 
m 
(2.8) 

.-- 
In the array of coupled cavities, each eigenmode of a cavity generates a pass- 
e-_ ~. 

band-of the array. If the coupling between cavities is weak enough, the passbands 

do not overlap. 

Subsequent derivations essentially depend on the choice of the wave number 

k. Consider, for example, the most interesting case of the frequencies within the 

first passband. The first spatial mode in each cavity (corresponding to n = 1) 

ti the only truly travelling mode, since its propagation constant Xf is real. All 

the other modes (n > 1) are evanescent waves with. pure imaginary propagating 

constants. For the irises, all the propagation constants pr, including the first one, 

are imaginary. For lkl < v/aN,Im(k) > 0 

Most-+$-the-paper deals with this case. 

To satisfy the boundary and continuity conditions, it is sufficient to consider 

two of the three field components-either E,, Hd or E,, E,. We choose here the 
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pair of components E, and ET. Each radial mode, Eqs. (A.2-5) of the Appendix, 

satisfies the boundary condition on the cylindrical surfaces r = aN, 0 < z < IN or 

r = bN, 0 < z < gN, respectively. The amplitudes g, E:, 3: tN and D, should 

be chosen in such a way as to satisfy the boundary and continuity conditions on the 

- remaining metal walls of the irises. Consider, for example, the interface between 

a ca%ty with radius b, and the subsequent iris with the radius of the aperture a. 

The continuity conditions on the aperture at z = g are 
. 

&(r,g - 0, k) = &(w + 0, k) ; for all 0 C r C a , (2.10) 

--_ ~. 

-i;(r;g - 0, k) = &(r,g + 0, k) 0(u - r) ; for all 0 < r < b , (2.11) 

where 0(s) is a step function, 6(z) = 1 for x > 0, 8(x) = 0 for x < 0. 

As one can see, for the considered formalism the cavity gaps gN, and the radii 

bN, the iris thicknesses IN, and the apperture radii uN can all be different. For a 
.-. 

_ structure for which all the radii uN of the openings have the same value a and all 

the radii’ bN of the cavities have another value b, there is the option of matching 

the fields on the interface r = a. However, in the general case of different uN and 

bN, the matching on the interfaces Z=const is much simpler. ~ 

From Eqs. (2.10-ll), there follows the system of linear algebraic equations 

for unknown quantities x$(O) and z$-‘(gN-‘); i.e., the values of the propagation 
, -- 

fun&&n at-z = 0 and z = g N-1. This system is derived in the Appendix. 

we construct from z:(O) and zf-‘(gN-‘) the set of vectors fiN, i = 

132 , . . . , 2Jc, where Jc is the truncation number; i.e., the maximum number of 
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the spatial cavity modes taken into account. The vector fN describes the field on 

the both sides of the Nth iris: 

fiN E z?(O) , r=l 9 *** 9 JC > (2.12) 

-.. *- f” E a+J “p(gN-l) , i=l, . . . ,Jc. (2.13) 

.I -The vectors f,fl of the rank 2Jc satisfy the system of the recurrence equations 

ANfN = BNfN-1 + pNfN+l + GN , N=2,3 ,... ,N,. (2.14) 

The recurrence equations of this type is characteristic for any coupled linear chain - 

of elements. In our case the cavities comprise such a coupled chain: the field in 

each cavity depends on the field in its neighbors on the left- and the right-hand 

side of it. Matrices AN, BN, FN of the rank 2Jc x 2Jc and vectors GN of the 

rank 2Jc, as well as the method of finding the solution of Eqs. (2.14),. are given 

_ i-n the Appendix. 

3. INFINITE PERIODIC STRUCTURE 

A particular case of the considered structure is a periodic structure with the 

- period d = g + I, consisting of the infinite number of identical cells. Finding 

the field in such a structure is tantamount to solving the eigenvalue problem, 
. ., 

Qe equations to be solved in this case are homogeneous equations (2.14), 

where GN E 0. All the matrices R, & (see Appendix), A, B, and F are the 

same, and the superscript N may be omitted. According to the Floque theorem, 

9 



I : 

- 

- S-C 

the fields in the cavities with numbers N + 1 and N are the same-apart of the 

constant complex fact or 

fNf’(4 = exp{fi$} fN(z) . (3.1) 

Hence, the solution has the form fN(r) = e’$V(z), where V(E) is a periodic vector 

V(z + d) = V(z). Eq. (2.14) th en b ecome the following matrix equation: 

. . 

[A(k) - B(k) exp{-i+) -F(k) exp{i$}] V = 0 . (3.2) 

-- The system of homogeneous Eqs. (3.2) may have a nontrivial solution only if its 
..- 

determinant is equal zero --_ - 
. _ 

1 A(k) -B(k) exp{+} -F(k) exp{i$} 1 = 0 . (3.3) 

The set of solutions of this equation k, $J that correspond to real values of $ define 

the passband of the array. The curve k($) inside the passband is the dispersion 
.-- 
curve, and 1c, has the meaning of the phase shift per period. The range of the $J 

variation is -T < 1c, < T. 

Consider, for example, a single spatial mode in the cavity. In this case, 

Eq. (3.3) is reduced to (see the Appendix), 

4 - (A/ tan P) R + exp{ i$} (A/ sin P) 
_ -- ---..- -R - exp{-WWW Q + P/td) 

.*. -: 
= 0, (3.4) 

where ~A = X1, ,8 = 9x1, Q = Q11 and R = R11. All these quantities are functions 

of k: 
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Solving in respect to 1c, gives the following dispersion equation: 

cospc’ = (Q/R) cos p + [ (Q2 - R2 - X2)/2R] (sin/?/A) . (3.5) 

For a very thick iris I + 00 , R + 0 and this equation defines the frequencies k1 

of the eigenmodes of an isolated pillbox cavity with attached tubes: 

tanP(k1) = -2XQ/(Q2 - X2) . (3.6) 
. 

For a finite but small R 

sin /3 = - [ 2@/ (Q2 - A”)] [cos P - (R/Q) ~0s $1 
_~ 

or ‘._ 
-- _ - 

. _ k2(t+b) = kf - (2XR/gQ) cos+ , 

(3.7) 

(3.8) 

where ICI is the solution of Eq. (3.6). 

The dispersion curve k($) is similar to the dispersion curve for the chain of 

coupled oscillators, with the coupling strength proportional to R. This quantity 

defines the width of the passband. .-- 
The dispersion curves for an infinite periodic array built out of the first, the 

-middle, and the last cells of the detuned 204-cell accelerating section has been cal- 

culated using the determinant of the truncated system, Eq. (3.3). The dimensions 

of all the cavities and irises used in the calculations are listed in Table 1. The 

- first Jc spatial cavity modes’and the first Jw spatial iris modes were taken into 

account, The results of the calculations are shown in Figs. 2-4 as symbols, along 

_ “- withi%e curves that were obtained with the help of the code KN7C [5]. For the . 
considered dimensions, the frequency width of the first passband is of the order of 

1 GHz for the first, and-of 400 MHz for the last cavity. 
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The agreement between these two sets of results is quite good for large enough 

Jc and Jw. Figure 3 represents the dispersion curve that corresponds to the first 

cavity calculated with Jw = 50 and for a number of different truncation numbers, 

Jc. It demonstrates the convergence of the dispersion curve to a limiting shape 

- with the increase of Jc. In Fig. 4, the independence of the dispersion curve for 

th‘e-first cavity on the Jw for Jw > 16 is demonstrated, assuming Jc = 16. 

. . 
Figure 5 is a blowup of the portion of Fig. 3 indicated on it by a dashed 

rectangle. The dashed straight line corresponds to the phase velocity of the wave 

equal to that of light ?Jph = c. The phase advance per cell and the frequency of 

the synchronous wave are defined by the intersection of the curve with the dashed 

line. -For the truncation number, Jc = 20 1c, N 2n/3 and f N 11.431 GHz. This ..- 
frequency. is shifted by = 7 MHz from the designed frequency 11.424 GHz. The - 
difference is mostly due to the rounded shape of the iris edge of the. designed struc- 

ture, in comparison to the rectangular shape assumed in the present calculations. 

Figure 6 gives the dispersion curves of the first two passbands for the 30-cell ex- 

perimental constant impedance section. The cell dimensions of this section can be 

found in Table 1. 
.-- 

After the phase shif II, is found, Eq. (3.2) defines the vector V in each cell, 

-and thus the EM field pattern in the periodic structure. 

- 4. APERIODIC STRUCTURE 

We turn now to the problem of finding the travelling EM field in an aperiodic 

structure. In this and two subsequent sections we will concentrate on the problem 
r” 

of t&propagation of a wave with the wave number k arriving from z = -oo. 

For this purpose, the terms arising from the beam current, i.e., all the terms 

proportional to NB, should be dropped. The excitation of the structure by a beam 
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current is considered in Section 7. We assume also that the frequency of the 

incident wave lies in the first passband of the section. 

The EM fields in a finite length structure depend significantly on the physical 

conditions on its ends. One can formulate them from the following simple physi- 

cal considerations. The complex amplitude of the incident fundamental forward- 

trav$ling wave entering the structure from the left is arbitrary. Its evanescent 

modes decay at 2 = -oo. Hence, for the first passband, the coefficients 3: must 

. . be chosen in the following way: 

??f,=O, n=2,3 ,... . 

-~ Similarly, at the right end of the structure: 
. ..- 

EN' 0 n = 3 n = 1,2, . . . . 

(44 

(4.2) 

Conditions in Eqs. (4.1),(4.2) for the amplitudes 3’ and EN’ mean that the 

values of the propagation functions and their derivatives zl, $ at the left end of 

the section are related to each other in the following way: 

.-- 3F;(91) = -iXisi(gl) , n = 2, 3,. . . , Jc . (4.3) 

-Similarly, at the right end of the section, z N~,vNc are related to each other in the 

following way: 

YW) = #+(O), n = 1,2 ,.,. ,Jc. (4.4) 

The amplitude s:(O) remains arbitrary. All the other amplitudes are proportional 
_ I- 

to it&Hence, it can be considered as the source of the field excitation and moved 

into the right-hand side of the equations. All these conditions are reflected in the 

structure of the matrix elements A ‘N , BN, FN and GN, listed in the Appendix. 
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- 
- -s-.- 

The vector fNc+’ can be chosen arbitrary because it does not enter Eq. (A.36), 

since FNe = 0 [see, Eq. (A.40) of the Appendix]. Hence, one can assume 

f&+1 = 0. It then follows that matrices AN’ = BNc = 0. Using the recurrence 

Eqs. (A.49-50) and beginning with these values, one finds sequentially all matrices 

dN,BN,forN = N,-1, . . . , 1. Similarly, the vector f1 does not enter Eq. (A.36), 

sin-cc B2 = 0 [see, Eq. (A.44) of the Appendix]; hence, one can assume f1 = 0. 

Now using Eqs. (A.48) and the found matrices AN, BN, one finds sequentially all 

. . .fNforN=2 ,..., NC. 

After the vectors fN (and consequently, the vectors z:(O) and $(gN)) are 

. found, vectors y:(O) and g$(gN) can be calculated with the help of Eqs. (A.13) 

and (A.16), and vectors t!(O) and ff(ZN) can be calculated with the help of 

Eqs:(-A.14) and (A.15), respectively. Then Eqs. (A.8) and (A.4), and respectively 

Eqs..xAP;:9) -and (A.7), can be used to find amplitudes 3: andEf of the forward . _ +N 4-N 
and backward waves in the cavities, and D ,, and D n of the forward and backward 

waves in the irises. This defines the fields at any point in the structure. 

There are several ways to verify that the obtained solution is the correct one. 

One of them  is the trivial back substitution of the found vectors fN into Eq. (2.14). 

Numerical solution satisfies this condition to an accuracy better than 10-14. Next, 

since there is no energy dissipation inside the system, the energy flow through any 

of its cross sections should be independent of the 2 coordinate and the same in all 

cells.The integral of the z component of the Pointing vector over the cavity cross 

section S  can be expressed in, terms  of the amplitudes of the forward, i?:, and 
+N 

backward, C ,, , waves. For a monochromatic wave, 

X [ exp{-iwt} .( 3: exp{iX$t} + C -f exp{-e’X:*} ) + C.C. ] , 
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the energy flow is 

P(w) E (c/4w) /-IS [E:(k) Hf*(k) + c.c.] 

= (42) [ ~1” J&Q> Xr( 1 3: I2 - 1 E: I2 ) V-6) 

. . 
where C.C. and an asterisk denote a complex conjugate value. The obtained solution 

produces a constant energy flow P throughout the section. 

Further, the correct solution should reproduce the boundary and continuity 

conditions, Eqs. (2.10-11). Figures 7 and 8 illustrate the degree to which these 

conditions are satisfied.. In Fig. 7, the real and imaginary parts of the radial ..- 

component of the electric field E, on the surface of one of the irises are plotted - 

as a function of the relative cavity radius r/b. The curves represent the field E, 

calculated on both the cavity side and the iris side of the metal wall, r = a. The 

position of iris edge r = a is shown by a vertical dashed line. 

Similarly, Fig. 8 represent the real and imaginary parts of the longitudinal 

component of the electric field Ez along the detuned section versus the cell number. 
.-- 
Both examples are obtained with Jc = 20 and Jw = 30. 

5. REFLECTION AND TRANSMISSION COEFFICIENTS 

In this Section we consider the most interesting case, when the-frequency of 

_ the incident wave lies in the first passband of the structure. In other words, there 

is only one spatial mode with the real propagation constant Xf. In this case, 

_ I. the -)&M field in the waveguide to the left of the section is defined solely by the . 

propagation function x:(z) and its derivative y!(z) of the first cavity. Indeed, the 

forward amplitudes 3: = 0 for n’> 1 [see Eq. (4.1)] and, hence, the evanescent 
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fields do not contribute to the energy flow of the incident wave. All the spatial 

modes of the reflected (backward) wave with indices n > 1 are evanescent, and 

they decay exponentially for z < 0. Hence, the propagating mode n = 1 has the 

following form: 

z:(z) = 3: exp{iX:z} + E: exp{-iX:z} . (5.1) 

. . The reflection coefficient R(w) is defined by the ratio of the complex amplitudes 

- $ and & 

R(h) = E:(u) z&Ld) . I (5.2) 

‘The absolute value of the square of the reflection coefficient R is the ratio of 
a._ 

the power reflected from the section to the power of the incident RF wave. 

Similarly, the energy flow of the transmitted EM field in the waveguide to the 

right of the section-i.e., for 2 > L I N,d-is defined solely by the propagation 

function z?(z) and its derivative y?(z). According to Eq. (4.2), function z?(z) 

describes the forward wave only: 

zy(z) = 31 exp {iXhC(Z - L)} . 

-All the spatial modes with n > 1 decay exponentially for 2 > L. Hence, the 

transmission coefficient 7(w) ,is defined by the ratio 

The absolute value of the square of the transmission coefficient 2’ is the ratio of 

the power transmitted through the section to the power of the incident RF wave. 

16 



Since the structure is lossless, the two coefficients for any frequency satisfy 

the relation: 

Ia( + 17(u)12 = 1. (5.5) 
The variation in behavior of the reflection and transmission coefficients with 

- freqtency strongly depends on the matching between the impedance of a struc- 

ture and the impedances of the adjacent wave guides. The mat thing is usually 

.I -achieved by adjusting the parameters of couplers at the end of a section. In the 

- present study, the second and the penultimate cavities of the section are used as 

the couplers, They were adjusted by varying their three parameters a, b and g, 

-thus maintaining the axial symmetry of the problem. To minimize the reflection 

coekient in -the vicinity of the designed frequency, we closely follow the SLAC 

procedure [16] for the couplers adjustment. First, we temporarily introduced field 

damping in the section. The damping rate was gradually increased, starting from 

zero at the left (entrance) end and moving to the right (exiting) end of the sec- 

tion. Under these conditions, the dimensions of the left coupler were found by 

minimizing the reflection coefficient. Then the damping was turned off, and the 

parameters of the right coupler were optimized in the same way. .-- 
The reflection R and transmission 7 coefficients as a function of the frequency 

of the incident wave are calculated here for two accelerating sections with dimen- 

sions [17] that can be found in the accompanying paper [18]. 

In Fig. 9, the absolute values and the phases of R and 7 are plotted for the 

_ 30-cell constant impedance structure for two cases. 

A. The case without coupIers, curve a. _ -. --.- -.L 
‘!&e resonant character of the coefficients are clearly exhibited. The resonances 

are spaced at approximately AfIN,, where Af is the frequency width of the 

structure passband (m 300 MHz for the considered cell geometry, see Fig. 6). 
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- w-.- 

i. The case with adjusted couplers, curve b. 

The frequency band becomes much wider, while the system becomes less 

dispersive. 

Figure 10 gives similar results for the detuned 204 cell structure. Figure 11 

represents curves of the reflection coefficient 7Z of this structure, with no adjusted -.. e4 
couplers, for several different truncation numbers Jw. The curves tend to follow 

. . -each other-the larger the truncation number, the smaller the differences. For 

- Jw > 30, the difference in frequencies corresponding to the zeros of R is smaller 

then 1 MHz, corresponding to. the relative accuracy of the frequency determ ination 

.- 10e4. The full width of-the resonance at the half maximum is R 0.9 MHz. The 

resonances are spaced at approximately Af /NC, where Af is the frequency width 
-- - 

of the-structure passband (in this case, an intermediate value between the widths 

of the passbands corresponding to the first and to the last cavities, see Fig. 2). 

Figures 9 and 10 illustrate the action of couplers. Although the parameters of 

the couplers have been chosen at a particular frequency, they suppress the reflection 

of the E M  wave in a rather broad band of frequencies. 

6. ENERGY GAIN AND WAVE IMPEDANCE 

In this Section we consider the acceleration of a test particle by a monochro- 

matic travelling wave, with the frequency w entering the structure from  its left. In 

all the formulae, the terms  arising due to the beam current must be omitted, i.e., 

NB should be put to zero. 
_ “- 

@he propagation functions Z:(Z) and (Z(Z) define the longitudinal Fourier 

harmonic Ez(r, z, k), with the wave number k (or the circular frequency w G kc) 

at any point along the section [see Eqs. (2.1) and (2.4)]. After SF(Z), r:(z) are 

18 



found, it is easy to calculate the total energy gain AE(s) by a test particle with 

the initial position s: 

J L 
A&(s) = dZ e E,(O, 2, t) (6-l) 

0 t = (2 - s)/c * 

“*The field E,(O, 2, t) can be found from its Fourier harmonics for all the fre- 

.quencies 0. For a monochromatic wave Eq. (4.5) the field in the mth cell is .I 

Ey(O,Z,SZ/c) = 2n exp{i(R/c) (s - Zm)} & (~~/d”)~ 
(6.2) 

x Z:(z) qn [ -w) +X?*(z) qn t u) ] . 

Thusone finds 
. _ 

A&(s) = eexp{iks} c:CI F(k) t CL , w 

where the voltage per cell is 

.-- 

Vm(k) = c i”, exp{ -ikP} 
J 

ofm dz (vn/dm)’ z:(z) exp{-ikz) . (6.4) 

-In Eqs. (6.2) and (6.4), 2 m is the z-coordinate of the left end of the cavity or the 

iris of the mth cell, calculated from the beginning of the section. The radius dm 

- and the length f” are understood to be those either of the mth cavity (bm and g”) 

or of the mth iris (am and Zm), respectively. Similarly, the propagation function r” 
zr&-is &F(z) in the mth cavity or t:(z) in the mth iris. 

Due to the linearity of the Maxwell equations, the field everywhere in the 

section is proportional to the complex amplitude of the incident wave. We choose 
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to normalize the wave in the following way. In the straight beam pipe at the 

entrance to the section the incident wave has the form  

E:h 2, WC> = exp{i(O/c)s} (v~/b’)~ Jo(vlr/b’) [zh 6(Sl -w) + a& 6(Sl t w)] , 

(6.5) 
where -.. *- 

Xill E  xi(O) = &tE: = &ltR). (6.6) 
. . _. 

The absolute value 13: I is defined by the RF power of the incident monochromatic 

wave, see Eq. (4.6), 

P(U) t u: J,“(Q) (wX:/~) jxin/(l +a> I2 l (6.7) 

..- 

The ratio V m /xi, is independent of the amplitude of the incoming RF wave. 

Since the amplitude zh is proportional to the square root of the incident power 

P, the energy gain is also proportional to fl. 

The phase of zin can be chosen with respect to s in such a way as to place a 

particle on the crest of the accelerating RF wave in the beginning of the section. 

- This corresponds- to maximum energy gain for each given frequency: 

A&- = e lxinl 1 V(k>/xt’in I 3 
where the total accelerating voltage V(k) for whole section is 

V W  E A&,,/e = c vmw - 

_ I- --.- -.L 
It is ukful to define the ratio: 

z,(k) = (A~m.Je>2/P(~> , 
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which does not depend on the power of the incident wave. Substituting here A&,,, 

from Eq. (6.9), one gets: 

s&4 = { ‘0 /[ ~~JCXIGJ~(YI)] } 11 t R I2 1 Czzl (Vm/xi,) I2 . (6.11) 

He!2 the free space impedance 20 = 47r/c = 377 n is introduced. We call the 

quantity 2, the wave impedance. It has the correct dimensions of R. For each 

. . given frequency, it is solely the characteristic of the structure. In terms of the wave 

-- impedance Z,,,, the maximum energy gain by a test particle is 

A&,, (MeV) = JP (MW) 2, (MO) . (6.12) 

@gum 11 represents the dependence of the wave impedance on the frequency 

of the incident wave for the 30-cell section, with and without couplers. 

The action of couplers discussed in Section 5 are seen here once again. The 

maxima in the frequency dependence of the wave impedance for the unmatched 

section corresponds to the zeros of the reflection coefficient; cf., curve a on Fig. 9. 

In Fig. 12, the peaks in curve a (without the couplers) are narrower and higher than .-- 
those in curve b for the section with the matched couplers . The unmatched section 

-can give’a higher acceleration rate at the frequency where the reflection coefficient 

is small. However, dispersive effects in this case are large, and transmission of 

a short RF pulse through such a section can be accompanied by big distortions. 

- The adjustment of the couplers makes transmission of the EM wave effective in a 

rather broad band of frequencies of the order of 200 MHz, allowing a rise time of 
_.. 

the -I&$? pulse of the order of 5 nsec. 

A similar situation can be seen in Fig. 13, which depicts the wave impedance 

for the unmatched (curve a) and the matched (curve b) 204-cell detuned structure. 
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Figures 14 and 15 represent the real and imaginary parts of the normalized 

energy gain Vm/xh for the detuned structure for the mth cell versus number m. 

Three different frequencies of the incident wave were considered: 

f = 11.427 MHz, below the pick of the wave impedance, which corresponds 

to the phase velocities below that of light ?$h < c for the equivalent 

-” -- infinitely periodic structures (curve a); 

f- = 11.431 MHz, Vph R c (curve b); and 
. . 

f = 11.435 MHZ, Vph > C (CUrVe C). 

For each frequency, the absolute value of the total accelerating voltage IV/, from 

Eq. (6.9), is given in the figure caption. 

7. .COUPLING IMPEDANCE, WAKE FUNCTION 

-AND LOSS FACTOR 
. _ 

Now we turn to the problem of the excitation of the EM field in an aperiodic 

section by a particle beam current. In this case, the second term of each vector 

GN, Eq. (A.46), should be omitted, zin = 0. The EM fields are defined by the first 

term in Eqs. (A.41) and (A.46) which is proportional to F(k). Since the Fourier 

harmonics-of the beam current now contain a whole spectrum of frequencies, the 

solution for the EM field is the sum over all the relevant frequencies. 

The total energy loss A& experienced by a test particle moving on the trajec- 

-tory Z = ct + s due to the wakefield excited in the whole section by the beam is 

L 
A&(s) = dZ J J do [du/2n] e E,(O,Z,w) exp {-ik(Z - s)} . (7.1) 

0 --oo 

Corn&&r a-train of nb bunches, Z = 1,2, . . . , nb. Let Z = 1 correspond to the bunch 

in the head of the train. It is convenient to write the factor F(k) in Eq. (2.14), 

explicitly omitting it from the definitions for Gy in Eq. (A.41) and (A.46). 
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The total energy loss of the test particle in the Zth bunch of the train can be 

represented as the sum over individual cells 

M(P) = (2NBe2/r) cj<l 

X 
[I 

00 
dk exp{ik(s + q 

-W 
- sj>) Cr=, Vm(k) +c.c. ] . 

(7.2) 

Herie”the dimensionless values Vm( k), are defined by the same Eq. (6.4). But 

the propagation functions must certainly be calculated with the driving terms Gy 

-” arising from the beam current Eq. (2.2). 

The wakefield is defined [19,20] by 

w(s) = -A&(s) / (& e2) . 

For the Zth bunch in a train, it can be represented as the convolution 
- - 

. _ w 
Wl(S) = 0 (2/z > J dk exp{ilcs) Z,(k) @l(k) 

-W 

of the longitudinal coupling impedance 

.-- 

. and the form-factor 

@l(k) = c- j<, alj exp{W~ - sj)} , 

U-3) 

(7.4) 

(7.5) 

(7.6) 

where the coefficients cZ,j = l/2 for Z = j, and cZ,j = 1 otherwise. 

The real and imaginary parts of the coupling impedance calculated for the 30- 

cell constant impedance section are depicted in Figs. 16 and 17, for the first and 
_ I. 

the &&ond passbands, respectively. Similarly, the real and imaginary parts of the 

coupling impedance for the first passband of the 204-cell detuned section is drawn 

in Fig. 18. 
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The real part of the coupling impedance has a band structure with width Af, 

corresponding to the filling time of a section Af N l/rf, where the filling time 

is defined by the group velocity wg: rf N L/v,. This can be expected for a trav- 

eling wave structure where zn(z) is, basically, a plane wave with the propagating 

constant q = $/d, 1c( being the phase advance per cell and d = L/NC the period 

_ of the structure. The group velocity is then u9 = cZu/dq. The real part of the ; -- 
impedance has the maximum at the frequency of the synchronous wave q = k and 

. . -the width Af = vgAq/2n, where Aq C! 2n/L. The total energy loss is propor- 

tional to J Z(k)dk, and changes little with small variations of the cell dimensions. 

Therefore, the maximum value of the impedance is inversely proportional to A f, 
and increases with decreasing vg . _~ 

.The developed formalism gives the energy loss for any particle distribution 

insidefhe bunch and for any bunch distribution in the train. For the equidistant 

train in which bunches are equally spaced at distance sb, the form factor Eq. (7.6) 

can be found explicitly: 

WJC) = UP) + exP{kbl) [sin Qb(l - I)/ sin Qb] , (7.7) 

where qb r-ksb/2. If I >> 1, the form factor is close to 6 function 

WV = (‘+b) 6 [k - (27rll sb)] (74 

For a short bunch with rms length ab < sb, the maximum energy loss due to the 

interaction with the wakefield is 

AL = (4NBe2/sb) ~~zl Rev* (27rl/Sb) . (7.9) e” 
-G- -; 
All the integers I such that the corresponding wave number k = 27rl/Sb hap- 

pens to be inside the passband give additive contribution to A&,,,. If sb is not 
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to o  large,  on ly  o n e  va lue  o f th e  in teger  1  c o n tr ibutes to  A & ,,. It is c o n v e n i e n t 

to  exp ress  th e  m a x i m u m  e n e r g y  loss in  th e  sect ion  in  te rms  o f th e  b e a m  l oad ing  

p a r a m e ter  

B L ( M e V )  =  5 .6  x 1 0 B 3  E N ’ Rev” . 
m = l  

(7 .10)  

In t~ r m s  o f th ’ I 4  IS  p a r a m e ter, th e  m a x i m u m  e n e r g y  loss expe r i enced  by  a  par t ic le  o n  

a  p la teau  o f th e  b e a m  l oad ing  curve  in  a  l o n g  t ra in o f b u n c h e s , wi th b u n c h  spac ing  

. . S b , iS  

A & ,, W V ) =  (N~ / lo’~ )  [&  ( M e V )  / sb (cm>]  . (7 .11)  

In  Fig.  1 9  th e  b e a m  l oad ing  p a r a m e ter  B L  is p lo t ted as  a  fu n c tio n  o f f requency  

fo r  th e  204~ce l l  sec t ion  wi th ad jus ted  coup lers .  Cu rve  a  is ca lcu la ted  fo r  th e  de -  

tu n e d ’sect ion,  a n d  curve  b  fo r  a  constant  i m p e d a n c e  sect ion  wi th th e  d imens ions  . _  
o f th e  first cel l  o f th e  d e tu n e d  sect ion.  T h e  m a x i m u m  va lue  o f B L  is p ropor t iona l  

to  th e  m a x i m u m  va lue  o f th e  coup l i ng  i m p e d a n c e . It is sma l le r  fo r  th e  first cel l  

( for wh i ch  vg  is la rge)  th e n  fo r  a n  a v e r a g e  cel l ;  s e e  Fig.  2 . 

F igu re  2 0  represen ts  th e  b e a m  l oad ing  p a r a m e ter  B L  in  fu n c tio n  o f f requency  

- fo r  th e  30-ce l l  constant  i m p e d a n c e  sect ion  wi th ad jus ted  coup lers .  In  Fig.  20 (a )  

B L  is p lo t ted fo r  th e  first, in  Fig.  20 (b )  fo r  th e  s e c o n d  p a s s b a n d , respect ive ly .  

A n o the r  character is t ic  o f a  structure, n a m e l y  th e  loss factor  )c, is a l so  easy  to  

ca lcu la te  us ing  E q . (7.4)  

n  =  J O ” wfw G & J >  * (7 .12)  
- -oo  

_ ” In te & % ing- the  curves  in  Figs.  16 (a )  a n d  19 (a )  ove r  th e  f requency  w e  o b ta i n e d  

K  =  6 0 .7 7 3  V /P C  fo r  th e  30-ce l l  pe r iod ic  sect ion  (or  M  2 .0 3  V /P C  pe r  cel l )  a n d  

K  =  3 8 9 .5 9  V /P C  fo r  th e  204~ce l l  d e tu n e d  sect ion  (or  M  1 .9 ; V /p C  pe r  cel l) .  
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8. CONCLUSION 

The developed method and the numerical code PROGON based on it are 

demonstrated to give answers to a wide range of problems pertaining to the prop- 

agation and excitation of the EM fields in the disc-loaded aperiodic structures. 

- For the time being, they are limited to longitudinal axially-symmetric problems. 

However, the e.xtension of the formalism onto transverse fields is straightforward 

and can be used to find the transverse wakefields in detuned structures. 
. . 
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APPENDIX: BAsI~EQUATI~N~ 

Here we derive the basic system of algebraic equations for the field amplitides. 

The kth Fourier harmonics of the E M  field in the region inside of the Nth cavity 

with constant radius b* can be expanded in the spatial modes 

E!% 4 = (2eNB/cr) C. exp{ik(Z - sj)} 

- zr=, (~n,b*)knr,b*) Y % ) 7 

_~ Hf(r,z) = (2eNg/cr) Cj exp {ik(Z - sj)) 

where the-propagation functions z:(z), 0 < z < g* and 

t&4 = dz,N(*)/dz , o<z<g* 

describe the z dependence of the nth spatial mode in the Nth cavity. 

Similarly, for the Nth iris with the radius CZ* 

E: h 4 = (2eNB/cr) Cj exp {ik(Z - sj)} 

- x;=, (ha/~*) Jl(wI~*) Pi!2(4 3 

with the propagation functions t:(z), 0 c z < I*, and 

(A-2) 

(f-w 

(A.6) 

In the above expressions, we distinguish between the longitudinal coordinate 

of the bunch 2 calculated from  an arbitrary point (for example, from  the beginning 
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o f th e  structure)  a n d  th e  loca l  long i tud ina l  coord ina te  J  in  th e  cavi ty o r  th e  ir is 

ca lcu la ted  f rom th e  left s ide  o f e a c h  reg ion .  

E a c h  o f th e  p r o p a g a tio n  fu n c tio n s  is a  superpos i t i on  o f two w a v e s  t ravel l ing 

in  + z  ( fo rward wave )  o r  in  --z (backward  wave )  d i rect ions:  

tm  =  3 f e x p  { irPz }  t 5 ,” e x p  { -Q$z }  , 

( A 4  

(Jw  
N  4 - N  + * + * 

T h e  p h a s e s  o f th e  c o m p l e x  amp l i t udes  3 , , C  ,, , D , a n d  D , a re  d e fin e d  

by  choos ing  z =  0  a t th e  lef ts ide o f e a c h  cavi ty o r  iris. vn ,n  =  1 ,2 , . . . a re  th e  

_ ~  - roots o f th e  first o rde r  Besse l  fu n c tio n  Jo(vn)  =  0  a r r a n g e d  in  a s c e n d i n g  o rde r  
. 

V l < ‘iii <  . . . . Fur ther ,  th e  p r o p a g a tio n  constants  
A ._  - 

. _  p :=  Jw , (A. lO)  

A :=  JIcz-(yn Ib N ,z, ( A M )  

a re  d e fin e d  wi th a  cut  in  th e  c o m p l e x  p l a n e  k i n  such  a  w a y  as  to  e n s u r e  th e  

rad ia t ion  cond i t ion  a t fo e . For  e x a m p l e , 

p$( -k’) =  -p :*(k) . (A .12)  

T h e  c o n tinu i ty  

g a tio n  fu n c tio n s : 

yg-yg* -1)  =  

X  . ., 
-c- -; 

E q s . (2 .10-H)  g  ive  th e  fo l l ow ing  re la t ions b e tween  th e  p ropa -  

(4eNdc )  [ JO(~ ,P* -~ )  / V :J~ Z ( ~ .)] 
(A .13)  

C j  e x p  (it(z* - sj)} - C , Trnn(p* -‘)  $ ( O >  , 

( ,N(O ) =  - C m  &m(P* - l )  $ -‘(g*- l )  9  

t,N(Z*)  =  C m  S a m ( P * )  4 ( O )  7  

2 8  
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(A .15)  



. 

y!(O) = @e&/c) [ho/ MM] 
1 1 c 

(A.16) 
x Cj exp ik(Z* - sj) - n Tmn(P*) 7,N(zN) 9 

where p* E a”/b* and p*-’ G UN/b*-l, respectively. 

The elements of the matrices S and T are defined as follows: 

-.. *- Sam(p) = [2P24 JO(PV,)]/ [&I Jl(h> (4 -P2J&)] 9 (A.17) 

. . Tmn(P) = [2P2V,/h iJl(%) JO(Pm)]/ [ $(Y,) (Vi - p”Yk)] . (A.18) 

_ Note that all the matrices S and 2’ are real. 

The iris variables can be excluded altogether. Indeed, from Eqs. (A.7-9) it 

folows that 

. &o> = - il,N(O) / tan or t i(,N(Z*) / sinc# , (A.19) 
--_ - . _ 7$(ZN) = - it:(O) / sinof t @,N(Z*) / tanof , (A.20) 

where cy, * = I*,$. The quantities r!(O) and (!(I*) are given by Eqs. (A.14) and 

(A.15). Substitution of Eqs. (A.19) and (A.20) into Eqs. (A.13) and (A.16) gives 

Yn *-'(gNsl) = &h/c) { Jo(~,P*-')/ [vi J&)]} 
X Cj exp {ik [Z*-‘(g*-‘) - sj] } 

- CL Q$--"N-1 zf-l(gNd) 

(A.21) 

X Cj exp {ik [Z*(O) - sj] } 

t c, Qf-i" s;(o) - c, I$*-l sf-l(gN-l) , 

(A.22) 
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where 

Q N&f 
nk 

= -i 
C( m Tn! s,M, I tan 4X) , 

RNpM -i 
nk = C( * TnNmsfk/ sin&) . 

(A.23) 

(A.24) 

For most of the terms in the sums in Eqs. (A.23-24) with large indices m, cyi are 
-.. Cd 

purely imaginary. The contribution of such terms decreases rather rapidly. 

The system Eqs. (A.21-22) can be written in the matrix form for the 
. . 

vector y*(O) f {yf,y$, . ..>. and similarly defined vectors y*-‘(g*-‘), z*(O) 

and .*-l(g*-l), 

y*-‘(g*-l) -= p*-l(p*-‘) + $‘-I,* zN(o) . 
--_ -Q *-1,*-l zN-l(gN-l) , 

- 
. _ 

Y*(o) = PN(pN) + Q*,* #(o) _ RN,*-1 zN-l(gN-l) , 

where 

p,N-l(pN-l) = F(k) { Jo(vnp*)/ [vi Jhd]} 

x exp ik xzii (g* + I*) - ikZ*-’ 
{ 

, 

P,N(PN) = W) { Jo(vn~*)/ [d JhJ]} 

N-l 
ik xrnzl (g* t Z*) . 

In the last two equations the following function has been introduced 

W) E (4eNg/c) Cj exp{-iksj} , 

whic&describes the excitation of the system by a train of bunches. 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

The vectors z*(g*), y*(g*) can be expressed in terms of vectors z*(O), y*(O). 

Then Eqs. (A.25-26) g’ ive a set of linear algebraic equations for z*(O), y* (0) 
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which in turn-give the vectors z*(O), y*(O) for N = 2,3, . . . NC in terms  of the 

vectors x1(O), ~~(0) at the first iris. However, such a direct approach is numeri- 

tally unstable, and does not provide the solution for any structure consisting of 

more then a few cells. The reason for this is that the relation of the quantities 

- z*(O), y*(O) at the beginning of the Nth cell, and x*+‘(O),~*+~(O) at the be- 

ginnkg of the next cell, contain evanescent modes. Some of them  m ight be expo- 

nentially large or small. As a result, numerical errors in such an approach grow 
. . 

exponentially along the structure. 

To find a numerically stable solution of the problem  for an aperiodic structure 

we exclude the vectors y*(g*) and y*(O): 
. ..- 
Y*(o) = - AN x*(O)/tmP*  t AN x*(g*)/ sinP* , (A.30) -- - - 

. . 
y*-l cg*-l > = AN-~ zN-l(gN-l)/ tan pN-3 

- X*-l x*-‘(O)/ sinP*-’ , (A.31) 

where P*  = g*X*. These expressions are valid for all irises, with the exception 

of the first -and last ones. The conditions on the end irises are different, and are 

given by.Eqs. (4.3-4) in Section 4. 

Note that Eqs. (A.30-31) d o not contain large exponents. This situation is 

‘similar to that in the standard S-matrix formalism. For the evanescent modes, 

the last terms  are exponentiaiiy small and the first terms  relate the value of the 

propagation function y of the radial component E, of the field to the value of the 

_ ‘propaGeion function x of the longitudinal component Ez on the same iris. This . 

seems to be reasonable from  the physics of the problem --elim ination of the large 

exponents is crucial for the stability of the numerical calculations. 
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F r o m  E q s . (A .25-26)  th e n  fo l lows  th e  sys tem o f l inear  a lgebra ic  e q u a tio n s  fo r  

th e  va lues  o f th e  p r o p a g a tio n  fu n c tio n s  x:(O ) a n d  xf-‘(g*-l): 

‘,N-’ (p*-‘) =  -  &  R fc19N x;(O ) -  [A :-‘/ s in@ :-‘] zff-‘(0)  

+  c,= , { Q !i-l'*-' +  & k  [A :-‘/ ta n  p ,“-‘1  } s$-’ (g*-‘) , ( A .32 )  

“e(~* )  = -  -c,= , [Q :i* +  (A !+&)  a ,k] xi% ) 

. . -$  c,= , R fi*-’ sf-‘(g*-‘) t (Ar/sin/3:)  $(g*)  . ( A .33 )  

T h e  sys tem o f E q s . (A -32 -33 )  wi l l  b e  so l ved  by  t runcat ion,  k e e p i n g  on ly  th e  first 

Jc s p a tia l  m o d e s  in  th e  cavi t ies. 

W e  in t roduce  th e  set  o f N C  - 1  vectors  fiN, i =  1 ,2 , . . . , 2Jc, o f th e  rank  

2Jc ‘wh ich  desc r ibe  th e  fie l d  o n  b o th  s ides  o f th e  N th  iris: 
-- _  - 

. . fy E  x:(O ) , i =  1 , . . . , Jc , ( A .34 )  

f” =  xyyg*-1)  , s+J  i=  1 , . . . , Jc. ( A .35 )  

E q u a tio n s  (A .32-33)  c a n  n o w  b e  wr i t ten in  th e  fo r m  o f recur rent  e q u a tio n s : 

A N  f* = .B N fN-l+ F N fN+ l+GN,  N = 2 ,3  ,... , N C , ( A .36 )  
.-- 

. w h e r e  a l l  th e  e l e m e n ts o f th e  m a tr ices A *, B *, F* o f th e  rank  2Jc x 2Jc a n d  

G * o f th e  rank  2Jc are:  

-For  th e  e l e m e n ts wi th ind ices  i =  1 , . . . , Jc, (n  I i): 

A ? $  =  -Qf i”-  [X :/ta n @ :] & k  t [@ /sin/@ ] 

_  I. --.- -.--- _  C . % i. . x 6NNc6 i j  e x p  i@ $  ; j= 1 ,2  ,..., J i >  , k= j ; ( A .37 )  

A C  =Rzi* -‘; j=Jc’+ 1 ,...,2Jc;  k=j-JC;  ( A .38 )  
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B{ =O; j=1,2,...,2Jc; (A.39) - 

F$ = - (X:/sin@:) Gj,n+JC(l-bNN,.) ; j = 1,2, . . . , 2Jc ; (A.40) 

Gy = F(k) { Jo(v,p*)/ [vtJf(v.,l} exp {ik(N - l)(g* t I”)} (A.41) 

Fop-the elements with indices i = Jc + 1, . . . , 2Jc, (n E i - Jc): 

.I A$ = -Rfcl’*; j=l,m,a,JC; k=j; (A.42) 

A{ =Q fLIYN-l +, (x:-l/ tan p,“-‘) 6ij 

..- 

--_ - j=Jc$1,...,2Jc; k=j-Jc; (A.43) 
. _ 

B$ = (Xf-‘/sin/?:-‘) (1 - 6~2) &j , j = 1, . . . , Jc ; (A.44) 

F; =0 (A.45) 

.-- G; =~ F(k) {Jo& P*-‘)/ [y: J:cd]} 

x exp ik(N - l)(g*-’ + IN-l 1 
) - ikZ*-‘) 

+ (Xi/ sin Pi) 6*2 &I zin(l - 6ivB) . (A.46) 

The Kronecker symbols with double indices have their usual meaning. The 

delta symbol with one index is defined as SlvB = 0 when NB = 0; 6~~ = 1 

otherwise. The value zb in Eq. (A.46) is defined by the power of the incoming RF 
--.- -.--- _ 

wavS -- 

Equations (A.36) f or vectors f* define the field in the structure. Apart from 

truncation to a finite Jc, they are exact. Note that the number of modes Jw 
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taken into account in the iris regions define only the accuracy of calculation of the 

sums (A.23-24). The ch oice of J” depends only on the rate of convergence of the 

sums, and in no way is it related to the choice of the maximum number of modes 

in the cavities Jc. 

Let us look at the system (A.36) more closely. If one neglects exponentially 

s&E terms Fy, the system Eq. (A.36) simplifies 

AN f* = B* f*-I+@, . . (A.47) 

Note that in this approximation the field on the Nth iris f,fl, i = 1,2, . . . , 2Jc 

is defined solely by its value ,on the preceding iris f,F-‘. In this approximation, 

the evanescent modes are. induced locally at each iris to compensate for the radial 

comfionent of the propagating mode on the conductive surface of the iris. 

-The groblem Eq. (A.47), as well as the starting problem, Eqs. (A.25-26), 

together constitute the Cauchi problem: the field in all of the system is defined 

by the field ft at the entrance. The exact Eqs. (A.36) include exponentially 

small corrections to the field on each iris arising from the evanescent fields of the 

neighboring irises. Using Eqs. (A.30-31), all the large exponents are eliminated 

from Eq. (-A.36). The price for this is the transition from the Cauchi problem to 

.a boundary-value problem for which the field is defined by the conditions on both 

the entrance and the exit of the system. This is the reason for the choice of the 

-vectors f *. 

Given the conditions at the ends of the section, the system Eqs. (A.36) can 

be solved by the method of Gaussian elimination and back substitution [21,22]. In 

. --the S.o$et mathematical literature this method has the name progonka. 
x -; 
Suppose that the solution for the vector f* has the form 

f N+l = A*f*+t3*, 
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- 
. - -s-.- 

with as yet unknown matrices AN and 23*. Substituting this relation into 

Eq. (A.36), solving it with respect to f*, and comparing the coefficients yields 

the following recurrence equations for the matrices AN and I?* : 

AN-’ = (A* - F*A*)-lB* , (A.49) 

-.. Cd B*-l = (A* - F*A*)-’ (F*D* + G*) . (A.50) 

.The last two relations allow determ ination of all AN and B* sequentially, provided 
_ 

the matrices A*’ and 23 *C are known from  the conditions on the right hand side 

of the system. After that, Eq. (A.48) gives the solution f*, sequentially, provided 

again that f 1 is known from  the conditions on the left-hand side of the system; 

see the. discussion in SecI 4. 
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Table 1. Cell geometry. 
All dimensions are in cm; 
iris thickness Z = 0.146 cm. 

Cell Number a b g 

30-cell constant-impedance section 

l-30 (any cell) 0.375 1.059 0.729 

2 (left coupler) 0.518 1.088 0.606 

. . 29 (right coupler) 0.528 1.088 0.606 

204-cell detuned section 

1 (first) 0.543 1.121 0.729 

102 (middle) 0.458 1.081 0.729 . ..- 
204 (last) 0.385 1.053 0.729 --_ - 

. _ 2 (left coupler) 0.691 1.115 0.902 

203 (right coupler) 0.534 1.061 0.900 
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FIG U R E  C A P T IO N S  

1 . G e o m e try a n d  th e  coord ina te  system. T h e  30-ce l l  constant  i n p e d a n c e  sect ion  

wi th coup le rs  is ta k e n  as  a n  i l lustrat ion. 

2 . D ispers ion  curves  fo r  a n  inf in i te a r ray  o f cel ls  bui l t  o f th e  first, th e  m idd le  a n d  

th e  last cel ls  o f th e  204~ce l l  d e tu n e d  acce le ra t ing  sect ion,  s e e  Tab le  1  fo r  th e  -.. *- 
ce l l  g e o m e try. T h e  resul ts  o f th e  ca lcu la t ions  us ing  th e  p r o g r a m  P R O G O N  

. . a re  s h o w n  by  symbo ls  fo r  th e  first (o),  fo r  th e  m idd le  (o), a n d  fo r  th e  last (0)  

cel l .  

3 . B e h a v i o r  o f th e  d ispers ion  cu rve  wi th respect  to  th e  cavi ty t runcat ion n u m b e r  

Jc. T h e  ca lcu la t ions  fo r  th e  first cel l  ( s e e  Tab le  1 )  o f th e  d e tu n e d  sect ion  
. 

- . -has b e e n  d o n e  wi th J ’ =  4  (o), 8  (m),  1 2  (o), 1 6  (o), 2 0  (o), a n d  2 4  (+).  T h e  

.-di’spers ion  curves  te n d  to  c o n v e r g e  to  th e  s a m e  curve  wi th inc reas ing  Jc. . _  
T h e  co r respond ing  ir is t runcat ion n u m b e r  Jw =  5 0 . 

4 . B e h a v i o r  o f th e  .& m e  curve  as  in  Fig.  3 , b u t fo r  d i f ferent ir is t runct ion n u m -  

be rs  Jw =  1 6 , 2 4 , 3 2 , a n d  5 0 . T h e  cavi ty t runcat ion n u m b e r  Jc =  1 6 . A ll 

th e  resul ts  fit o n to  th e  s a m e  curve.  

-- 5 . T h e  b l o w u p  o f th e  par t  o f Fig.  3  f rom wh ich  th e  r e s o n a n c e  f requency  cor-  

r e s p o n d i n g  to  th e  w a v e  p h a s e  veloci ty  e q u a l  to  th a t o f l ight  w a s  m e a s u r e d : 

f =  1 1 .4 2 1  G H z  fo r  Jc =  2 4 . S y m b o l  n o ta tio n s  g i ven  in  th e  c a p tio n  fo r  

Fig.  3 . 

6 . D ispers ion  curves  in  th e  first (curve  b )  a n d  th e  s e c o n d  (curve  a )  p a s s b a n d s  

o f th e  30-ce l l  constant  i n p e d a n c e  sect ion.  Jc =  2 0 ; Jw =  3 0 . 

_  -. 7 . A n  i l lustrat ion o f th e  c o n tinu i ty  o f th e  ca lcu la ted  rad ia l  e lectr ic  fie l d  fo r  th e  -*.- -.i- _  
w . 

30-ce i l  constant  i m p e d a n c e  sect ion  ( see  Tab le  1).  T h e  rea l  a n d  imag ina ry  

par ts  o f E ,(r) are.p lo t ted as  fu n c tio n s  o f th e  rat io r /b a t th e  sur face z =  I 

o f o n e  o f th e  ir ises. T h e  d a s h e d  l ine  ind ica tes  th e  re lat ive rad ius  o f th e  ir is 
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aperture, a/b. Two curves in the region r < a in each picture represent E,(r) 

at z = 1 f 0; Jc = 24; Jw = 30. 

8. An illustration of the continuity of the calculated longitudinal electric field 

E,(z) on the axis of the same section as in Fig. 7. The absolute value 

(curve a) and the phase (curve b) of E,( ) z on the section axis are plotted. 

Or-The absolute values of the reflection [RI and transmission IT1 coefficients for 

the same section as in Fig. 7. Curves a represent the results of calculations 

for the section without and curves b with couplers. The geometry of couplers 

is given in Table 1. 

10. The same as in Fig. 9, but for the 204-cell detuned accelerating section. 

-- : 11. Behavior of the reflection [RI and transmission 171 coefficients with respect 
..- 
to the iris truncation number Jw plotted with the blowup of one of the peaks 

--_ 
--from Fig. 10. The curves are calculated with Jc = 24; Jw = 30 (o), 40 (o), 

50 (n), and 75 (0). The position of the minimum of [RI tends to converge to 

f = 11.421 GHz (cf., Fig. 5). 

12. The wave impedance Z,(f) for the same section as in Fig. 7. Curve a 

represents the result of calculations for the section without and curve b with 
.-- couplers (see Table 1). 

13. The same as in Fig. 12, but for the 204~cell detuned accelerating section. 

14. The real part of the voltage V” in each cell of the 204~cell detuned section 

with couplers calculated for three typical frequencies (see text). The absolute 

values of the total voltage in arbitrary units are 1331.44 (curve a), 1818.21 

(curve b), and 1265.16 (curve c). 

15. The same as in Fig. 14, but for the imaginary part. _ -. 
16.‘$he x&l (a) and imaginary (b) parts of the coupling impedance &(f) in the 

first passband of the 30-cell constant impedance section with couplers. 

17. The same as in Fig. 16, but in the second passband. 
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18. The same as in Fig. 16, but for the 204-cell detuned accelerating section. 

19. The beam loading parameter BL(~) for the 204~cell section in two cases: 

(1) detuned (curve a) and (2) constant impedance built of repeated first cell 

(curve b). In the second case, V# is larger, and the corresponding peak in 

AL is lower and wider. 

2s: The beam loading parameter AL for the 30-cell constant impedance sec- 

‘tion. Curve a is calculated for the first and curve b for the second passbands. 
. 
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