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ABSTRACT

The propagation of the electromagnetic wave in an aperiodic disk-loaded
;cqelerating section have been studied using field-matching technique.
1; rﬁafﬁx formalism similar to one of the scattering theory is applied.
The method developed allows study of an arbitrarily large number of
irises and radial space harmonics. Reflection and transmission coeffi-
cients of the structure, its wave and coupling impedances, beam loading,
and other characteristics have been calculated as a function of the wave
fréiluéncy. ‘The modifications of the reflection coefficient by couplers has
- also been studied. Two examples are given: one is a constant impedance
structure consisting of 30 cells; the other is a detuned accelerating struc-
ture designed at SLAC for the Next Linear Collider consisting of over two

hundred cells.
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I. INTRODUCTION

The next generation of linear colliders will most probably utilize disk-loaded
structures ohly slightly more complicated than the acéelerating sections of the
SLAC Linear Collider (SLC). The main difference being the higher frequency of
‘the accelerating field (11.424 GHz), to facilitate a higher accelerating gradient,
and a Gaussian distribution of the dipole mode frequencies of individual cells [1-4]
.(detuﬁed structure) with the aim of suppressing the multibunch beam breakup. For

_ example, the prototype accelerating section designed at SLAC for the Next Linear

- Collider (NLC) is, basically, a cylindrical beam pipe loaded by over 200 irises,

' -producing thus a chain of oouialed RF cavities. Each cell consists of a cavity with
a gap length.¢g and an adjacent iris of the thickness I. In each cell the pair of radii
of a cavity b and an iris a (see Table 1) are chosen to produce the same frequency
of tﬂé furidameﬁtal accelerating field. The frequencies of the dipole modes vary
from cell to cell, minimizing the strengths of the long range transverse wakefield.

Until now, the design of an aperiodic accelerator section was based on the
assumption that the parameters of the section at a given point of the structure
gfe close to the corresponding parameters of the cell located there and that they
véu}:y only slowlyr along the structure. In such an approach one essentially assumes
the local field in the aperiodic structure to be that of a corresponding periodic
structure, with the local dimensions of the aperiodic structure. There are several
known reliable methods and computer codes [5-7] for calculations of the infinitely
‘periodic structures. However, there always arises the question of how good is this
approximation for the travelling wave structures. The important features arising
mfrorriiﬁé sfructure ends should also be carefully taken into account. This is why it
is desirable to develop a straightfo;ward method to calculate the electromagnetic

(EM) fields excited in the travelling wave structures.



It is worth mentioning the previous studies [8-10] of the transverse wakefields
excited in a detuned structure. They are based on an equivalent circuit model.
However, any such an approach can never include all the characteristics of the real
structure. Here again, reliable methods are needed that do not depend on model
considerations.

_.The aim of the work described here is development of a technique suitable for
the study of pfoblems arising in the design of aperiodic RF structures.

Simulations of the EM wave propagation in an aperiodic structure is a chal-
lenging problem. The derivation of the exact system of linear algebraic equations
for the modal analysis can easily be achieved using the standard field-matching
_ technique. However, the solution of such a system is not trivial, even for a single

" iris in the pipe [11,12].

"A general method for studying the propagation and the excitation of the EM
fields in ;n aperiodic structure with piecewise constant radii is described in this
paper. The corriputer code PROGON, based on the developed method, has been
written for the numerical calculations. All the results reported here were obtained
using this code. The method is based on the field-matching technique (see Sec. 2).
,_,The corresponciing truncated system of algebraic equations is solved numerically.
The formalism employes matrices of relatively small sizes that depend only on the
‘number of cavity modes taken into account. Thus fhe number of cells is relevant

_only for the computational time. In one example given here, the method is applied
to a detuned SLAC a.cceleratipg structure consisting of over 200 cells.

The matrix formalism developed here is similar to that of the scattering theory

[13]. It is described in detail in the Appendix to this note. The irises variables are

exclugded without increasing the matrix size. The convergence of the method does

not depend on any special relation [14] between the number of spatial harmonics

in the cavities and the irises included in the calculations. It is shown that the



larger those numbers are, the better the approximation to the solution that can
be obtained. In addition, such an exclusion of the irises variables may have a
future advantage, allowing development of a formalism that can handle more or
léss a.rbitiary shapes of irises. This could be done by supplying the program with
“a subroutine relating one side of an iris to the other.

A particular case of the infinite periodic structure is considered in Sec. 3.

-

>

VThe eigenvalu‘é problem is solved in this case to find the dispersion curves and the
-passbands of the section. The results are in agreement with the existing codes.
Notice that for a detuned structure, the concepts of a dispersion curve, phase and
- group velocity, etc., have limited meaning since all of these parameters change along
B the section. Nevertheless, when the cell dimensions vary along the section slowly
; enougjh,' these concepts preserve their local meaning. The formalism developed
hereis not limited to slow variation of the cell dimensions.

We next study a scattering problem for a monochromatic RF wave in the
aperiodic structure (see Sec. 4). The boundary conditions at the ends of the
accelerating section follow naturally from the general radiation conditions for the
reflected and transmitted travelling waves. The geometry of the end cells (couplers)
are chosen to suppress the reflection coefficient for the structure in a broad band
of frequencies (sée Sec. 5). The energy gain by a test particle is found as a function
of frequency in Sec. 6. '

Next, in Sec. 7, the excitation of the field by a train of point charges is consid-
~ered. The formalism is extended for this purpose onto the inhomogeneous Maxwell
equations. The longitudinal Wake function, the corresponding longitudinal cou-
pling impedance of the structure, and the beam loading by a train of bunches are
’ mcalcg@%ed. -

The solution found shows its internal consistency. For example, the num-

ber and spacing of peaks in the transmission coefficient as a function of the



frequency agrees with the estimate that is based on the calculated width of
the passband; the frequency at which the wave impedance reaches its maxi-
mum coincides to an accuracy better than 10~4, with the frequency that cor-
responds to the phase velocity of the wave equal to the velocity of light;
-and so on.

. -Lhe extension of the method onto the transverse wakefields should be straight-

forward, and is intended for future work.

" 2. FIELD MATCHING

To make our task as simple as possible, consideration here is restricted to
~ "the case of the axially symmetric accelerating field (m = 0). The geometry of
;the structure and the coordinate system chosen are shown in Fig. 1. In what
follows, we consider an ultrarelativistic case v — ¢, and the lossless structures
with infinite wall conductivity ¢ — oo. Throughout the note, we deal with the
Fourier harmonics of the EM fields, and of the current density corresponding to a
circular frequency w = 27 f.
- Consider a train of pointlike bunches with the charge eNp, each moving along
‘_t"he axis of 7the section at the speed of light c. Let the mth bunch be positioned at

timet =0 at z = 3m. The longitudinal component of the current density of such

a train is
i(ri¢,2,t) = eNpe[b(r)/r] 6(8) D &(z—ct—sm). (2.1)
" Its Fourier harmonic is
[e o]
'g~ “: et (2.2)

= eNp [6(r)/r] 6(8) }_ exp{ik(z —sm)} ,

where k = wle.



The following convention for numbering the cavities and irises is used. The
cells in the array are numbered by superscript N, N = 1,2, ... N, the iris preced-
ing the Nth cavity having the same number N. The structure starts with a cavity
(N =1, actually extending to —oo), that is followed by an iris N = 2. Similarly,
" the section ends with an iris N = N, and a cavity N = N, (that actually extends
‘to o).

For axially symmetric problems, of a possible two sets of the solution of the
Maxwell equations, only T'M monopole (m = 0) modes are essential and sufficient
i té describe the longitudinal field dynamics.

Inside a cylindrical pipe with constant radius, all the nonzero components

- E,, E, and Hy of the TM type of the EM field can be represented by a sum of a

particular solution driven by an external current density j(r, ¢, 2, k) and a general
solu£ioh of the .homogeneous equations. The latter part can be represented as an
expansion into a series of cylindrical waves with unknown complex amplitudes. For
example, for the region inside the Nth cavity of the radius 4", the longitudinal
Fourier harmonic of the electric field E,; on the frequency f = ke¢/27 can be

_gépresgnted as
EY(rak) = 37, (/6 Jo(enr/8Y) 21(2) (23)

Similarly, for the Nth iris with the radius a¥,

o
ENryz,k) = 37 (vafa¥)? Jo(var/a¥) € (). (24)
Here z is the distance from the left end of a cavity or an iris. The expansion

of all the essential field icomponents can be found in the Appendix. Each of the



propagation functions, =X (2) or £N(z), is a superposition of two waves travelling

in 42 (forward wave) or in —z (backward wave) directions:

: N
zY(2) = 6,, exp{i Yz} + exp{—iAY 2}, 0<z<g¥ (25),

z,
D, exp{—iul 2}, 0<z<li (2.6) ,

N
¢¥(z) = D, explinl =} +

e,

where the propagation constants are

A = (= ()2 (2.7)
B = \JR = (vafa¥)? (28)

In the arfay of coupled cavities, each eigenmode of a cavity generates a pass-
band of the array. If the coupling between cavities is weak enough, the passbands
do not overlap.

Subsequent derivations essentially depend on the choice of the wave number
k. Consider, for example, the most interesting case of the frequencies within the
first passband. The first spatial mode in each cavity (corresponding to n = 1)
is the only truly travelling mode, since its propagation constant A is real. All
the other modes (n > 1) are evanescent waves with pure imaginary propagating
constants. For the irises, all the propagation constants 2, including the first one,

are imaginary. For |k| < v/a®,Im(k) > 0

Wk = ir/(vn/a¥)2 — k (29)

, ~Most}@f*the paper deals with this case.
To satisfy the boundary and continuity conditions, it is sufficient to consider

two of the three field components—either E.,,Hy or E,, E,: We choose here the



pair of components E; and E,. Each radial mode, Eqs. (A.2-5) of the Appendix,
satisfies the boundary condition on the cylindrical surfaces r = a?, 0 < z < I¥ or
N N _N _N
r=>b", 0<z<g",respectively. The amplitudes 8,, yCp, D, and D, should
be chosen in such a way as to satisfy the boundary and continuity conditions on the
‘remaining metal walls of the irises. Consider, for example, the interface between

a ca¥ity with radius b, and the subsequent iris with the radius of the aperture a.

The continuity conditions on the aperture at z = g are
E.,(r,g—0,k) = E,(r,g+0,k); forall 0<r<a, (2.10)

" Tand -

-

‘E}(T;g =0, k) = E.(r,g+0,k) 6la—r); forall 0<r<b, (2.11)

where 8(z) is a step function, 8(z) =1 for z > 0, 6(z) =0 for z < 0.

As one can see, for the considered formalism the cavity gaps gV, and the radii
bN , the iris thicknesses IV, and the apperture radii a” can all be different. For a
éffuctufe for which all the radii a? of the openings have the same value a and all
the radii bV of the cavities have another value b, there is the option of matching
the fields on the interface r = a. However, in the general case of different a" and
-bN , the matching on the interfaces Z=const is much simpler.

From Egs. (2.10-11), thefe follows the system of linear algebraic equations
for unknown quantities z¥ (0) and zV~1(g™~!); i.e., the values of the propagation
>func_l"ﬁ;'5'ﬁ ét'z = 0 and 2z = gV—1. This system is derived in the Appendix.

We construct from z2(0) and zNV-1(g¥-1) the set of vectors fN, i =

1,2, ...,2J, where JC is the truncation number; i.e., the maximum number of



the spatial cavity modes taken into account. The vector f¥ describes the field on

the both sides of the Nth iris:

¥ = N0y, i=1,...,J°, (2.12)

-

Ny = Y, i=1,..,JC. (2.13)
The vectors f,-N of the rank 2JC satisfy the system of the recurrence equations
ANfN = pNgN-1 L pNgN+1 L gV = N =2,3,...,N,. (2.14)

The recurrence equations of this type is characteristic for any coupled linear chain
of eléfxienﬁs. 'In.our case the cavities comprise such a coupled chain: the field in
each cavity depends on the field in its neighbors on the left- and the right-hand
side of it. Matrices AY, BN, F¥ of the rank 2J€ x 2J€ and vectors GV of the
rank 2JC, as well as the method of finding the solution of Eqgs. (2.14),. are given

i_n;the Appendix}

3. INFINITE PERIODIC STRUCTURE

A particular case of the considered structure is a periodic structure with the
period d = g + [, consisting of the infinite number of identical cells. Finding
the field in such a structure is tantamount to solving the eigenvalue problem.

The éq&ations to be solved in this case are homogeneous equations (2.14),
where G¥ = 0. All the matrices R, Q (see Appendix), A, B, and F are the

same, and the superscripf N may be omitted. According to the Floque theorem,



the fields in the cavities with numbers N 4+ 1 and N are the same—apart of the

constant complex factor

E(z) = exp{ziv} fN(2) . (3.1)

Hence, the solution has the form f N(z) = e"¥V(z), where V(z) is a periodic vector

| V(z +d) = V(z). Eq. (2.14) then become the following matrix equation:

[A(k) — B(k) exp{—i} — F(k) exp{i¥}] V = 0. (3-2)

- The system of homogeneous Egs. (3.2) may have a nontrivial solution only if its

detefi%ﬁnant is equal zero
| A(K) - B(k) exp{—i} - F(k) exp{iv}}| = 0. (3.3)

The set of solutions of this equation k, 1 that correspond to real values of 1 define
the passband of the array. The curve k(%) inside the passband is the dispersion
;tirve, and 4 has the meaning of the phase shift per period. The range of the ¢
variation is —7 < ¥ < 7.

Consider, for example, a single spatial mode in the cavity. In this case,

Eq. (3.3) is reduced to (see the Appendix),

—Q — (A/tan B) R + exp{iy} (A/ sin B)
| —R—exp{~itp}(}/sin ) Q + (A/ tan B)

=0, (3.4)

where A = Ay, B =g\, @ = @11 and R = R;;. All these quantities are functions
of . | |

10



Solving in respect to 1 gives the following dispersion equation:
costp = (Q/R) cosB + [(Q*—R®—1A%)/2R] (sinB/)).  (3.5)

For a very thick iris I = oo , R — 0 and this equation defines the frequencies k;

~ of the eigenmodes of an isolated pillbox cavity with attached tubes:

",

tan B(k;) = —22Q/(Q* - )?) . (3:6)

For a finite but small R
sin 8 = — [20Q/ (Q% = 3*)] [cos B~ (R/Q) cos¥] 3.7)
B K($) = k - (2AR/gQ) cos®, (3.8)

where k; is the solution of Eq. (3.6).

The dispersion curve k(%) is similar to the dispersion curve for the chain of
coupled oscillators, with the coupling strength proportional to R. This quantity
__'deﬁnes the width of the passband.

” The disperéion curves for an infinite periodic array built out of the first, the
“middle, and the last cells of the detuned 204-cell accelerating section has been cal-
culated using the determinant of the truncated system, Eq. (3.3). The dimensions
~of all the cavities and irises used in the calculations are listed in Table 1. The
first JC spatial cavity modes and the first JW spatial iris modes were taken into
account. The results of the calculations are shown in Figs. 2-4 as symbols, along
R with, the 'cu.rves that were obtained with the help of the code KN7C [5]. For the
considered dimensions, the frequency width of the first passband is of the order of

1 GHé for the ﬁrst, and of 400 MHz for the last cavity.

11



The agreement between these two sets of results is quite good for large enough
JC and JW. Figure 3 represents the dispersion curve that corresponds to the first
cavity calculated with J% = 50 and for a number of different truncation numbers,
JC. It demonstrates the convergence of the dispersion curve to a limiting shape
" with the increase of J¢. In Fig. 4, the independence of the dispersion curve for
“thefirst cavity on the JW for J¥ > 16 is demonstrated, assuming JC = 186.
Figure 5 is a blowup of the portion of Fig. 3 indicated on it by a dashed
| rectangle. The dashed straight line corresponds to the phase velocity of the wave
equal to that of light vpy = ¢. The phase advance per cell and the frequency of
- the synchronous wave are defined by the intersection of the curve with the dashed
" line. -For the truncation number, JC = 20 9 ~ 27/3 and f ~ 11.431 GHz. This
freééqcy'is shifted by ~ 7 MHz from the designed frequency 11.424 GHz. The
diﬁ'éfenéé is mdstly due to the rounded shape of the iris edge of the designed struc-
ture, in comparison to the rectangular shape assumed in the present calculations.
Figure 6 gives the dispersion curves of the first two passbands for the 30-cell ex-
perimental constant impedance section. The cell dimensions of this section can be
found in Table 1. ,
Affer the phase shif 4 is found, Eq. (3.2) defines the vector V in each cell,

~and thus the EM field pattern in the periodic structure.

'4. APERIODIC STRUCTURE

We turn now to the problem of finding the travelling EM field in an aperiodic
structure. In this and two subsequent sections we will concentrate on the problem

| of tfé’;pfopagation of a wave with the wave number k arriving from z = —oo.
For this purpose, the terms arising from the beam current, i.e., all the terms

proportional to Npg, should be dropped. The excitation of the structure by a beam

12



current is considered in Section 7. We assume also that the frequency of the
incident wave lies in the first passband of the section.

~ The EM fields in a finite length structure depend significantly on the physical
conditions on its ends. One can formulate them from the following simple physi-
_ cal considerations. The complex amplitude of the incident fundamental forward-
‘travelling wave entermg the structure from the left is arbitrary. Its eva.nescent
modes decay at Z = —co. Hence, for the first passband, the coefficients 6 must

- be chosen in the following way:

1

C.=0, n=23... (4.1)
Similarly, at the right end of the structure:
- - o Nc
e T, =0, n=12... (4.2)

1 N
Conditions in Egs. (4.1),(4.2) for the amplitudes C and C  mean that the

values of the propagation functions and their derivatives z1,y! at the left end of

the section are related to each other in the following way:
gl = —inz), n=23,..,J° (4.3)

-Similarly, at the right end of the section, z/¢, ye are related to each other in the

following way:
yNe(0) = iMVeg¥e(0), n =1,2,...,J°. (4.4)

The amplitude 21(0) remains arbitrary. All the other amplitudes are proportional
" to ifr.é:'Hehce,', it can be considered as the source of the field excitation and moved
into the right-hand side of the equations. All these conditions are reflected in the

structure of the matrix elements AN, BN, F¥ and GV, listed in the Appendix.

13



The vector f¥<*1 can be chosen arbitrary because it does not enter Eq. (A.36),
since F¥¢ = 0 [see, Eq. (A.40) of the Appendix]. Hence, one can assume
fNe+t1 = 0. It then follows that matrices ANe = B¥- =V0. Using the recurrence
Eqs. (A.49—50) and beginning with these values, one finds sequentially all matrices

AN B¥ for N = N,—1,...,1. Similarly, the vector f! does not enter Eq. (A.36),
since B? = 0 [see, Eq. (A.44) of the Appendix]; hence, one can assume f! = 0.
Now using Eq‘s‘. (A.48) and the found matrices AY, BV, one finds sequentially all
fNfor N=2,...,N..

After the vectors f& (and consequently, the vectors =X (0) and z¥ (¢7)) are

A found, vectors y2 (0) and y2 (¢") can be calculated with the help of Egs. (A.13)

~“and (A.16), and vectors ¢V (0) and €Y (1Y) can be calculated with the help of
7 Egs. (A.14) and (A.15), respectively. Then Eqs. (A.8) and (A.4), and respectively

Eqs._.(A.'Q) ‘and (A.7), can be used to find amplitudes U,I,v andt'_,,N of the forward
and backward waves in the cavities, and BnN and 5,,N of the forward and backward
waves in the irisés. This defines the fields at any point in the structure.

There are several ways to verify that the obtained solution is the correct one.
One of them is the trivial back substitution of the found vectors f¥ into Eq. (2.14).
Numerical solut;;on satisfies this condition to an accuracy better than 10~1%, Next,
since there is no energy dissipation inside the system, the energy flow through any
;)f ifs croés sections should be independent of the Z éoordinate and the same in all

cells.The integral of the z component of the Pointing vector over the cavity cross
section S can be expressed in terms of the amplitudes of the forwafd, Z?nN, and

N
(— *
backward, C,, , waves. For a monochromatic wave,

Eﬁ(ﬂ",z,t) = z::;’c (vn /)2 Jo(var/bY) s

X [exp{—iwt} ( 3:’ exp{iA\Nz} + ‘EnN exp{—i\l z} ) +c.c. ] ,

14



the energy flow is

P(w) = (c/4r) / as [E¥ (k) HY*(k) + ..
= (w/2) [ v} JE0) (| 2, |*-| Ty *) (4.6)
e =2 R e | m (T T )],

_ where c.c. and an asterisk denote a complex conjugate value. The obtained solution
produces a constant energy flow P throughout the section.
Further, the correct solution should reproduce the boundary and continuity

_ conditions, Eqs. (2.10-11). Figures 7 and 8 illustrate the degree to which these

conditions are satisfied. In Fig. 7, the real and imaginary parts of the radial

component of the electric field E, on the surface of one of the irises are plotted
as a‘ rfu'ncfion of the relative cavity radius r/b. The curves represent the field E,
calculated on both the cavity side and the iris side of the metal wall, r = a. The
position of iris edge r = a is shown by a vertical dashed line.

Similarly, Fig. 8 represent the real and imaginary parts of the longitudinal
cémponent of the electric field E, along the detuned section versus the cell number.

Both exarﬁples are obtained with J = 20 and JV = 30.

5. REFLECTION AND TRANSMISSION COEFFICIENTS

In this Section we consider the most interesting case, when the frequency of
the incident wave lies in the first passband of the structure. In other words, there
is only one spatial mode with the real propagation constant AY. In this case,
" the EM ﬁelfi in the waveguide to the left of the section is defined solely by the
propagation function z1(z) and its derivative yi(z) of the first cavity. Indeed, the

' 1 A
forward amplitudes 8,,: 0 for n > 1 [see Eq. (4.1)] and, hence, the evanescent

15



fields do not contribute to the energy flow of the incident wave. All the spatial
modes of the reflected (backward) wave with indices n > 1 are evanescent, and
they decay exponentially for z < 0. Hence, the propagating mode n = 1 has the

following form:
1 ‘61 31 =t 31
s zi(2) = C, exp{irjz} + C; exp{—i)jz}. (5.1)

‘The reflection coefficient R(w) is defined by the ratio of the complex amplitudes

1 1
and C,

.- 271
RW) = ) / Th). (52)

“The absolute value of the square of the reflection coefficient R is the ratio of
the ;;éwer reflected from the section to the power of the incident RF wave.

Similarly, the energy flow of the transmitted EM field in the waveguide to the
right of the section—i.e., for Z > L = N.d—is defined solely by the propagation
function z1'*(z) and its derivative y; °(z). According to Eq. (4.2), function z7 *(2)

describes the forward wave only:
Ne¢ Ne '\ 1
ey (2) = T, exp {ixy.(Z2-L1)} . (5.3)

.All the spatial modes with n > 1 decay exponentially for Z > L. Hence, the

transmission coefficient 7 (w) is defined by the ratio

T = W 1) [ e 54)

The absolute value of the square of the transmission coeficient T is the ratio of

the power transmitted through the section to the power of the incident RF wave.

16



Since the structure is lossless, the two coefficients for any frequency satisfy

the relation:
IRW)* + T =1. (5.5)

The variation in behavior of the reflection and transmission coefficients with
frequency strongly depends on the matching between the impedance of a struc-
ture and the irhpedances of the adjacent wave guides. The matching is usually
achieved by adjusting the parameters of couplers at the end of a section. In the

. present study, the second and the penultimate cavities of the section are used as
" the couplers. They were adjusted by varying their three parameters a, b and g,
’ thus maintaining the axial symmetry of the problem. To minimize the reflection

; coefficient in the vicinitsr of the designed frequency, we closely follow the SLAC
procedure [16] for the couplers adjustment. First, we temporarily introduced field
dampiﬁg in the section. The damping rate was gradually increased, starting from
zero at the left (entrance) end and moving to the right (exiting) end of the sec-
tion. Under these conditions, the dimensions of the left coupler were found by
minimizing the reflection coefficient. Then the damping was turned off, and the
parameters of the right coupler were optimized in the same way.

” The reflection R and transmission T coefficients as a function of the frequency
of the incident wave are calculated here for two accelerating sections with dimen-
sions [17] that can be found in the accompanying paper [18].

- In Fig. 9, the absolute values and the phases of R and 7 are plotted for the

30-cell constant impedance structure for two cases.

"~ A. The case without couplers, curve a.

’fi;e resonant character of the coefficients are clearly exhibited. The resonances
are spaced at approximately Af/N., where Af is the frequency width of the
structure passband (& 300 MHz for the considered cell geometry, see Fig. 6).

17



B. The case with adjusted couplers, curve b.

The frequency band becomes much wider, while the system becomes less
dispersive.

Figure 10 gives similar results for the detuned 204 cell structure. Figure 11
‘rep_rgsents curves of the reflection coefficient R of this structure, with no adjusted

couplers, for several different truncation numbers J%. The curves tend to follow

-each other—the larger the truncation number, the smaller the differences. For

- J¥ > 30, the difference in frequencies corresponding to the zeros of R is smaller

+ then 1 MHz, corresponding to. the relative accuracy of the frequency determination
10—4‘, The full width of the resonance at the half maximum is =~ 0.9 MHz. The
7 resofiances are spaced at approximately Af/N,, where Af is the frequency width
of th:a;siméture passband (in this case, an intermediate value between the widths
of the passbands corresponding to the first and to the last cavities; see Fig. 2).
Figures 9 and 10 illustrate the action of couplers. Although the parameters of
the couplers have been chosen at a particular frequency, they suppress the reflection

of the EM wave in a rather broad band of frequencies.

6. ENERGY GAIN AND WAVE IMPEDANCE

In this Section we consider the acceleration of a test particle by a monochro-
matic travelling wave, with the frequency w entering the structure from its left. In
all the formulae, the terms arising due to the beam current must be omitted, i.e.,

Np should be put to zero.
The préepagation functions zX (z) and ¢Y(z) define the longitudinal Fourier
harmonic E,(r, z, k), with the wave number k (or the circular frequency w = kc)

at any point along the section [see Egs. (2.1) and (2.4)]. After z(2), &Y (z) are

18



found, it is easy to calculate the total energy gain AE(s) by a test particle with

the initial position s:

L
AE(s) = /0 dZ e E4(0, Z,1) (6.1)

t=(Z-s)c

“The field E,(0,Z,t) can be found from its Fourier harmonics for all the fre-

_quencies Q). For a monochromatic wave Eq. (4.5) the field in the mth cell is

ET(0,2,0/0) =2 exp{i0/e)(s = 2™} T, (/d")
| (6.2

X [ Xm(2) 6( — w) + X™(2) 6(Q +w) ] .

Thus one finds

- AE(s) = eexp{iks} Z:;l V™(k) + c.c., (6.3)

where the voltage per cell is

V™(k) = E,J,; exp{—ikZ™} /Of"' dz (va/d™)? XM (2) exp{—ikz} . (6.4)

In Egs. (6.2) and (6.4), Z™ is the z-coordinate of the left end of the cavity or the

iris of the mth cell, calculated from the beginning of the section. The radius d™

" and the length f™ are understood to be those either of the mth cavity (6™ and g™)

‘, _or of the mth iris (a™ and I™), respectively. Similarly, the propagation function
)?,’,"-&’);is :cn"‘(z) in the mth cavity or £*(2) in the mth iris.

‘ Due to the linearity of the Maxwell equations, the field everywhere in the

section is proportional to the complex amplitude of the incident wave. We choose
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to normalize the wave in the following way. In the straight beam pipe at the

entrance to the section the incident wave has the form

EMr,2,Q/c) = exp{i(R/c)s} (/82 Jo(vir/8) [zin 6(R — w) + ofy 60 +w)] ,
(6.5)

where

v

zn = 21(0) = E’;-}-‘Ei = E’i 1+R). (6.6)

:<,‘, ) 1
- The absolute value |-61| is defined by the RF power of the incident monochromatic

- wave, see Eq. (4.6),
P(w) = 1} J{(n) @/2) |zw/(1+R)[* . (8.7)

’-]?‘Bgayrﬁa.fi‘o V™ [z is independent of the amplitude of the incoming RF wave.
Since the amplitude zj, is proportional to the square root of the incident power
P, the energy gain is also proportional to v/P.

The phase of z;, can be chosen with respect to s in such a way as to place a
particle on the crest of the accelerating RF wave in the beginning of the section.

This corresponds to maximum energy gain for each given frequency:
Almax = € |zin] |V(K)/2in| , (6.8)
where the total accelerating voltage V(k) for whole section is

V(k) = Afmacfe = 300 V™). 6.9)

m=1

It is u’&eful tb"r define the ratio:

Zu(k) = (Dfmax/e)?/ Pw), (6.10)
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which does not depend on the power of the incident wave. Substituting here A€pax

from Eq. (6.9), one gets:
, N, )
Zo(k) = {Zo /x0T 0]} 114 RP Y (V™) - (611)

Here the free space impedance Zp = 47 /c = 377 1 is introduced. We call the
Quant_ity Zy the wave impedance. It has the correct dimensions of Q. For each

-given frequency, it is solely the characteristic of the structure. In terms of the wave

- impedance Z,,, the maximum energy gain by a test particle is

Abmax (MeV) = /P (MW) Z, (M%) . (6.12)

Figure 11 represents the dependence of the wave impedance on the frequency
of the incident wave for the 30-cell section, with and without couplers.

The action of couplers discussed in Section 5 are seen here once again. The
maxima in the frequency dependence of the wave impedance for the unmatched
section corresponds to the zeros of the reflection coefficient; cf., curve a on Fig. 9.
In Fig. 12, the peaks in curve a (without the couplers) are narrower and higher than
tﬁose in curve b for the section with the matched couplers . The unmatched section
‘can give a higher acceleration rate at the frequency where the reflection coefficient
is small. However, dispersive effects in this case are large, and transmission of
-a short RF pulse through such a section can be accompanied by big distortions.
The adjustment of the couplefs makes transmission of the EM wave effective in a
rather broad band of frequencies of the order of 200 MHz, allowing a rise time of
' the RF pﬁlse of the order of 5 nsec.

A similar situation can be seen in Fig. 13, which depicts the wave impedance

for the unmatched (curve a) and the matched (curve b) 204-cell detuned structure.
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Figures 14 and 15 represent the real and imaginary parts of the normalized
energy gain V™ /zi, for the detuned structure for the mth cell versus number m.
Three different frequencies of the incident wave were considered:

f = 11.427 MHz, below the pick of the wave impedance, which corresponds

to the phase velocities below that of light vy, < ¢ for the equivalent
»~-  infinitely periodic structures (curve a);
f=11.431 MHz, vy, = ¢ (curve b); and
f = 11.435 MHz, vy, > ¢ (curve c).
* For each frequency, the absolute value of the total accelerating voltage |V|, from

. Eq. (6.9), is given in the figure caption.

7. COUPLING IMPEDANCE, WAKE FUNCTION
-AND LOSS FACTOR

Now we turn to the problem of the excitation of the EM field in an aperiodic
section by a pafticle beam current. In this case, the second term of each vector
G;?V , Eq. (A.46), should be omitted, zi, = 0. The EM fields are defined by the first
term in Eqs. (A.41) and (A.46) which is proportional to F(k). Since the Fourier
harmonics of the beam current now contain a whole spectrum of frequencies, the
solution for the EM field is the sum over all the relevant frequencies.

o Thé total energy loss AE experienced by a test ?article moving on the trajec-

_tory Z = ct + s due to the wakefield excited in the whole section by the beam is

L 00
AE(s) = /0 iz /_ " (dof2n] eEu(0,Z,) exp{=ikZ =)} . (1)

. Coﬂé‘d’érra'tiain of nj bunches, I =1,2, ... ,n3. Let | = 1 correspond to the bunch
in the head of the train. It is convenient to write the factor F(k) in Eq. (2.14),
explicitly omitting it from the definitions for G¥ in Eq. (A.41) and (A.46).
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The total energy loss of the test particle in the /th bunch of the train can be

represented as the sum over individual cells

A&(s) = (2Npe’[m) .
% (7.2)
X [/ dk exp{ik(s + s; — s;)} Z:;l V'"(k)+c.c.] .

-0
Here the dimensionless values V™(k), are defined by the same Eq. (6.4). But
the propagation functions must certainly be calculated with the driving terms G,N
arising from the beam current Eq. (2.2).

The wakefield is defined [19,20] by
Cwy(s) = —AE(s) [ (N e?) . (7.3)

For the Ith bunch in a train, it can be represented as the convolution
o0
wi(s) = (2/20) [ dk expliks} Ze(k) @u(k (14)

-0

of the longitudinal coupling impedance

Z() = =(Zo/m) Yo, V™R) (1.5

and the form—faétor

(k) = ngl ai; exp{ik(s; — s;)}, (7.6)

where the coefficients a;; = 1 /2 forl=j,and q;; =1 otherwise.

The real and imaginary parts of the coupling impedance calculated for the 30-
cell constant impedance section are depicted in Figs. 16 and 17, for the first and
" the s‘gédnd passbands, respectively. Similarly, the real and imaginary parts of the
coupling impedance for the first passband of the 204-cell detuned section is drawn

in Fig. 18.
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The real part of the coupling impedance has a band structure with width Af,
corresponding to the filling time of a section Af =~ 1/7¢, where the filling time
is defined by the group velocity v,;: 74 >~ L/v,. This can be expected for a trav-
eiing wave structure where zn(2) is, basically, a plane wave with the propagating
constant ¢ = t/d, v being the phase advance per cell and d = L/N, the period
of the structure. The group velocity is then v, = dw/dgq. The real part of the

- .

impedance has the maximum at the frequency of the synchronous wave g = k and

the width Af = v;Aq/2r, where Aq ~ 2x/L. The total energy loss is propor-

~_ tional to [ Z(k)dk, and changes little with small variations of the cell dimensions.

- Therefore, the maximum value of the impedance is inversely proportional to Af,
and increases with decreasing v,.

The developed forrﬁalism gives the energy loss for any particle distribution
inside the bunch and for any bunch distribution in the train. For the equidistant
train in which bunches are equally spaced at distance s, the form factor Eq. (7.6)

can be found explicitly:

®i(k) = (1/2) + exp{igpl} [sings(I — 1)/singy] , (7.7)

where gy = ksp/2. If I > 1, the form factor is close to § function
Qi(k) = (n/sp) §[k — (271 / sp)] (7.8)

For a short bunch with rms length o) < 33, the maximum energy loss due to the

interaction with the wakefield is

Afiw = (4Npe?/s3) 3 ReV™ (2nl/sy) . (7.9)

All the integers [ such that the corresponding wave number k = 2xl/sp hap-

pens to be inside the passband givé additive contribution to A€pax. If sp is not
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too large, only one value of the integer ! contributes to A€max. It is convenient
to express the maximum energy loss in the section in terms of the beam loading
parameter

N.

Br(MeV) = 5.6 x 102 ReV™ . (7.10)

m=1

LIn terms of this parameter, the maximum energy loss experienced by a particle on
a plateau of the beam loading curve in a long train of bunches, with bunch spacing
" 8p, 18

Afioss (MeV) = (Np/10'%) [BL (MeV) / sp(em)] . (7.11)

‘In Fig. 19 the beam loading parameter By is plotted as a function of frequency
for the 204-éé11 section with adjusted couplers. Curve a is calculated for the de-
tuned- gécjcidn, and curve b for a constant impedance section with the dimensions
of the first cell of the detuned section. The maximum value of By is proportional
to the maximurﬁ value of the coupling impedance. It is smaller for the first cell
(for which v, is large) then for an average cell; see Fig. 2.

| Figure 20 represents the beam loading parameter By in function of frequency

for the 30-cell c-,onstan't impedance section with adjusted couplers. In Fig. 20(a)
By is plotted for the first, in Fig. 20(b) for the second passband, respectively.

Anofher characteristic of a structure, namely the loss factor &, is also easy to

calculate using Eq. (7.4)

K = /: (dw/27) Zo(w) . (7.12)

rvIntegg'éjfing'the curves in Figs. 16(a) and 19(a) over the frequency we obtained
& = 60.773 V/pC for the 30-cell periodic section (or ~ 2.03 V/pC per cell) and
x = 389.59 V/pC for the 204-cell detuned section (or =~ 1.91 V/pC per cell).
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8. CONCLUSION

The developed method and the numerical code PROGON based on it are
demonstrated to give answers to a wide range of problems pertaining to the prop-
agation and excitation of the EM fields in the disc-loaded aperiodic structures.
“For the time being, they are limited to longitudinal axially-symmetric problems.
However, the extension of the formalism onto transverse fields is straightforward

and can be used to find the transverse wakefields in detuned structures.
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APPENDIX: BASIC EQUATIONS

Here we derive the basic system of algebraic equations for the field amplitides.

The kth Fourier harmonics of the EM field in the region inside of the Nth cavity

with constant radius bV can be expanded in the spatial modes

> P

E¥(rz,k) = Y (va/8™)? Jo(var/bY) 22 (2)

E}v(r,z) = (2eNpg/cr) Z,' exp {ik(Z — s;)}

— 3 /8 Aar/tY) B (2)

HY (r,2) = (2eNg/er) E,- exp {ik(Z — s;)}

=ik Y (va/8Y) Dilvar/6Y) 27 (2)

where the propagation functions z¥(2), 0 < z < g and
¥ (2) = dal(2)/dz, O<z<g"

describe the z dependence of the nth spatial mode in the Nth cavity.
~ Similarly, for the Nth iris with the radius a

BN(r2) = Yo (vala™)? Jo(var/6V) €4(2)

EN(r,z) = (2eNpg/er) Z,‘ exp {tk(Z — s;)}
o0 .
“ 3 (ala®) Di(var/a¥) pnN ()
with the propagation functions V), 0<z< ¥, and

o @ = @) [dde) /], o<V,

(A.1)

(A2)

(4.3)

(A.4)

(A.5)

(A.6)

(A7)

In the above expressions, we distinguish between the longitudinal coordinate

of the bunch Z calculated from an arbitrary point (for example, from the beginning

27



of the structure) and the local longitudinal coordinate z in the cavity or the iris
calculated from the left side of each region.
Each of the propagation functions is a superposition of two waves travelling

in +z (forward wave) or in —z (backward wave) directions:

3 2N (2) = Z",},v exp {i/\nNz} + Eiv exp{—z’)\,],vz} , (A.8)
9e) = By exp{inds} + Do exp{-iuls},  (49)

N N
The phases of the complex amplitudes E",, , c "o D and D are defined

- by choosing z = 0 at the left side of each cavity or iris. vs,n = 1,2, ... are the
__roots of the first order Bessel function Jo(vn) = 0 arranged in ascending order

N<v3<... rFurther, the propagation constants

p = R = (vafaM)? (4.10)

Y OV r (4.1)
are defined with a cut in the complex plane k in such a way as to ensure the
radiation condition at +oc. For example,

Y-k = ) (A.12)

The continuity Eqgs. (2.10-11) give the following relations between the propa-

gation functions:

yNTU V) = (4eNp/e)  [Jo(vap? ™) [ vETR(om)]

(A.13)

x 3 exp {ik(ZY - 3)} =3 Tan(" ) 2 (0),
~ 0 = =Y Sam(e") an‘I(g”‘l), (A.14)
) = 3 Sam™) 2 (0), (4.15)
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yA(0) = (4eNa/o) [Ja(var™) [ v2TF(m)]

(A.16)
x 3 exp {ik(Z¥ - s))} =3 Tma(™) nd(1%)
where p¥ = a¥ /bY and pV-! = a¥ /¥ 1, respectively.
The elements of the matrices S and T are defined as follows:
vee Sam(p) = [2P2V12n JO(PVm)]/ [Vn J1(va) (va — PV, ] ) (A17)

Trn(p) = [20%ntin i1(vn) Jo(pvm) |/ [ F2vm) (2 = $03)] . (A18)

. Note that all the matrices S and T are real.

The iris variables can be excluded altogether. Indeed, from Egs. (A.7-9) it

- follows that
V ) = - i£,1,v(0)/ta.na,,N + ié,{v(lN)/ sinad | (A.19)
aNay = - z££’(0)/ sin oY (IN)/ tanal | (A.20)

where o = IV u. The quantities £ (0) and ¢} (IN) are given by Eqs. (A.14) and
(A.15). Substitution of Eqgs. (A.19) and (A.20) into Eqgs. (A.13) and (A.16) gives

s M) = UeNs/e) { o) [ 1R SR}
% Ej exp {ik [ZN'I(gN‘l) - Sj] }
_ E QNk—l,N—l :civ'l(gNil)
k n

+ Y, R 2N(0), o (A.21)

v¥(0) = (4eNp/e) {Jownp™) [ [2 JE(m)]}
X Zj exp {ik [ZN(O) - 3,'] }

+ Z QNN 2N (0) — Z RNN-1  N=1(gN-1)
(4.22)
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where

Q,,NIEM = 32 (TN sM /tanaN), (A.23)

RyM = =) (Tin.Shy/sinep) . (A.24)

For most of the terms in the sums in Eqgs. (A.23-24) with large indices m, o} are

e

purely imaginary. The contribution of such terms decreases rather rapidly.

The system Egs. (A.21-22) can be written in the matrix form for the

- ~ vector yV(0) = {y{,yY, ...}, and similarly defined vectors yN=1(gN-1), zN(0)

~ and xN—l(gN-l),
yN—l(gN—l) = PN—I(pN—1)+RN—1,N zN(O)

_ QN—I,N-I xN—l(gN—l) , (A25)

WM (0) = PNpM)+ QN 2N (0) - RN GV gNY)  (426)
where
PY-1 YY) = F(k) {Jo(vnp”>/ (3 72 ()] }
X exp {zk Z (g + 0™y — k1N 1} (A.27)
- PYGY) = Fk) {To(ap®) ) 2 IR}
, N-1
X exp {zk > ™+ zm)} . (A.28)
In the last two equations the following function has been introduced

F(k) = (4eNp/ec) Z,- exp{—iks;} , (A.29)

whickdescribes the excitation of the system by a train of bunches.
The vectors zV (gV ), NgM can be expressed in terms of vectors =¥ (0), ¥V (0).

Then Egs. (A.25-26) give a set of linear algebraic equations for z¥(0), y™(0)
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which in turn.give the vectors zV(0), y¥(0) for N = 2,3, ... N, in terms of the
vectors z1(0), y2(0) at the first iris. However, such a direct approach is numeri-
cally unstable, and does not provide the solution for any structure consisting of
more then a few cells. The reason for this is that the relation of the quantities
"z (0),y™(0) at the beginning of the Nth cell, and zV+1(0),y¥+1(0) at the be-
ginning of the next cell, contain evanescent modes. Some of them might be expo-

nentially large or small. As a result, numerical errors in such an approach grow

- ~ exponentially along the structure.

To find a numerically stable solution of the problem for an aperiodic structure

we exclude the vectors ¥y (g/) and y¥ (0):
yV(©) = = AV a:N(O)/ tan BN + AN :cN(gN)/ sin Y, (A.30)
yN-1(gN-1y = pN-1 mN—l(gN-l)/ tan gN-1
— AN-1 N1 / sin p¥-1 | (A.31)

where Y = gN_/\N . These expressions are valid for all irises, with the exception
of the first and last ones. The conditions on the end irises are different, and are
given by Egs. (4.3-4) in Section 4.

Note that Eqs. (A.30-31) do not contain large exponents. This situation is
similar to that in the standard S-matrix formalism. For the evanescent modes,
the last terms are exponentially small and the first terms relate the value of the
propagation function y of the radial component E, of the field to the value of the
’ "‘propg-tg.a,tidn function z of the longitudinal component E; on the same iris. This
seems to be reaspnable from the physics of the problem—elimination of the large

exponents is crucial for the stability of the numerical calculations.
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From Eqs. (A.25-26) then follows the system of linear algebraic equations for

the values of the propagation functions =2 (0) and z¥=1(g¥-1):

PY7 (oY) = =Y, RN o (0) - [ /sin gl 2R (0)

+ 3 QN v M tan g1} o (YY), (A32)

PYY) = —Zk=1 [QnNiN + (,\,,N / tanﬂ,{") 5nk] 21’ (0)
+ 3 RNV Ny 4 (3 /singY) 2¥(s™) . (A.33)

- Thé system of Eqs. (A.32-33) will be solved by truncation, keeping only the first
JC spatial modes in the cavities.

‘We introduce the set of N — 1 vectors f,-N, i=1,2,...,2J°, of the rank
7 2JC which describe the field on both sides of the Nth iris:

N =N, i=1,...,J°, (A.34)
= NN, i=1,..., 00 (A.35)
Equations (A.32-33) can now be written in the form of recurrent equations:

AN N =_BNf{~'-1+FNfN+1+GN, N=23,...,N,, (A.36)

where all the eléments of the matrices AN, BN F¥ of the rank 2JC x 2J€ and

GN of the rank 2JC are:

For the elements with indices i=1,...,J% (n=1):
Al = — QNN — [N [tan Y] bk + [M [ sin p1F]
< o ox o ep{ipl) s j=12...,0% k=j; (437)
AN =RENTL =004, , 209 k=j5-JC; (A.38)
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B =0; j=1,2,...,2J%; (A.39)
Fg: - ()\,,N/sinﬂ,l,v) Sintsc(l =6nN,); J=1,2, .., 2JC; (A.40)

GY = F(k) {Jolnp™)/ (A0} exp {ik(N = 1)(g" +17)} (4.41)

For.the elements with indices i = JC+1,...,2J°, (n=i-J°):
AN = -RNTYY i=1,..,0% k=j; (A.42)

Af}[ = ink-l’N_l + (AnN'l/tan ,B,I,V_l) bij

— & bnz (A1/sinBL) (1= &n1 + 8n16ns) exp {iB2)} ,

j=J+1,...,2J¢; k=j-JC; (A.43)
Bj = (/\fzv_l/Sin 'sz-1) (1=6Nn2) bnj, G=1,...,J%; (A.44)
FY =0 (A.45)

6l = # 0 { Bl 27 [ 2 0]}
x exp {ik(N = 1)(g" 1 +1¥-1) - i1}

+ (A/sinBy) N2 b1 zin(1 — 6nyp) - (A.46)

The Kronecker symbols with double indices have their uéual rﬁeaning. The
delta symbol with one index is defined as éy; = 0 when Np = 0; éy, = 1
- otherwise. The value zi; in Eq. (A.46) is defined by the power of the incoming RF
wavé‘;-:-; 7

Equations (A.36) for vectors fV define the field in the structure. Apart from

truncation to a finite JC, they are exact. Note that the number of modes JW
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taken into account in the iris regions define only the accuracy of calculation of the
sums (A.23-24). The choice of J¥ depends only on the rate of convergence of the
sums, and in no way is it related to the choice of the maximum number of modes
in the cavities JC.

Let us look at the system (A.36) more closely. If one neglects exponentially
smedk terms FV, the system Eq. (A.36) simplifies

AN N = BN gN-1, 6N, (A.47)

- Nofe that in this approximation the field on the Nth iris f,-N , i=1,2...,2J¢
is defined solely by its value -on the preceding iris f'-N =1, In this approximation,
_ the evanescent modes are induced locally at each iris to compensate for the radial
7 component of the propagating mode on the conductive surface of the iris.

7I‘he jfoblem Eq. (A.47), as well as the starting problem, Eqgs. (A.25-26),
together constitute the Cauchi problem: the field in all of the system is defined
by the field fil at the entrance. The exact Egs. (A.36) include exponentially
small corrections to the field on each iris arising from the evanescent fields of the
neighboring irises. Using Eqgs. (A.30-31), all the large exponents are eliminated
from Eq. (A.36). Therprice for this is the transition from the Cauchi problem to
_a boundary-value problem for which the field is defined by the conditions on both
the entrance and the exit of the system. This is the reason for the choice of the
“vectors fV.

Given the conditions at the ends of the section, the system Eqs. (A.36) can
be solved by the method of Gaussian elimination and back substitution {21,22]. In
-~ the §ggiet mathematical literature this method has the name progonka.

- .
Suppose that the solution for the vector f¥ has the form

fN+1 ‘= AN fN+BN, (A48)
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with as yet unknown matrices AN and BY. Substituting this relation into

Eq. (A.36), solving it with respect to f¥, and comparing the coefficients yields

the following recurrence equations for the matrices AY and BY:
AN-1 = (AN — PN AN)-1BN | (A.49)
- BN = (AN - FN AN (FVBY +GY). (A.50)

The last two relations allow determination of all A¥ and BY sequentially, provided

- _ the matrices ANe and BMe are known from the conditions on the right hand side

" of the system. After that, Eq. (A.48) gives the solution f N sequentially, provided
V.again that f! is known from the conditions on the left-hand side of the system;
" see the discussion in Sec. 4.

-
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Table 1. Cell geometry.
All dimensions are in cm;

iris thickness | = 0.146 cm.

Cell Number a b

g

30-cell constant-impedance section

1-30 (any cell) 0.375 1.059 0.729
2 (left coupler) 0.518 1.088 0.606
29 (right coupler) 0.528 1.088 0.606
204-cell detuned section

1 (first) 0.543 1.121 0.729
102 (middle) 0.458 1.081 0.729
204 (last) 0.385 1.053 0.729
2 (left coupler) 0.691 1.115 0.902
203 (right coupler) 0.534 1.061 0.900
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FIGURE CAPTIONS

1.

2.

>

3.

Geometry and the coordinate system. The 30-cell constant inpedance section
with couplers is taken as an illustration.

Dispersion curves for an infinite array of cells built of the first, the middle and

the last cells of the 204-cell detuned accelerating section, see Table 1 for the

cell geonietry. The results of the calculations using the program PROGON
are shown by symbols for the first (o), for the middle (o), and for the last (o)
cell.

Behavior of the dispersion curve with respect to the cavity truncation number

- JC. The calculations for the first cell ( see Table 1) of the detuned section

4.

-5,

6.

7.
~30-cell constant impedance section (see Table 1). The real and imaginary

‘has been done with JC =4 (), 8 (x), 12 (o), 16 (e), 20 (o), and 24 (e). The

‘dvi's'pérvsion curves tend to converge to the same curve with increasing JC.
The corresponding iris truncation number J W = 50.

Behavior of the same curve as in Fig. 3, but for different iris trunction num-
bers JW = 16, 24, 32, and 50. The cavity truncation number J C =16. All
the results fit onto the same curve.

The blowup of the part of Fig. 3 from which the resonance frequency cor-
responding to the wave phase velocity equal to that of light was measured:
f = 11.421 GHz for J = 24. Symbol notations given in the caption for
Fig. 3.

Dispersion curves in the first (curve b) and the second (éurve a) passbands

of the 30-cell constant inpedance section. J' C =20; JV = 30.

An illustration of the continuity of the calculated radial electric field for the

parts of E.(r) are plotted as functions of the ratio r/b at the surface z = [

of one of the irises. The dashed line indicates the relative radius of the iris
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- 8.

aperture, a/b. Two curves in the region r < a in each picture represent E,(r)
at z=140; JC = 24; JW = 30.

An jllustration of the continuity of the calculated longitudinal electric field
E,(z) on the axis of the same section as in Fig. 7. The absolute value

(curve a) and the phase (curve b) of E,(2) on the section axis are plotted.

9--The absolute values of the reflection |R| and transmission |7 | coefficients for -

10.
11.

12.

13
14.

- 15

the same section as in Fig. 7. Curves a represent the results of calculations
for the section without and curves b with couplers. The geometry of couplers
is given in Table 1.

The same as in Fig. 9, but for the 204-cell detuned accelerating section.

Behavior of the reflection |R| and transmission |T'| coefficients with respect

to the iris truncation number J¥ plotted with the blowup of one of the peaks

-

fromFlg 10. The curves are calculated with JC = 24; JW = 30 (o), 40 (o),

50 (o), and 75 (o). The position of the minimum of |R| tends to converge to
f = 11.421 GHz (cf., Fig. 5).

The wave impedance Z,,(f) for the same section as in Fig. 7. Curve a
represents the result of calculations for the section without and curve b with
couplers (see Table 1).

The same as in Fig. 12, but for the 204-cell detuned accelerating section.
The real part of the voltage V™ in each cell of the 204-cell detuned section
with couplers calculated for three typical frequencies (see text). The absolute
values of the total voltage in arbitrary units are 1331.44 ‘(curvé a), 1818.21
(curve b), and 1265.16 (curve c).

The same as in Fig. 14, but for the imaginary part.

16.ﬁ~he real (a) and imaginary (b) parts of the coupling impedance Z.(f) in the

17.

first passband of the 30-cell constant impedance section with couplers.

The same as in Fig. 16, but in the second passband.
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" 18. The same as in Fig. 16, but for the 204-cell detuned accelerating section.

19. The beam loading parameter By(f) for the 204-cell section in two cases:
(1) detuned (curve a) and (2) constant impedance-built of repeated first cell
(curve b). In the second case, v, is larger, and the corresponding peak in
Br(f) is lower and wider.

. 207 The beam loading parameter By (f) for the 30-cell constant impedance sec-

‘tion. Curve a is calculated for the first and curve b for the second passbands.
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