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I. INTRODUCTION 

In the previous paper [l] (h ereafter referred to as Ref. I), we have developed 
the formalism for including in the heavy quark effective theory (HQET) terms in 
the mass expansion of order l/m$. That paper focused on the case of the ground 
state pseudoscalar and vector mesons. Here we extend the analysis to the case of the 
heavy baryons, in particular the spin-i AQ. It turns out that the formalism is far less 
cumbersome than for the heavy mesons. The structure of the previous paper may 
be taken over almost in its entirety to the baryons, but with the number of invariant 
form factors considerably reduced. Hence to avoid redundancy we will abbreviate 
considerably those aspects of the presentation which are common to the two cases, 
and concentrate instead on features which distinguish the baryons from the mesons. 
In Sec. II we discuss the Lagrangian of HQET and the expansion of the baryon masses. 
Sec. III reviews the form of baryon matrix elements in the mQ t 00 limit and the 
corrections of order l/m~. In Sec. IV we present the extension of this analysis to order 
l/m;. Some phenomenological applications of our results to semileptonic decays of 
the Ab are discussed in Sec. V, while Sec. VI contains a discussion of excited baryons. 
In Sec. VII we provide a brief summary. 

For the sake of simplicity, we shall completely ignore radiative corrections in this 
paper. In particular, we omit the p-dependence of the universal form factors of H&ET, 
and ignore the short-distance coefficients in the expansion of the currents. All these 
effects would not change the structure of the heavy quark expansion, but they would 
complicate considerably the presentation. As discussed in detail in Ref. I, renormal- 
ization effects may be incorporated straightforwardly into our general formalism in a 
perturbative way. 

II. THE LAGRANGIAN OF THE EFFECTIVE THEORY 

The heavy quark effective theory provides an expansion of strong matrix elements 
in inverse powers of the mass of a heavy quark [2-91. It is useful when one considers 
external states containing a single heavy quark, dressed by light degrees of freedom to 
make up a color singlet hadron. HQET is constructed by redefining the field operator 
Q(X) of a heavy quark in such a way that the heavy quark part of the QCD Lagrangian 
can be expanded in powers of l/m~. This expansion is independent of the nature 
of the hadronic states one wants to describe. Hence the field redefinition and the 
construction of the effective Lagrangian and the effective heavy quark currents are 
the same as described in Ref. I. 

In brief, then, there are two objects which one must expand to construct HQET. 
The first is the QCD Lagrangian. In the limit ??2Q -+ 00, the heavy quark field Q(X) 
is replaced by the velocity-dependent field 

h(v, x) = eimQv'= P+ Q(z), (24 
whereP+ = i(l+$) is a positive energy projection operator. The effective Lagrangian 
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for the strong interactions of a heavy quark becomes [7,10,11] 

LHQET = hiv.Dh, P-2) 

where D” = d” - igsTaAz is the gauge-covariant derivative. This is corrected by an 
infinite series of terms involving higher dimension operators, which are suppressed by 
inverse powers of mQ: 

(2.3) 

The terms in ,CCpower are treated as ordinary perturbations of the Lagrangian ,CHQET. 
Omitting operators which vanish by the equations of motion, the first and second 
order terms are [12-141 

L1 = h (iD)2h + 2 h sapGaPh, 

(24 
L2 = Z1 h vpiD,GffPh + 2Z2 h sapv,iDaGP’h , 

where sclp = -$r,p, and G”fl = [iDO,iDP] = ig,T,Gz@ is the gluon field strength. 
Expressions for the renormalization factors have been given in Ref. I. It is necessary 
to perform a similar expansion of the heavy quark currents which mediate the weak 
decays of heavy hadrons. In the full theory these currents are of the form &‘I’&. At 
tree level in the effective theory the expansion takes the form 

&‘rQ-h’rh+~h’riah+~-’ 
Q 

&, h (-iFi) r h 

1 - 
+ y,vaGaPh - 4m2 h’y,v;GffPI’ h 

Q’ 
1 

+ hQmQ’ 
h.‘(-$)I’i@h+... . (2.5) 

A more complete form of the expansion, which allows for the inclusion of radiative 
corrections, is given in Ref. I. 

The eigenstates of ,C HQET differ from those of the full theory in the baryon sector 
in the same way as in the meson sector. The latter case was discussed in some detail 
in the previous paper. For the spin-i AQ baryon the situation is in fact simpler, 
because the light degrees of freedom carry no angular momentum and hence there is 
no spin symmetry violating mass splitting. We expand the mass of the physical AQ 
as ma = mQ + ii + Ami/2mQ + . a.. The mass of the AQ in the strict mQ + co 
limit is given by A4 = mQ + A; the next term in the series represents the leading 
correction to this quantity. Fixing, as usual, the heavy quark mass mQ so that there 
is no residual mass term [15] in the Lagrangian (2.2), the parameter A is well defined 
and controls the phase of the effective heavy baryon state: 
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~A(~))HQET = e-i""'"~~(0))HQET. (2.6) 
Note that A as defined here is not the same as the analogous parameter A defined for 
the heavy mesons. In order to make clear the parallels with the analysis for mesons 
given in Ref. I, and in order to avoid a further proliferation of nomenclature, we will 
sometimes use the same (or similar) names for parameters and form factors appearing 
in the description of heavy mesons and baryons. However, under no circumstances 
should there be confusion that these form factors are at all related. 

In the rest frame of the AQ, the mass shift Am; is given by 

Am: = NJ7 41 C-Q PO4 4) 
(Ah 41 h+h Iw-5 4) * 

(2.7) 
The matrix elements which appear in the numerator of (2.7) are restricted by Lorentz 
invariance to take the form 

(Al 71 (iD)2h IA) = 2mAX, 
(Al h sapGaPh IA) = 0. (2.8) 

Vector current conservation implies that the matrix element in the denominator equals 
2mA. We thus find Am; = -X. At this order in the heavy quark expansion, then, A 
and X are the fundamental mass parameters of the effective theory. They are inde- 
pendent of mQ and of the renormalization scale ~1. Unfortunately, these parameters 
cannot be measured directly. While one may nai’vely estimate A M 700 MeV from the 
constituent quark model, little is known about the higher order correction X. 

III. BARYON FORM FACTORS IN THE EFFECTIVE THEORY 

Consider the semileptonic decay of a spin-i baryon A containing heavy quark Q 
of mass mQ, to a spin-i baryon A’ containing heavy quark Q’ of mass mQt. This 
transition is governed by the hadronic matrix elements of the flavor changing vector 
and axial vector currents. They are conventionally parameterized in terms of six form 
factors fi and g;, defined by 

(A’(P’, s’>I @f‘Q P(P, 4) = %I@‘, s’> [h Y’ - ifi @"qv + j-3 n'] w(p, s) , 
(34 

(A’(P’, 41 &‘-tY5Q IA(P, 4) = G(P’, s’> [sl Y’ - ig2 op”qv + 93 n’] y5 Q(P, s) , 
where q p = p@ - p’p is the momentum transfer to the leptons. For heavy baryons it 
is convenient to replace this with a parameterization in terms of the velocities of the 
initial and final baryons. We thus define an equivalent set of form factors by 

(A’(v’, s’)I @ypQ IA(v, s)) = u*t(v’, s’) [Fl yp + F2 up + F3 v’~]u&I, s) , 

(3.2) 

(A’(v’, s’)I &‘T~‘-/~Q IA(v, s)) = u~I(v’, s’) [G1 yp + G2 up + G3 v”]y5 U&I, s) . 
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Here u~(p,s) and u~(v,s) are the same spinors, and are normalized to the physical 
mass mA: 

U*(2), s) u*(v, s) = 2mA. (3.3) 

While the form factors f; and g; are conventionally written in terms of the invariant 
momentum transfer q2, it is more appropriate to consider F; and G; as functions of 
the kinematic variable w = v. v’, which measures the change in velocity of the heavy 
baryons. Using the fact that the spinors are eigenstates of the velocity, $un(v,s) = 
u~(v, s), one can readily derive the relations among these sets of form factors. They 
are 

fi = Fi + (m* + rn*t) ( 
F2 F3 

-+- 
2mA > 2rnAR ’ 

f2=-&$ 
A A’ 

91 = G1 - (m* - rnA,> ( 
G2 G3 

-+- 
2rnA > 2mAt ’ 

G2 G3 
92 = - -_- 

2rnA 2mht ’ 
G2 G3 -_- 

g3 = 2mA 2mAI ’ 

Let us now review the analysis of the baryon form factors in HQET [16-191. This 
will allow us to outline the procedure and to set up our conventions in such a way that 
the extension to the next order becomes straightforward. At each order in the heavy 
quark expansion, one writes the contributions to F; and Gi in terms of universal, 
mQ-independent form factors, which are defined by matrix elements in the effective 
theory. At leading order, one needs the matrix elements of the first operator on the 
right-hand side of (2.5) between baryon states in the effective theory. They have the 
structure [7,18] 

- 
(A’(v’, s’)] h’r h ]A(v, s)) = c(w) U’(v’, s’) I U(v, s) , (3.5) 

where c(w) is the Isgur-Wise function for A baryon transitions, and U(v, s) denotes 
the spinor for a heavy baryon in the effective theory. It is normalized to the effective 
mass M = mQ + A of the state in HQET, 

qv, s) U(v, s) = 2M) (3.6) 

and is thus related to the spinor of the physical state by 
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u(v,s)=z~1’2u(v,s), z&$+&+... . 
Q 

(3.7) 

At order l/m; in the heavy quark expansion we will have to include this factor. 
From (3.5) one can immediately derive expressions for the baryon form factors in 

the infinite quark mass limit. One finds Fl = Gr = ((20) and F2 = F3 = G2 = G3 = 0. 
One can then use the conservation of the flavor-conserving vector current to derive 
the normalization of the Isgur-Wise form factor at zero recoil [3]. From 

(A(v, s)] Q y” Q ]A(v, s)) = 2mAv0 P-8) 

it follows that 

C F;(l) = 1, (m* = man) (3.9) 
i=1,2,3 

which implies the normalization condition c(l) = 1. From here on we will omit 
the velocity and spin labels on the states and spinors. It is to be understood that 
unprimed objects-refer to A and depend on v and s, while primed objects refer to A’ 
and depend on v’ and s’. 

As shown by Georgi, Grinstein and Wise [19], the leading power corrections to the 
infinite quark mass limit involve contributions of two types. The first come from terms 
in the expansion of the current (2.5) w ic involve operators containing a covariant h h 
derivative. Their matrix elements can be parameterized as 

(A’]h’r*iD, h]A) = &&,v') u"NL (3.10) 

As in Ref. I, we do not have to specify the nature of the matrix I’” in the definition 
of the universal functions. At tree level, however, I” = l? y”. Matrix elements of 
operators containing a derivative acting on h’ are, as usual, obtained from this by 
complex conjugation and interchange of the velocity and spin labels. The most general 
decomposition of co1 involves two scalar functions defined by [19] 

5&J, v’) = 5+(w) (v + v’), t 5-w (v - v’), * (3.11) 

As in the case of the mesons, one can use the equation of motion iv.Dh = 0 and the 
known spatial dependence (2.6) of the states in the effective theory to put constraints 
on these form factors. One finds [19] 

(-(w) = ; ((w) . (3.12) 

From these relations it follows that the matrix element in (3.10) vanishes at zero 
recoil. 



The form factors also receive corrections from insertions of higher order terms 
in the effective Lagrangian (2.3) t in o matrix elements of the lowest order current 
J = h’r h. In fact, the contribution of the chrome-magnetic operator vanishes by 
Lorentz invariance, and the entire effect takes the form of a correction to the Isgur- 
Wise function c(w): 

WI J i da: T{ J(O), C&X) } (A) = A(W) u”lT U . (3.13) 

It is now straightforward to compute the form factors F; and Gi at subleading or- 
der in HQET in terms of A and the universal form factors c(w) and A(w). Introducing 
the functions 

B,(w) = ii s c(w) + A(w), - 
ww> = -$ w> 7 

the result becomes [19] 

F&J) =5(w) + (& + &) [Bdw) - ~&)] > 
G&v)=<(w) t (&-I- &) ~dw>, 

F2(w) = G2(w) = +2(w) 7 
Q’ 

Fs(w) = -G3(w) = $ B,(w) * 
Q 

(3.14) 

(3.15) 

For the subleading form factors, vector current conservation [cf. (3.9)] implies 

&(l)=O ti A(l)=O. (3.16) 

Thus, at zero recoil all leading power corrections are determined in terms of Z&(l) = 
-A, and in particular one finds that Gi(1) = 1 is not renormalized at this order [19]. 

IV. SECOND ORDER POWER CORRECTIONS 

We are now in a position to extend this analysis to include corrections of order 
l/m2 (from now on m will designate a generic heavy quark mass). As in the case of 
the mesons, we must discuss separately three classes of contributions: corrections to 
the current, corrections to the effective Lagrangian, and mixed corrections. We shall 
take them each in turn. 



A. Second Order Corrections to the Current 

The effective operators appearing at second order in the expansion of the current 
(2.5) are all bilinear in the covariant derivative, a property which remains true even 
if one goes beyond tree level. It is thus sufficient to analyze the matrix element 

(A’1 h’ (-iEa) lYp iDp h IA) = &&, v') u’I%4. (4.1) 

Considering the complex conjugate of this equation leads immediately to the relation 
&&,v’) = @a(v’,v). D ecomposing the form factor into symmetric and antisym- 
metric parts, $bp = f[$f$ + ti,“,], we then write down the general decomposition 

&(v, 0’) = @(W)Yap t @(w, (v t v')& t v'>p + &(w, (v - v')& - v'>p , 

$$(v, v’) = @f(w) (fw& - v&3) * (4.2) 
The equation of motion implies vfl$,p = 0, yielding 

As with the mesons, it is convenient to use an integration by parts to relate (4.1) to 
matrix elements of operators in which two derivatives act on the same heavy quark 
field. We find 

(A’1 h’F%D,iDph IA) = T,&&,v') u"l?@ Utii(~ - v'),&(w)Z~)F@ U. 

(4.4) 

In particular, we define form factors for the matrix elements 

(A’1 h’r (iD)2h IA) = do(w) u”r 24, 
(A’/ h’raPGop h IA) =&(w) (v& - v;vp) Z?P%!. (4*5) 

We may then use (4.4) and the relations given by the equation of motion to write the 
form factors $; in terms of 4i, 5, and A: 
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where we omit the kinematic argument w in the form factors. It follows from (2.8) 
that the function #a(w) is normalized at zero recoil, &(l) = X. The equation of 
motion then implies &(l) = -iA. From the relations (4.6) we see that, as in the 
meson case, at zero recoil all matrix elements of second order currents may be written 
in terms of the single parameter X, since 

P-7) 

Furthermore, only the last operator in (2.5) contributes at zero recoil, yielding cor- 
rections of order X/~Q~Q!. 

B. Corrections to the Lagrangian 

We now turn to l/m2 corrections which come from insertions of higher dimension 
operators from the effective Lagrangian into matrix elements of the lowest order 
current J = h’ r h. These fall into three classes. First, there are insertions of the 
second order effective Lagrangian Lc2. Although there are two new operators at this 
order, only one of them gives a nonzero contribution. This follows simply from Lorentz 
invariance, for the same reason that the chrome-magnetic operator at order l/m gave 
no contribution. We then define 

(A’1 iJdz T{ J(O), L,(x) } (A) = 2, B(w) u”‘r 24. (4.8) 
Insertions -of Ll, .are parameterized by the same function. 

Second, there are corrections which come from two insertions of the first order 
correction Li. These have the structure 

(A’1 $J dsdy T { J(O), W% G(Y) l IA> 
= C,(w) u” r u + z2 Col&w, 2)‘) ET r P+ s@P+ s+ u, (4.9) 

where we decompose 

The matrix elements for a double insertion of ,!Zcl, are given by the same formula, but 
with C apy6(v, 2)‘) replaced by C-+&C 2)) = Cap-&‘, 2)). 

Finally, there are corrections from an insertion of both fZi and &. These have 
the structure 

(A’1 i’J d=b/ T { J(O), -W), %> 1 IA> 
=D~(~) u"r u + ZZ~,~~~(~,~~) ZL@P; rp+ sW. (4.11) 
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We decompose Da&6 analogously to (4.10): 

&y6(% 2)‘) = 02cw> (gay 906 - 906 %,) 
f&(w) (9a,q3w; - gp,w;j - 9d3& + 9~6%~~) (4.12) 

Note that Dcrpr,5 obeys the symmetry constraint Dapy6(w, w’) = Drsap(w’, w). 

C. Mixed Corrections to the Current and the Lagrangian 

Finally, we turn to second order corrections arising from insertions of Li into 
matrix elements of first order corrections to the current. The structures of interest 
are 

(A’1 i/dz T { h’l? iD, h, Cl(x) } IA) 

= E~(~, w’) u” ry 24 + .zE,,~(~, w’) u’ rv+ d@u , 
(4.13) 

(A’1 i/dz T { h’ (-iz7) I’? h, L,(x) } [A) 

=~jy(~,~‘) t7’rw + zEjyaP(w,w’)U’ryp+sapU. 

Again, insertions of Ll, give rise to the conjugate matrix elements, with primed quan- 
tities interchanges with unprimed. We parameterize 

&(w, 2)‘) = El(W) wy + E2(4 WI,, 
Ek(w, w’) = E;(w) WY + E;(w) WI,, 

(4.14) 

The equation of motion implies w’EY = w’YZ, = 0, yielding El = -w & and Ei = 
-w Ei . There are no conditions on E3 and E$. 

As discussed in detail in Appendix C of Ref. I, the two matrix elements in (4.13) 
may be related to each other by an integration by parts. Because there are fewer 
possible Lorentz structures for the heavy baryons than for the mesons, here these 
relations take a particularly simple form, namely 

ET - E; = 11 (w - w’)? A + w,[$,, - X <] , 
Es-- E;=O. (4.15) 

Hence we are left with only one new independent form factor, Es. The others may 
be written 
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El= -wE2= --&[d+iA], 

,‘+ ---WE;= &[-6+iA], 

where 

. - -gw) = 40(w) - x 50-4 
w-l 

(4.16) 

(4.17) 

is a nonsingular function as w + 1, since fjo(l) = X. 
Finally, we note that the equations of motion imply that the form factor E7 takes 

the form E7 = El (wr - w wh), which vanishes as w + w’. The expression for Ek has 
a similar structure, while the kinematic structures multiplying Es and E$ vanish at 
zero recoil. Hence, as with the mesons, the mixed corrections give no contribution at 
zero recoil to form factors which are not kinematically suppressed. 

D. Form Factors and Normalization Conditions 

We have introduced a set of ten new universal functions which describe the l/m2 
corrections to heavy A baryon form factors in the heavy quark expansion. Two of 
these, 40 and $1, parameterize the corrections to the current, seven more, B, C; 
and D;, for i = 1,2,3, parameterize the effects of higher order terms in the effective 
Lagrangian, and one, Es, is needed in order to include mixed corrections to the current 
and the Lagrangian. It is now straightforward to express the vector and axial vector 
form factors F; and G; up to order l/m2 in terms of these universal functions. To 
this end it is useful, as in the meson case, to collect certain combinations of universal 
form factors by introducing the functions 

+cw - 1) (41 - 2-G) + $ (wd + AA), 
b2 = -2 ($1 - 2Es) - &(‘““+iA), 

b3=D1+&--++ 3’[-2(&iA)], 

b4 = & (7 - iA), 

bg=-2D2-2(w-1)D3-3 w-1 ~2~ 
(w + 1)” 

1 
+- 

wtl [-40+(2-w)&t2($-AA)], 

n2 bs=2D2t2(wt1)Dru!$ 
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+ & [$’ + c2 + w> $11 + --& (6 - &A). (4.18) 

Note that the term Xc in bl arises from substituting the relation (3.7) between the 
physical baryon spinors u(w,s), which appear in the definition of the form factors 
F; and G;, and the effective spinors U(w, s) of HQET, into the leading order matrix 
elements (3.5). L e us furthermore specialize to transitions of the type Ab + A,, and t 

. - abbreviate &b = 1/2mb and &c = 1/2m,. We then find 

FI =< + (G teb)[& - 02]+(&,2 t $)[h - b2]+ E&b [h -h], 

F2 = &c .132 + E: b2 t &c&b bs , 

F3 =&b t32 t E; b2 t &c&b bs , 

(4.19) 

GI = < + (cc t &b) 6 t (e; t E;) bl t &c&b b3, 
G2 = cc B2 t e,” b2 t &c&b b6, 
G3 = -&b t32 - E; b2 - EC&t, b6. 

Recall that 3 was defined in terms of other universal functions in (4.17). 
Order by order in the heavy quark expansion, the normalization condition (3.9) 

imposes a constraint on the universal functions of HQET. Hence, in addition to 
c(l) = 1 and A(1) = 0, th ere is a relation at zero recoil between the form factors 
which arise at order l/m 2. Evaluating the sum of F; for equal masses, we obtain 

h(l) t b(l) - b,(l) t 2br,(1) = o, (4.20) 

which is equivalent to 

2B(l) t 2Ci(l) t&(l) - 6C2(l) - 3&(l) = -A. (4.21) 

V. APPLICATIONS TO SEMILEPTONIC Ab DECAYS 

In this section we apply our results to semileptonic Ab decays and give some 
estimates of the size of the second order corrections. For simplicity, and in order to 
focus on what is new in our analysis, we shall continue to ignore radiative corrections. 

A. &, --+ A,! u Decays Near Zero Recoil 

The semileptonic decay Ab -+ A,lv is particularly simple to analyze near the 
zero recoil point w = 1, where the invariant mass q2 of the lepton pair takes 
on its maximum value qi,, = (mu, - rn~,)~. In the limit of vanishing lep- 
ton mass, angular momentum conservation requires that the weak matrix element 
(A,(w, s’) I (VP - A”) 1 Ab(w, s)) depend only on the function Gi(1). The differential 
decay rate near this point is given by 
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t!% && dw 
dr(Ab + A&) = G; 1 Kb12 

4x3 m3,c mAb ( - mJ2 IG(l)12. (5.1) 

The form factor Gi (1) is protected against corrections at order l/m  [19], but it receives 
contributions from order l/m2 effects. Incorporating the normalization condition 
(4.21), we find 

. _ G(l) = 1 t (G - Eb)2 h(l) t E,Eb[b&) - &i(l)]. (5.2) 

We may estimate the size of the corrections to G*(l) by considering the form of the 
corresponding vector current matrix element at zero recoil, given by 

(A&, s’) 1 VP 1 h&‘, s)) = 2,/-F(l) I+‘, (5.3) 

where 

F(1) = c F;(l) = 1 -I- (e, - &)2 bl(l) . (5.4) 
i=1,2,3 

The function F(1) measures the overlap of the wavefunctions of the light degrees 
of freedom between a Ab and a A, baryon. While the light quarks and gluons were 
insensitive to the mass of the heavy quark in the strict m  + 00 lim it and in precisely 
the same configuration in a Ab and a A,, at order l/m2 the wavefunctions differ from 
each other and the overlap is incomplete (F(1) < 1). We may estimate the size 
of this difference in a nonrelativistic model in which a 12~ baryon is composed of a 
constituent diquark of mass mqq M  A M  700 MeV, orbiting about the heavy quark. In 
this case the mo-dependence of the overlap integral comes from the mQ-dependence 
of the reduced mass m rqd = m ,,mQ/(m,, $ mQ) of the diquark. We then obtain the 
estimate 

w M -3ii2 M  -1.5 GeV2. (5.5) 

This combination is the same as appears in the first term which corrects Gi(1). 
The second term, bd(1) - 2b,(l) = :X + 4&(l), is harder to estimate. However, 

we note that the function 02 arises from the double insertion of the chrome-magnetic 
operator in l 1, and there are indications from QCD sum rules that it is likely to be 
quite small [20]. F  ur th ermore, for heavy mesons sum rules predict a value for the 
analog of X which is positive and about 1 GeV [21]. Let us for the sake of argument 
assume such a value here. Using m , = 1.5 GeV and mb = 4.8 GeV, we then we obtain 

Gi(1) M  1 - 7.7% + 4.6%. G-w 

While this estimate is of course quite rough, it is reasonable to expect at least that 
the signs of the two terms are as we claim, such that there is a partial cancellation 
of the two contributions. Then if the magnitudes are even approximately correct, 
one may argue that l/m2 corrections to Gi(1) at the level of ten percent would be 
surprising. Consequently, we expect the semileptonic decay Ab --+ A, ev to be well 
described by HQET. 
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B. Asymmetry Parameters in Ab ---f AC e u Decays 

The angular distributions in the cascade Ab + A,~vv + A XfJu provide an 
efficient analysis of polarization effects in semileptonic Ab decay. This is particularly 
true at the kinematic endpoint q2 = 0, where only the helicity amplitudes in which 
a longitudinal virtual W boson is emitted contribute. Such effects are discussed at 
length in Ref. [22], t o which we refer the interested reader for details. Here we shall 

. - merely cite the final expressions. 
There are several asymmetry parameters which are particularly interesting at 

q2 = 0 within the heavy quark expansion. The simplest comes from the distribution 
in the angle 6~ between the A and A, directions. The differential decay width in this 
variable is given by 

dr 
dq2 d cos 8,, 

c4 1 +cm*,cos~*, 

where Q is the asymmetry parameter of the Ab decay, and CYA= is the measured asym- 
metry parameter in the decay A, -+ AX. For the nonleptonic decay A,’ -+ A 7r+, 
a particularly useful mode, there are recent measurements crhC = -l.O?z$ [23] and 
Qh, = -0.96 f 0.42 [24]. 

Two additional asymmetry parameters which have interesting HQET expansions 
may be defined for the decay of polarized Ab baryons. Let P be the degree of polar- 
ization of the Ab, and 0p the angle between the Ab polarization and the direction of 
the A,. Then the parameter up is defined by the form of the differential distribution, 

dr 
dq2 d cos oP 

c41 -cYypPcos6p. (5.8) 

Further, let xp be the angle between the plane of the AC decay and the plane formed 
by the Ab polarization and the A, direction. Then the angular distribution in xp is 
given by 

dl’ L 

dq2 dxp 
cxl -^IpEPa*,cosxp, 
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where yp yet is another asymmetry parameter. 
At q2 = 0, the expressions for Q, cup and yp take simple forms, 

1- IfI2 
a=--NP=--1tIE12' 

2 Re( 6) 
yp= 1-t JEl2’ 

where 

h(O) -91(O) 
t = h(0) + gl(0) * 

(5.9) 

(5.10) 

(5.11) 
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At leading order in HQET, this ratio vanishes since fr = gi = [. In this limit the 
asymmetries are predicted to be a = -(up = -1 and yp = 0 [22]. Using (3.4) and 
(4.19), we find that there are no l/m corrections to these predictions. The leading 
power correction comes at order l/m2: 

1 
wmz = 4[(w) -{(G - Ed2 [b(w) - bs(w)] t ‘&3 [f&(w) - h(w)]} , (5.12) 

where w = (mib + m~c)/2m~bm~, corresponding to q2 = 0. Based on our previous 
estimates we expect cllrn2 to be of the order of a few percent. A contribution of 
similar magnitude comes from perturbative corrections to the heavy quark currents 
at leading order in HQET. It is given by [25,26] 

2% mbmc In 2 M -2.4%) 
tQcD=-~mf-m~ m, 

(5.13) 

where we have used cy,/r = 0.09. 
In view of its smallness, it will be virtually impossible to determine ] 6 ] from a 

measurement of (Y or cyp, since these parameters depend only on ] e I2 and should, 
therefore, be very close to the asymptotic values given above. A measurement of a 
nonzero asymmetry yp, on the other hand, would provide a direct determination of 
Re(c) and could yield valuable information about the size of l/m2 corrections. 

VI. MATRIX ELEMENTS OF EXCITED BARYONS 

The entire analysis presented here could be extended to matrix elements involving 
excited baryons, in particular to baryons of higher spin. To order l/m, this was done 
by Mannel, Roberts and Ryzak [27]. The Ao baryons which we have been considering 
are extremely simple, because the light degrees of freedom are in a state of zero total 
angular momentum, and hence the polarization of the baryon is the same as the 
polarization of the heavy quark. There is, however, an excited state in which the 
spins of the light quarks are aligned so that the light degrees of freedom have angular 
momentum se = 1. When combined with the heavy quark, this state becomes a 
degenerate doublet of an excited spin-$ baryon, the Co, and a spin-g baryon, the 
C;j. The analysis of the semileptonic decays of and into these states is analogous to 
that for the mesons and AS baryons, except that the states have to be represented 
differently, and the counting of form factors is modified accordingly. Rather than 
elaborate the entire analysis yet again, we shall simply indicate how it differs from 
the cases already presented. 

As for the pseudoscalar and vector mesons, it is convenient to assemble the de- 
generate doublet (Cg , Cfi) into a single object. This allows us to implement the spin 
symmetries in a compact formalism. Let us represent the spin-i CQ by the spinor 
1c, and the spin-; CG by the Rarita-Schwinger vector-spinor @‘. In the heavy quark 
limit, these objects satisfy $1c) = $, $$P = $+‘, wP$+’ = yP$? = 0. Then the doublet 
is represented by [18,28] 
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~p=~p+~(Yp+vp)y51c), (6.1) 
which satisfies the constraints v,9p = 0 and $Up = @p. It is straightforward to 
construct the analogs of Qp for baryons of arbitrary spin [as]. 

From here on the heavy quark expansion proceeds almost exactly as before. For 
example, for semileptonic transitions of the form AQ -+ Cal or AQ + C&, one repeats 
the analysis of Sets. III and IV, but with an additional index ~1 on all universal form 
factors. There is, however, a subtlety which must be considered. The spin-parity SF of 
the light degrees of freedom may be either in the series O+, l-, 2+, . . ., in which case it 
is “natural”, or in the series O-, l+, 2-, . . ., in which case it is “unnatural”. As noted in 
Ref. [29], there are additional restrictions on the universal functions which describe the 
transitions between “natural” and “unnatural” baryons [18, 281. These restrictions 
may be imposed [27] by constructing form factors which are pseudotensors, rather 
than tensors. 

In particular, the AQ is a “natural” baryon, while the CQ and C;2 are “unnatural”. 
Hence at leading order, C + C transitions are governed by a tensor form factor of 
the form 

(E’lh’I’hlC) =&,(u,d)@VW’ 

= ICI w g,, + I&(W) vpv; TF’P I- Q” , 10 I (6.2) 

while the leading A t C transitions would require a pseudovector form factor. How- 
ever, 

(E’]h’I’h]A) = JccL(v,~‘)$‘I’u = 0, (6.3) 

since no such object 1i;l can be built from the available vectors 2, and v’. 
Once this subtlety has been taken into account, the construction of the heavy 

quark expansion proceeds just as before. Order by order, one identifies the (pseudo) 
tensor-valued functions which describe a given type of correction, performs a general 
decomposition in terms of velocities to obtain the complete list of universal functions, 
and then writes the physical matrix elements in terms of them. The restrictions 
imposed by the heavy quark spin symmetries are built into the formalism from the 
start. For example, one might consider the corrections to C + C’ transitions which 
arise from insertions of the first order corrections to the effective Lagrangian. One 
finds five form factors L;, defined by 

PI J ’ i dz T { J(O), [h (iD)2h]z } (C) 

= Lo w g,, + L,(~) vpv; 3~ r xv, [ 0 1 
(C’l iJdI T { J(O), [7E. saPGaph], } IC) 
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= [L&4 (9a,9pv - 9w9pI1) + L4(w> (9av$?% - 9Pv4”J 

+L~(~)(~,~~;~; -gppv&v;)]P rP+ d%v. 

This procedure clearly becomes more tedious as the spin of the baryons increases and 
with higher order in the l/m expansion; however, the enumeration of form factors is 
straightforward, systematic and complete. 

Finally, we note that in the case of b + c weak decays, it is only the transitions 
of the form Ab + A,, C,, Cz,. . . which are likely to be of experimental interest. 
This is because the excited bottom baryons will decay strongly (if the mass splitting 
is sufficient to allow pion emission) or electromagnetically to the ground state Ab, 
and thus their weak decays will not be observable. On the other hand, the decays 
Ab -+ C,, Cz will be particularly interesting, since they arise solely due to effects of 
order l/m, and higher. 

VII. SUMMARY 

We have extended the analysis of l/m2 corrections in the heavy quark effective 
theory to the heavy baryons. We have focused in detail on the simplest case, the weak 
matrix elements relevant to the decay of a heavy As to a heavy AQ,. Due to the trivial 
Lorentz structure of the light degrees of freedom in this system, the description of the 
power corrections is considerably simpler than for the heavy mesons. At order l/m2, 
one needs a set of ten new mQ-independent Isgur-Wise functions of the kinematic 
variable v: v’, and a single new dimensionful parameter X. Vector current conservation 
forces a certain combination of form factors to vanish at zero recoil. 

We have given a rough estimate of the size of the second order corrections for the 
semileptonic decay Ab + A,eu. We find a partial cancellation of l/m2 corrections at 
zero recoil, with the conclusion that large deviations from the infinite quark mass limit 
are unlikely, and the heavy quark expansion is well under control. Investigating briefly 
the asymmetry parameters which may be defined in this decay, we have suggested a 
particular measurement which would probe the l/m2 corrections directly. Finally, we 
have sketched the extension of the formalism to excited heavy baryons of arbitrary 
spin. 
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