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I. INTRODUCTION 

Recent developments in the theory of heavy quarks have increased the prospects 
both for a reliable determination of some of the fundamental parameters of the stan- 
dard model, and for a study of nonperturbative QCD in the weak decays of heavy 
mesons and baryons. The excitement is driven by the discovery of a spin-flavor sym- 
metry for heavy quarks that QCD reveals in the limit where the quark mass mQ + 00, 
in which certain properties of a hadron containing the heavy quark become indepen- 
dent of its mass and spin [l, 21. Th ese symmetries are responsible for restrictive 
relations among weak decay amplitudes and reduce the number of independent form 
factors. The description of semileptonic transitions between two ground state heavy 
mesons [2,3] or baryons [4-71 b ecomes particularly simple. In the limit where the 
heavy quark masses are much larger than any other hadronic scale in the process, 
the large set of hadronic form factors is reduced to a single universal function of 
the kinematic variable v * o’, which measures the change of velocities that the heavy 
hadrons undergo during the transition. It depends on the quantum numbers of the 
light degrees of freedom, but not on the heavy quark masses and spins. In addition, 
the conservation of the vector current implies that this celebrated Isgur-Wise form 
factor is normalized at zero recoil, allowing model-independent predictions unaffected 
by hadronic uncertainties. 

Clearly, a careful analysis of at least the leading symmetry-breaking corrections 
is-essential for any phenomenological application of the heavy quark symmetries. An 
elegant framework in which to analyze such corrections is provided by the so-called 
heavy quark effective theory, which allows for a systematic expansion of decay am- 
plitudes in powers of l/mQ [8-141. Th e coefficients in this expansion are given by 
matrix elements of operators in the effective theory and can be parameterized in 
terms of universal form factors, which characterize the properties of the light degrees 
of freedom in the background of the static color source provided by the heavy quark. 
At leading order one recovers the Isgur-Wise limit, in which only a single function 
remains. But already at order l/mQ one encounters a larger set of universal form 
factors, which affect all but very few of the symmetry predictions that hold in the 
infinite quark mass limit [15-171. A n understanding of these functions is at the heart 
of nonperturbative QCD, but it is ultimately necessary for any quantitative analysis 
based on heavy quark symmetries. In the future, one might hope to compute the 
universal form factors from first principles by using a formulation of the effective 
theory on a lattice [8,18,19]. In the meantime, QCD sum rules [20] offer a less ambi- 
tious approach to this problem, and have recently been employed to study the decay 
constants of heavy mesons, the Isgur-Wise form factor, and the universal functions 
that appear at order l/mQ in the heavy quark expansion [17,21-251. One can also 
gain valuable information about symmetry-breaking corrections from measurements 
of certain ratios of form factors [25]. 

_ In this paper we analyze current-induced transitions between ground state heavy 
mesons at order l/m; in the heavy quark expansion. Such an analysis is particularly 
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relevant for the important cases where the leading l/mQ corrections are known to 
_ vanish at zero recoil. An example is the semileptonic decay B + L)*ev, which 

therefore seems ideal for a measurement of the weak mixing parameter I& [l, 261. In 
Sec. II we discuss the parameters of the effective theory that appear at subleading 
order. The general method of computing power corrections is outlined in Sec. III, 
together with a review of the analysis of the l/mQ corrections to transitions between 
heavy mesons. In Sec. IV we extend this analysis to second order. We identify 
a minimal set of universal functions and give their relation to matrix elements of 
higher dimension operators in the effective theory. The zero recoil normalization 
conditions imposed on some of these form factors are derived. Although in principle 
straightforward, the analysis is tedious and involves considerable technicalities of the 
heavy quark effective theory. The reader not interested in these details is encouraged 
to proceed to Sec. V, where we summarize our results and illustrate them for some 
specific cases of phenomenological relevance. In particular, the corrections affecting 
the determination of Vcb from exclusive semileptonic B decays are investigated. We 
also study the fictitious limit of vanishing chrome-magnetic interaction, which leads 
to great simplifications and might serve as an estimate of the dominant corrections. 

Based on the analysis for heavy mesons, the l/m; corrections to matrix elements 
between heavy baryons can readily be derived. We discuss this subject in the following 
paper [27]. 

II. PARAMETERS OF THE EFFECTIVE THEORY 

The construction of the heavy quark effective theory (HQET) is based on the 
observation that, in the limit mQ >> AQ~D, the velocity of a heavy quark is conserved 
with respect to soft processes. It is then possible to remove the mass-dependent piece 
of the momentum operator by a field redefinition. To this end, one introduces a field 
hQ(v,z), which annihilates a heavy quark with velocity z?, by [ll] 

hQ(v, x) = eimgv’x p+(u) Q(x), (24 
where P+(v) = f(1 + $) is an on-shell projection operator, and Q(X) denotes the 
conventional quark field in QCD. If P” is the total momentum of the heavy quark, 
the new field carries the residual momentum k” = P” - mQv”. 

There is obviously some ambiguity associated with the construction of HQET, 
since the heavy quark mass used in the definition of the field hQ is not uniquely 
defined. In fact, for HQET to be consistent it is only necessary that k” be of order of 
L&CD, i.e., stay finite in the limit mQ + 00. It is intuitively clear that different choices 
for mQ must lead to the same answer for any physical matrix element, and this can 
indeed be shown to be the case [28]. Yet it is advantageous to adopt a special choice 
for which the resulting effective theory becomes particularly simple, in the sense 
that there are no “residual mass terms” for the heavy quark and the heavy quark 
expansion becomes a covariant derivative expansion. This prescription provides a 
nonperturbative definition of the heavy quark mass, which has been adopted implicitly 
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in most previous analyses based on ‘HQET. It is important to realize, however, that 
so defined, the mass mQ is a nontrivial parameter of the effective theory. 

In the limit mQ + 00, the effective Lagrangian for the strong interactions of the 
heavy quark becomes [ll-131 

I&ET = hQ iv-D h,, (2.2) 

where D” = d” - ig,t,Az is the gauge-covariant derivative. For finite mQ, there 
appears in the Lagrangian an infinite series of power corrections involving higher 
dimension operators, 

Note that it is natural to expand in powers of 1/2mQ since, after the field redefinition 
(2.1), 2mQ is the mass associated with the heavy antiquark field which is integrated 
out [13]. Omitting an operator whose matrix elements vanish by the equation of 
motion, the leading term in (2.3) is given by [14] 

cl = hQ (iD)2hQ $ z(mQ/p) hQ .s,pGaBhQ , (24 

where scyp = -icrap, and GffP = [iD”, iDo] = ig,t,Gtfl is the gluon field strength. 
In leading logarithmic approximation, the renormalization factor for the chromo- 
magnetic moment operator is 

z(mQ/d = 
%(mQ> “’ [ 1 ~ (p) ; p = 33 - 2nf, 

s 
(2.5) 

where nf is the number of light quark flavors with mass below mQ. The kinetic term 
in (2.4) is not renormalized. 

The purpose of the heavy quark expansion is to make the mQ-dependence of some 
hadronic quantity A explicit by writing 

A(mQ) = CO(mQh> Add + & cl(mQh) A(P) i- a *. , 

in such a way that the coefficients Ai are universal, mg-independent parameters, 
and Ci(mQ/p) are purely perturbative coefficients, which dependent on mQ only 
via the running of the strong coupling as(mQ). The aim is to relate A; to matrix 
elements of operators in HQET evaluated between the eigenstates of the lowest order 
Lagrangian &JET. This paper focuses on the ground state pseudoscalar and vector 
mesons, which form a degenerate doublet under the heavy quark spin symmetry. 
These mesons have the same velocity as the heavy quark which they contain. Their 
common mass M, however, differs from the mass of the heavy quarks by a finite 
amount A = M - mQ, which measures the “mass” carried by the light degrees of 
freedom. Because of the field redefinition (2.1), ‘t 1 is this mass which governs the 
x-dependence of states in the effective theory: 
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IM(~))HQET = e-i’v’zIM(0))wy3T. (2.7) 
A is a universal parameter which can be defined in terms of a matrix element of a 
higher dimension operator in HQET. Using the equation of motion iv. D ho = 0, 
which follows from the effective Lagrangian &JET, it is easy to see that [28] 

(2.8) 
Here r is an appropriate Dirac matrix such that the currents interpolate the heavy 
meson M. This relation shows that A is in fact a parameter describing the properties 
of the light degrees of freedom in the background of the static color source provided 
by the heavy quark. It turns out that this mass scale also enters the leading power 
corrections to heavy meson form factors and determines the canonical size of devia- 
tions from the infinite quark mass limit [15,16]. A recent analysis of A using QCD 
sum rules predicts [17] 

A = 0.50 f 0.07 GeV . P-9) 

The eigenstates of ,!Z~QET differ from the states of the full theory. In particular, 
their mass M differs from the physical masses of pseudoscalar or vector mesons by 
an amount of order l/mQ. These mass shifts are computable in HQET. The physical 
masses rnM obey a heavy quark expansion, which we write as (mM - mQ) = A + 
Amh/2mQ + . . . . In the meson rest frame, 

AmL = mw (-U IMW 
(M(v)l h;hQ I”b)) . 

(2.10) 

A convenient way to evaluate hadronic matrix elements in HQET is by associating 
spin wave functions 

(2.11) 

with the eigenstates of ,!ZHQET [3, 29, 301. Th ese wave functions have the correct 
transformation properties under boosts and heavy quark spin rotations. Here P 
denotes the polarization vector of the vector meson. For reasons of simplicity we 
shall often omit the argument v in both P+ and M. We note that M = P+ M P-, 
where P* = i(l f $). L orentz invariance allows one to write any matrix element as 
a trace over these wave functions and appropriate Dirac matrices. For the matrix 
elements in (2.10) we define hadronic parameters X; by 

(MI hQ (iD)2hQ IM) = -xl tr{ MM } = 2kf x1, 

(MI hQ .s,~GaPhQ IM) = --x,(p) tr{ io,pMs‘@M } = 2d~kf x2(p), (2.12) 

&ere dp = 3 for a pseudoscalar meson, and dv = -1 for a vector meson. The 
conservation of the vector current implies that, in the rest frame, the matrix element 
in the denominator is given by (MI h;hQ IM) = 2M. We thus have 
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AmL = -X1 - dM Z(p) X,(p). (2.13) 

The universal parameters X1 and X2 are the analogs of A at subleading order in the 
heavy quark expansion. They are independent of mQ. Whereas Xr is not renormalized, 
X2(p) depends on the renormalization scale in such a way that the product Z(p) X,(p) 
is scale-independent. 

An estimate of the value of X2 can be obtained from the measured mass splitting 
between the B* and B mesons, assuming that higher order corrections in the B system 
are small. One finds 

rn& - rni rz Am:. - Am; = 4&(mb) M 0.48 GeV2, (2.14) 

where the experimental value has been taken from Refs. [31]. Using (2.5) for the 
evolution of this parameter down to the low energy scale 2A M 1 GeV, we obtain 

x2(2&) M 0.15 GeV2. (2.15) 

Unfortunately, it is not possible directly to relate the spin-symmetry conserving pa- 
rameter Xi to an observable quantity. Recently, QCD sum rules have been used to 
compute both X1 and X2 [17]. The spin-symmetry breaking correction was found in 
excellent agreement with experiment, X;‘. = 0.12 f 0.02 GeV2, and a rather large 
value for the spin-symmetry conserving correction was obtained, Xi.r. M 1 GeV2. 
However, the sum rule analysis suggests that it might be more appropriate to use an 
effective value of Xr in the b and c system which could be substantially smaller, even 
compatible with zero. A measurement of Xr on a lattice could help to clarify this 
issue. 

III. MESON FORM FACTORS IN THE EFFECTIVE THEORY 

Let us now review the analysis of current-induced transitions between two heavy 
mesons to subleading order in HQET, as performed by Luke [15]. This will help to 
outline the general procedure and set up the conventions we will need in Sec. IV. 
The aim is to construct the heavy quark expansion (2.6) for matrix elements of the 
type (M’(v’) I &’ r Q W(4), w h ere r is an arbitrary Dirac matrix. In this case the 
universal parameters are functions of the kinematic variable w = v . v’, and the 
perturbative coefficients, subsequently denoted by Cj,cj and c[i, depend on w and 
both heavy quark masses. The current &’ r Q has a short distance expansion in 
terms of operators of the effective theory. It reads 

+- k 
2mQ 

cj%‘lTyiDah+ 
j 

+&~C;6’(-i%)r’-h+.**) (3.1) 3 
’ j 

where we have abbreviated h = ho(v) and h’ = hQ!(v’). The matrices rj are in 
general different from r‘ and can depend on v and v’. At tree level, however, one has 
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C Cj rj + r , CijITT --+ r-f, Cc;ry+yr. (3.2) j j j 
Using the trace formalism described in Sec. II, matrix elements of the leading 

term in (3.1) can be parameterized as 

(M’I h’ I’h JM) = -<(w, ,u) tr{ M’r M } , P-3) 

where we omit the velocity argument in the states and the wave functions in order 
to simplify notation. It is to be understood that quantities without a prime refer 
to the initial state meson A4, while primed quantities refer to the final state meson 
M’. Also, from now on m will designate a generic heavy quark mass. In general 
the form factor < could be some matrix-valued function of v and v’, but in this case 
the projection operators contained in the spin wave functions restrict it to a scalar 
function of u). Eq. (3.3) ’ pl im ies that, to leading order in the heavy quark expansion, 
all matrix elements of currents between pseudoscalar or vector mesons are described 
by a single form factor, the Isgur-Wise function [2,3,29]. The kinematical information 
is contained in the trace over spin wave functions. By evaluating the special case of 
mesons with equal mass and velocity, one readily derives the zero recoil normalization 
condition ((1, cl) = 1 as a consequence of the conservation of the vector current. 

At subleading order in (3.1) one encounters current operators which contain a 
covariant derivative. Their matrix elements are represented by the diagrams shown 
in Fig. l(a) and can be parameterized as 

(M’]??YiD,h]M)=-tr{~,(v,v’,~)~‘YM}, 

(M’( h’(-i‘D,)I”“hIM) = -tr{ fa(v’,v,p)M’PM}. (3.4) 

Note the interchange of the velocities in the second matrix element. The most gen- 
eral decomposition of the universal form factor tcy involves three scalar functions. 
Following Ref. [ 151, we define 

b&7 4 P> = t+bJ, CL) (v + v’)cY + wJ7 4 (v - V’LX - t3bJ7 PL) Ycy * (3.5) 

T-invariance of the strong interactions requires that these scalar functions be real. 

Using (2.7) and the fact that i&(h’lY h) = h’izal‘ h + h’I’iD, h, one finds that 

(3.6) 
This is where the parameter 11 enters the analysis. 

The equation of motion, iv-D h = 0, yields an additional relation among the scalar 
fbrm factors. Taking into account that under the trace tcy is sandwiched between 
projection operators, one obtains 

P- va&Jv, v’, p) P’ = 0. (3.7) 
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For the remainder of this paper we use the symbol “A” for relations such as this, which 
- are true when sandwiched between the projection operators provided by the meson 

wave functions. We thus write vOt,(v, v’, p) G 0. In terms of the scalar functions this 
is equivalent to 

(w + 1) <+(w, P) - (w - 1) C(w i-4 + 53h 4 = 0 * (3.8) 

We shall use this equation to eliminate I+. In particular, it follows that at zero recoil 
2t+(1,P)+td1,P) = 0. 7% is relation has an interesting consequence, since it implies 
that 

5cl(v,v,c1)~[2~+(1,~)+~3(1,~)1v, =07 (3.9) 

showing that matrix elements of the higher dimension currents in (3.1) vanish at zero 
recoil. This is the first part of Luke’s theorem [15]. In its above form it is obvious 
that this result is true to all orders in perturbation theory [32], since it does not rely 
on the structure of the perturbative coefficients in (3.1). 

A second class of l/m corrections comes from the presence of higher dimension 
operators in the effective Lagrangian. Insertions of operators of ,Ci in (2.3) into matrix 
elements of the leading order currents represent corrections to the wave functions, 
which appear since the eigenstates of ,CnQET are different from the eigenstates of the 
full theory. The corresponding diagrams are shown in Fig. l(b). The relevant matrix 
elements can be written as 

M’I j i da:T{ J(O),&(z)} ]iLZ)=-Ai(w,p)tr{M’I’M} 

-z(mQ/d tr{ Ad v, v’, p) M’ r P+ sapM } ) 
(3.10) 

W’I 1 i dsT{J(O),C~(a)}]M)=-Ai(w,p)tr{M’I’M} 

-z(mQJ/p) tr{ &p(v’, v, p) M’ sapPi r M } . 

where J = h’ r h is a lowest order current. Noting that v,P+.@M = 0, we write the 
decompositioni 

A&, v’, p> = A&, p) (da - vbm) + &(w P> iaap. (3.11) 

The four independent functions t3 and A;, as well as the mass parameter A, 
suffice to describe the first order power corrections to any matrix element of a heavy 
quark current between ground state mesons. To get a picture of the structure of the 

!Our functions are related to those defined in Ref. [15] by Al = 2~1,Az = -2x2 and 
A3 = 4x3. 
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corrections let us for simplicity neglect radiative corrections. In this case, there is 
- a simple relation between the currents in HQET and the current in the full theory. 

Consider now the power corrections proportional to l/m~. They leave the wave 
function of the final state meson unaffected, but change the simple structure of M(v). 
The part proportional to the on-shell projection operator P+ will be modified, and a 
component proportional to P- will be induced, representing the “small component” 
of the full wave function. Hence 

M(v) --+ P+(TJ) Ly(v, d) + P-(v) L!!(v, d) . 

The general form of Ly is 

L~(v,v’)=JM(-y5)L1(20), 

(3.12) 

LY(v, 2)‘) = m [{ Lz(w) + c*dL3(w)] ) 

L’(v, 2)‘) = a (-75) L(w) , 
LV(v, 2)‘) = hi? [f! L&) + t.d L6(po)] . (3.13) 

The insertions of higher order terms from the effective Lagrangian in (3.10) obviously 
contribute to LE;’ only. On the other hand, in the absence of radiative corrections the 
matrix elements of the higher dimension currents can be written in the form 

(M’]h’I’i@h]M) = -tr{M’I’P-[yaME”(V,v’)]}, (3.14) 

where we have used (3.7) t o insert P- between I and yol. Consequently, these cor- 
rections contribute to L! only. This is expected since ;fl h is proportional to the 
small component of the full heavy quark spinor. By evaluating the relevant traces 
one easily obtains 

L1=Al+2(w-1)Az+3A3, 

LZ=A1-As, 

L3 = -2Az, 
(3.15) 

L=-A(+2&, 

L5=-iit, 

Ltj = - --&(XC+bL 

and the complete matrix element becomes 

(M’I &’ r Q IM) = --t(w) tr{ M’ I M } 

(3.16) -& tr{ M’r [P+ Lf$, 2)‘) + P- LM(w, d)]} 

-& tr{ [m w’, w) Pi + E!‘( wr,w,q rM}+*.*. 
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This way of organizing the corrections reduces to a minimum the effort required to 
- compute the traces. If radiative corrections are taken into account, it still suffices 

to define these six functions L;, as long as one stays with the leading logarithmic 
approximation for the perturbative coefficients. The corresponding expressions are 
given in Ref. [25], where the functions Li were called Q;. 

Let us evaluate (3.16) for th e matrix elements of the vector and axial vector 
currents, VP and A,, between bottom and charm mesons, which can be described 
completely in terms of fourteen meson form factors hi(w). We define 

(D*(w’, E’)I VP p(w)) = id- hv(w) $/*p d*v w’* wp ) 

(D*(w’, e’)I A, /B(w)) = ,/fGZG- [h/i1 (w) (w + 1) 6; 
-h&(W)e’*-wwp - hAS(W)e’**ww; 1 ) 

(3.17) 

(D*(w’, e’)I v, p*(Z), 6)) = &lGizG { - E-E’* [h,(w) (w + ?& + h2(W) (w - w’)J 

+h3(w) 4** 0 Ep + hq(w) E-W’E; 

--t*w’&‘**w [h5(W) VP + hs(W) w:]} ) 

(D*(w’, ?)I A, IB*(w, c)) = i1/7-B’mDl~~,,,,~ c”l E’*~ [h&o) (w + w’)~ + hs (w - w’)~] . 

At leading order in the heavy quark expansion one finds that 

h, = hv = hAl = hAg = hl = h3 = h4 = h7 = t, (3.18) 

while the remaining six form factors vanish. The expressions arising at subleading 
order are given in Appendix B. Here we restrict ourselves to three important cases, 
namely 

h+(w) =+> + (&- + $-) Ldw) 7 
c b 

h,(w) = t(w) + (&-- + $--) L&J) 7 
c b 

hAl (w) = t(w) + & [Lo - s La(w)] + $ [L,(w) - 5 L5(4] - 
b c 

(3.19) 

rf;lhe conservation of the vector current in the limit mb = m, implies the zero recoil 
normalization conditions h+(l) = hi(l) = 1, f rom which it follows that Ll(1) = 
L2(1) = 0, i.e. [15] 
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AI = A3(14) = 0. (3.20) 

This is the second part of Luke’s theorem, which is again true to all orders in pertur- 
bation theory. It follows that A,& w, w, p) G 0, so that the matrix elements in (3.10) 
vanish at zero recoil. 

In summary, Luke’s theorem implies that the matrix elements which describe 
the first order power corrections in HQET vanish at zero recoil. It is important to 
realize that this does not imply that the meson form factors are unaffected by l/m 
corrections [33]. In fact, the theorem only applies for form factors which are not 
kinematically suppressed as w’ + w. Besides h+ and hl those are hAl and h7. The 
form factor hAI, which according to (3.19) is indeed seen to be unaffected by first 
order power corrections at zero recoil, plays an important role in the determination 
of VCb from semileptonic decays [26]. It is one of the purposes of the next section to 
investigate the second order corrections to this form factor. 

IV. SECOND ORDER POWER CORRECTIONS 

The analysis of higher order corrections in HQET makes use of the same tech- 
niques as those developed above. The second order corrections can be divided into 
three classes: corrections to the current, corrections to the effective Lagrangian, and 
mixed corrections. We shall discuss each of them separately below. In order to 
keep the presentation as simple as possible we will often ignore radiative corrections; 
however, we will always make clear how they could be incorporated into our analysis. 

A. Second Order Corrections to the Current 

At tree level, the expansion of the heavy quark current reads [cf. (3.1)] 

&‘rQ~h’rh+~h’ri9h+~h’(-i~)rh 
Q 

1 Pr +- 
4rn; 

y,wpGffPh - & h’ y,w&G‘?’ h 
Q’ 

1 
+ 

4mQmQ’ 
V(-icgl)I?jDh+***. (4.1) 

On dimensional grounds, the operators appearing at second order are bilinear in the 
covariant derivative (recall that G”fl = [iD”, ;@I). Th is remains true in the presence 
of radiative corrections, although a number of additional operators are induced. It 
thus suffices to consider the single hadronic matrix element 

T.  (lM’lh’(-i~~)r*Pi~~hl~) = -tr{Ilr,p(v,v’,~)M’r*~M}, (4.2) 

represented by the third diagram in Fig. 2(a). F rom now on we shall always omit 
the p-dependence of the universal form factors except in the equations which define 
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them. Considering the complex conjugate of the above matrix element, one finds that 
- the form factor must obey the symmetry relation 

i&*(4 4 = &d’u, 2)‘)) (4.3) 
which reduces the number of invariant functions to seven. It is convenient to perform 
a decomposition into symmetric and antisymmetric parts, V,!J~~ = f[$$ + $J$], and 
to define 

As in (3.7) one can use the equation of motion to derive relations among the scalar 
form factors. It follows that under the trace 

wP&-&(w, 2)‘) A 0, w’cu$,p(w, 2)‘) LO. (4.5) 

These conditions are equivalent because of (4.3) and lead to the three relations 

which reduce the number of independent functions to four. 
One can use an integration by parts to relate (4.2) to matrix elements of operators 

containing two derivatives acting on the same heavy quark field, which are represented 
by the first two diagrams in Fig. 2(a). It follows that 

(M’I h’YP iDaiD h IIM) = -tr{ $&w, w’)M’I?M } 

-A (w - w’), tr{ <p(w, w’)MllYPM } (4.7) 

with [p as defined in (3.4). M a rix elements of operators with both derivatives acting t 
to the left can be obtained.in a similar way. In particular, we may derive from (4.7) 
the matrix elements 

(Ad’1 h’ I’ (iD)2h IM) = -cJ&(w) tr{ M’r M } , 

(M’I h’ PG,p h Iikf) = -tr{ 4olp(w, w’) M’ PM } , (4-8) T. 

the second of which is needed in (4.1). Ch oosing the same decomposition for 4ap as 
for $‘,“p, we find 
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~0=2$~+(w+1)~;~-(w-1)~3s-2~qs-A2(w-l)~, 

~1=~;‘+~[~2(w--)~-22;1~3], 

42=$,” - At3, 

(4.9) 

We have already encountered matrix elements similar to (4.8) in the discussion of 
mass shifts in Sec. II, and from a comparison with (2.12) we find the zero recoil 
conditions 

b(l) = Xl , 

43( 1) = x2 , 

41(l) - 42(l) = -$ Xl + $x2, (4.10) 

the last one being a consequence of the relations (4.6), which allow us also to express 
the form factors $;” in terms of the functions $;. After some algebra we find 

@=-2(w+1) 1 MO + (2w - 1) 411 

+2(w:1)z[ 24 2 + ( 2w + 3) $3 - (2 - w)(w - 1) A2 [ - 4(u) - 1) AJ3] ) 

(4.11) 

+,,” = ; (4 + $1) - 4(w: 1> [w2 + 43 + 2w A”[] ) 

SC= & [ - (w - 1) 42 + 43 - (w - 1) At31 . 

We have introduced the function 

&2L’) = & [bdw) + (w + 2) $1(w) - 3#+> - ; h(w)] , (4.12) 

which is nonsingular as w + 1 because of (4. lo). 
The above relations allow us to prove a theorem which is the analog of the first 

part of Luke’s theorem: 

Theorem 1: At zero recoil, matrix elements of second order currents 
in the heavy quark expansion can be expressed in terms of X1 and X2. 

For the proof we note that, to all orders in perturbation theory, the relevant opera- 
?ors contain two covariant derivatives. Because of (4.2) and (4.7) the corresponding 
matrix elements at zero recoil only involve $,p(w, w) sandwiched between projection 
operators. Using (4.10) we find that 
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x2 +dw, w> t [gap - %2.‘p] 2 + ia,p 2, (4.13) 

which proves the theorem. Furthermore, we note that at tree level only the last term 
in (4.1) contributes at zero recoil, since wP~&w, w) 10. The corresponding corrections 
are of order &/mQmQ’. 

B. Second Order Corrections to the Lagrangian 

Apart from operators whose matrix elements vanish by the equation of motion, 
the most general form of the coefficient ,C2 appearing at second order in the expansion 
of the effective Lagrangian in (2.3) contains two terms, 

& = &(mQ/p) 6 wup iD,G@h + a&J(mQ/p) 6 sap wuy iD”GPYh . (4.14) 

In leading logarithmic approximation the renormalization factors are given by [34] 

zdmQ/d=~ 55 
“’ 

- 7 46 1 a!s(mQ) ~ , s (p> 1 
ZdmQ/ll) = f 10 as(mQ) 

“’ 
- s [ - cy s (p> 1 (4.15) 

These operators have the same Dirac structure as the operators in ,Cr in (2.4), and 
consequently their matrix elements are of the same form as those of ,Cr. In analogy 
to (3.10) we thus define 

(Ad’1 i/dz T{ J(O), ,C~(ZE) } ]M) = -Zr Br(w, p) tr{ M’I’M } (4.16) 

-2, tr{ BaP(~, w’, p) M’r P+ d@M } , 

and similarly for an insertion of J!Z~,. As before, J = h’ I h denotes a lowest order 
current. The corresponding diagrams are the first two shown in Fig. 2(b). The 
decomposition of Bap is of the same form as that for Acvo in (3.11). It involves two 
functions B2 and Ba. 

Another type of l/m2 corrections comes from a double insertion of the first order 
correction ,Cr, as shown in the third and fourth diagrams in Fig. 2(b). The corre- 
sponding matrix elements have a more complicated structure. We define 

(M’I $Jd+dy T { J(O),&(z), L(Y) > bf) 

=-c~(w,~)~~(M’TM} - Ztr{ co&d,p)M’rP+ d@M) 

-q - -z2 tr{ Copr6( w, w1, p) M’ r I=+ smpP+ sYsM } . (4.17) 

Again, the corresponding matrix elements with two insertions of li can be obtained 
by conjugating the matrix elements as in (3.10). The decomposition of Cap is the 
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same as that for Asp, involving two form factors C2 and Cs. The most general 
- decomposition of the four-index object C,p+ involves nine invariant functions, Cd to 

Cr2. They can be defined by 

Finally, there are corrections resulting from insertions of both ,!Zr and Ll,, as shown 
in the last diagram in Fig. 2(b). They have the form 

= -Dl(w,p) tr{ M’I’M } 

-: tr{ Dcyp( w, w’, p) M’ r P+ sffpM } 

-ZZ’tr{ DapyG(~,~‘,~)MI~aPP~rP+~y6M}. (4.19) 

The form factor D,p is again of the same form as Aa and involves two functions, 02 
and Ds. The most general decomposition of the four-index object Dcvorc is similar to 
that of Colprs. However, because of the symmetry of the matrix element (4.19) this 
quantity has to obey the constraint 

Dcypy&, 2)‘) = &&‘, w), (4.20) 

which allows only seven independent functions, D4 to Dlo. We choose the decompo- 
sition 

Dap&, 2)') = 4(w) (ga,gps - gatmr) •t D5(4 ~rsaao 
t OS(w) (g&q6 - g&w - gasiq, + gpsk,) 
t D&J> (W;YS - +Y~)(wP - qua) 
t h(w) (g,,qwz, - gp,w& - scxsqw; •t gmw;) 
t b(w) [ga#Ys - gp,wcxyS - ga6wP?', + gPSw,?', 

t g,,-& - $3y-/cxw; - &x6'-& + @6%w; 1 
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+ a&) [q3wa, - %Y6iq-y - yi+&di + w-&s 
+ icr,,ypv~ - iopyy,uL - icdypvjy + iop6yavk ] . (4.21) 

In total, twenty-five universal functions B;, C; and D; are necessary to parameterize 
the effects of second order corrections to the effective Lagrangian of H&ET. Unlike 
the corrections to the current, there are no relations imposed on these form factors 
by the equation of motion. 

Before proceeding, we have to discuss an additional source of second order cor- 
rections, which is related to the ones encountered above. As discussed in Sec. II, the 
mass A4 in the wave functions that we associate with the eigenstates of &QET is dif- 
ferent from the physical mass mM. It is the physical mass, however, that appears in 
the normalization of matrix elements of the vector current, which one uses to derive 
zero recoil conditions for some of the universal form factors. At second order in the 
heavy quark expansion one has to take into account this difference and perform a 
mass renormalization of the wave function, 

M(v) + Z~“M(v), zz2 = 
J 

% (4.22) 

in the first term in (3.16). Th is is compensated by a counterterm 

[l-~$l”~z?]<(zo)tr{m’I’M} = i4 iI1 - $+$ t(W)tr{M’I’M}, 
Q Q’ 

(4.23) 

which, according to (2.13), effectively adds X1 E to C1 and X2 [ to Cs. 

C. Combined Corrections to the Current and the Lagrangian 

The third and last type of l/m2 corrections arises from the combination of first 
order corrections both to the current and to the Lagrangian, as shown in Fig. 2(c). 
The relevant structures are 

kf’l J { i dzT h’PiDyh,LCi(~)} lM)=-tr{ E-,(v,d,p)M’PM} 

-2 tr{ ,!&-&, v’, p) M’ IV+ @M } , 
(4.24) 

(M’li/ds7’{ h’(-i’D,)I’h,Cl(z)} I&J)=-tr{ E~(v,v’,p)M’PM} 

-2 tr{ E&(v, u’, CL) M’ PP+ PpM } . 
-5. 

As previously, insertions of ,C: give rise to the conjugate matrix elements. The form 
factor E7 may be parameterized as 
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E-&J, d) = El(G) vy + E2(4 UIy + E3W 7-Y * (4.25) 

The most general decomposition of EYap involves eight functions, which we define by 

&@(“, 2)‘) = (&yp - $-/a) [&(w) ‘+ + E5(W) v; + E6(w) y’] 
+ifl,p [ET(~) vy + &3(w) VI, + E9(w> h] 

+{Sar [J%(w) w:, + Eli(W) -Yp] - (a * P,} * (4.26) 

The equation of motion implies u’Ey 10 and ~~~~~~ A 0, which is equivalent to 

El +wE2 - E3=0, 

&+w&+E6=0, 
E7+wEs- E,=O. (4.27) 

Here we have used the fact that u,P+.@M = 0. 
We define form factors E;‘(w) by identical decompositions. In this case, the equa- 

tion of motion leads to the relations 

wE;+E;-E;=O, 

wE;+E;-E;+E;,=O, 

wE;+E:,-E;=O. (4.28) 

These functions are not independent of E;, however, the reason being that the matrix 
elements in (4.24) are related to each other by an integration by parts. This relation 
has its subtleties, since insertions of Li renormalize the masses of the states in the 
effective theory and, therefore, modify the z-dependence of the “bare” states in (2.7). 
In addition, there is a contact term arising from the action of the derivative on the 
B-functions in the time-ordered product. We discuss these issues in Appendix C. One 
finds that the differences (E; - E:) are in fact computable in terms of form factors 
introduced earlier. The relations are 

In particular, it follows that E: = E; for i = 3,6,9,10,11, and we will choose these five 
functions as a basis. Then a convenient way of writing the solution of the constraints 
imposed by the equation of motion is -5. 

El + w E2 = w E; + E; = E3, 

El - E2=~Al+w&,, 
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E4+wEs=-E6, 

wE;+E;=Es-EII, 

E4 + E5 = - --&[En+w~z-+l)A2], 

E; + E; = - --& [El1 - $2 - A (w - l)A,] , 

E7+wEs=wE;tE;=Eg, 

E7-Es=IiA3tw&, 
E;-E:,=-iiA,t&, 

where we have introduced the nonsingular functions 

Jo(w) = M4 - h t(w) 
w-l 7 J3(w) = 43(w) - ~2W 

w-l * 

(4.30) 

(4.31) 

Consistency of the equations determining Ed,5 and Ei,, furthermore requires that, at 
zero recoil, 

2&(l) - &l(l) = 42(l). (4.32) 

The constraints imposed by the equation of motion allow us to prove a second 
theorem: 

Theorem 2: Matrix elements describing the mixed first order correc- 
tions to the current and to the Lagrangian vanish at zero recoil. 

It follows from the fact that, under the traces, 

Erhd A 0-y [El(l) t E2(1) - E3(1)] = o, 

-hd? v> A kp vy [G(l) t Es(l) - E,(l)] = 0, (4.33) 

with identical relations for E:. Thus, at zero recoil only genuine second order correc- 
tions to the current or to the Lagrangian contribute to hadronic form factors that are 
not kinematically suppressed. The conservation of the vector current in the limit of 
equal masses then leads to relations between the universal functions which describe 
the corrections to the Lagrangian, and the parameters Xi and X2 which, according to 
Theorem 1, describe the corrections to the current. These normalization conditions 
me the subject of the following subsection. 
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D. Modified Wave‘ Functions and Normalization 
Conditions at Zero Recoil 

In this section we have shown that at second order in the heavy quark expansion a 
total of 4 + 25 + 5 = 34 universal functions is necessary to parameterize, respectively, 
the effects of corrections to the current, of corrections to the effective Lagrangian, 
and of the combined corrections to both. The richness of the structures that arise 
might seem both impressive and frustrating, and the effort required to compute the 
various traces is quite considerable. However, only certain combinations of form fac- 
tors appear in the final expression for any hadronic matrix element, and it is time 
to organize our results in a more transparent and convenient way by employing the 
concept of modified wave functions introduced in Sec. III. The corrections propor- 
tional to l/m; change the wave function for the initial state meson, but leave the 
final state unaffected (and vice versa for the terms proportional to l/m&). Their 
effects can therefore be accounted for as in (3.12). On the other hand, the corrections 
proportional to l/rn~rn~, affect both mesons and can only be accounted for by a 
combined wave function. We can thus extend (3.16) to second order by writing 

-&tr{JiZk[P+(L~+&~) tp-(Pt+--&!f)]} 
Q Q 

1 
--tr Ey’-l- 

2mQ' 1 K $--J’p; t (ZM’ t &P)P] TM} 

-q,,glmQ, tr{ r [P+ rn~~‘P~ t P- mM!‘PL 

t P+ m+- MM’Pr t P- m!y’Pi] } t . . - , 

where we have performed the mass renormalization for the leading term. Here a “bar” 
denotes Dirac conjugation combined with an exchange of velocities, polarizations, and 
masses. The virtue of (4.34) is that it allows an interpretation in terms of large and 
small components, reducing to a minimum the effort required to perform the traces. 
The structure of @“j is the same as that of Ly in (3.13) and involves six functions 
e;(w). The structure of mMM ’ is more complicated and requires the introduction of 
twenty-four functions m;(w). They are defined in Appendix A. 

Let us now discuss how the various second order corrections fit into this pattern. 
We start with the corrections to the Lagrangian, which according to (4.16) and (4.17) 
preserve the P+ projectors for the initial and final state. Hence, the fifteen universal 
functions B; and C; contribute to ey only and appear in the three combinations er, & 
and es. Similarly, the functions D; contribute to rnyy’ and enter in the combinations 
&r to my. For the discussion of the corrections to the current we restrict ourselves 
to the operators in (4.1), which are obtained from tree level matching of QCD and 
HQET. As explained in Sec. III, one can identify ip h with the small component of 
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the full heavy quark spinor, and those terms lead to P- projectors in the modified 
wave functions. The last operator in (4.1) contains two such terms and consequently 
contributes to m!f/” only. In fact, using the equation of motion its matrix elements 
can be written as 

(M’Ih’(-i3)l?i@ hlM) = -tr{ rPv[yPM@m’ya] PL }. (4.35) 

By evaluating the bracket one readily computes the functions ms to ml+ which appear 
in the parameterization of rnymM’. Because h’ I’ y,vpG”flh = -h’l? ivD i@ h, the other 
second order currents in (4.1) contain one small component and thus contribute to 
ey. To see this, we employ the equation of motion to write 

(M’I h’I’y,~~G@h IAl) = -tr{ M’r P-[y*M TIP@@]}. (4.36) 

The mixed corrections to the current and the Lagrangian have the same structure, 
since 

M’I / i dzT{h’I’i@hh,Ll(~)}IM) = -tr{M’rP_[rYMEy$yYP+SQPMEyaa]}. 

(4.37) 

Thus, both 4; and E; enter in the functions 14,es and es. Finally, the second matrix 
eTement in (4.24) determines the functions ml5 to m24, which appear in the decom- 
positions of rnymM’ and m!!‘. 

The complete set of expressions for e; and m; is given in Appendix A, and in 
Appendix B we compute the meson form factors h; in terms of these functions. Let 
us now use these results to derive the normalization conditions which follow from the 
conservation of the vector current in the limit of equal heavy quark masses, mQ’ = mQ. 

It implies that at zero recoil 

(Mb)1 & YP Q WW) = 2m~ VI, (4.38) 

for both pseudoscalar and vector mesons, which in terms of the meson form factors is 
equivalent to h+(l) = hi(l) = 1. It is now important that we have performed a mass 
renormalization in the first term in (4.34), since rnM in (4.38) is the physical meson 
mass. Using the normalization of the Isgur-Wise function and Luke’s theorem, we 
find from Appendix B in the equal mass limit 

h+(l)=1 t & 
Q 

[S(l) t ml(l) - m8(1)] t . . - , 

h(l)=1 + & [2[2(1) t m4(1) t m5(1) - mii(l) - miz(l)] t ... . 
-5. Q 

Setting the coefficients of the second order terms to zero we obtain two conditions, 
which at tree level may be written as 
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2&(l) t%(l) t 01(l) - 3[ic4(1) t D4(1) t at,(l) t D5(1)] =--AI, 
(4.39) 

2B3(1) t at,(l) t D3(1) - @5(l) t &(I) t 2c,(1) t DC(~)] = --x2. 

More restrictive relations could be derived by including renormalization effects and 
requiring that the logarithmic dependence on mQ be the same on both sides of (4.39). 
The results of such an analysis will be presented elsewhere. 

V. APPLICATIONS AND SUMMARY 

Let us summarize the main results of our analysis. In total, thirty-four universal 
functions appear in second order of the heavy quark expansion of meson form factors. 
We have proved two theorems stating that, at zero recoil, the leading meson form 
factors do not receive contributions from mixed corrections to the current and the 
Lagrangian, and that the corrections to the current can be expressed in terms of Xr 
and X2. The number of universal functions is strongly reduced if one ignores radiative 
corrections and only considers the phenomenologically interesting cases of P + P and 
P + V transitions induced by a vector or axial current. Then all matrix elements can 
be parameterized in terms of ei to & and the five combinations (ml - mg), (m2 + mg), 
(m3 - mlo), (ml6 + mls) and (ml7 - mlg). This can be seen from the relations given 
in Appendix B. 

In the following paragraphs we apply our results to semileptonic B decays and give 
estimates for some of the second order corrections. We also discuss the corrections to 
Luke’s theorem, which arise at second order. For simplicity, we shall ignore radiative 
corrections. 

A. Elastic Form Factors and B + Dtv Decays 

As pointed out in the introduction, the universal form factors of HQET describe 
the properties of the light degrees of freedom in the background of the color field of the 
heavy quark. From this point of view, the Isgur-Wise function is the elastic form factor 
that describes the overlap of the wave functions of the light degrees of freedom in the 
initial and final mesons moving at velocities v and ‘u’. The normalization of t(w) at 
zero recoil reflects the complete overlap of the configurations of the light constituents 
in two infinitely heavy mesons with the same velocity. If finite-mass corrections are 
taken into account, the overlap decreases. In HQET the corresponding corrections 
are described by the functions Li and ei, which represent the corrections to the wave 
function of a pseudoscalar (i = 1) or a vector meson (i = 2). At zero recoil, the first 
order corrections vanish, and using the expression for h+ and hl from Appendix B 
w,e obtain at second order 

(D(u)lV, IB(v))=2~%%i%{l t (~-&b)~&(l) t ‘..}, 

(54 
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(D*(r~)]V,]B*(v))=-2,/~~~t’*w~{l •t &-~b)~&(l) t...}, 

where &Q = 1/2mQ. 
In the nonrelativistic constituent quark model, the mQ-dependence of the overlap 

integral comes from the mQ-dependence of the reduced mass of the light constituent 
quark, my’ = m,mQ/(mQ + mn). For an estimate of f?;(I) we use the wave functions 
of the ISGW model [35] to obtain 

e,(l) = &(l) = -3mi M -0.75 GeV2. (5.2) 

For the numerical estimate we have identified the constituent mass of the light quark 
with A, since rnM = mQ + m, in the ISGW model. 

The matrix element of the vector current between a B and a D meson enters 
the theoretical description of the decay rate for the semileptonic process B + D f! v. 
After contraction with the leptonic current a combina.tion of the form factors h+ and 
h- appears [33], 

dl?(B + D l v) = G; I &I2 
dw 48lr3 

rn; (mB + mo)2 (w” - 1)3’2 

x Ih+(w) - & h-(w)12, 

where S = (zE;z:)” M 0.23 is the Voloshin-Shifman factor [l]. At leading order in 
the heavy quark expansion the form factor is normalized at zero recoil, offering the 
possibility of a reliable determination of Vcb for w 2 1, provided that the corrections 
to the infinite quark mass limit are small. The first order power corrections are indeed 
suppressed by the Voloshin-Shifman factor and have been estimated to be M +2% 
[25]. Including th e second order corrections, we find from Appendix B 

h+(l) - &h-(l) = 1 - (Cc + eb) sL4(1) t (EC - &b)"[-e,(l) - t,(1)] +4&,&t&i 
[4(l) = 1 - 0.7% - 1.3% x 122 ) [ 1 (5.4 

where we have used the heavy quark masses m, = 1.5 GeV and mb = 4.8 GeV, the 
constituent quark model estimate (5.2), and the QCD sum rule results A M 0.5 GeV 
and L4(1) M -A/3 [25]. F or simplicity, the radiative corrections to h+ and h- have 
been neglected. We conclude that, unless the coefficient e4( 1) were unusually large, 
both the first and second order power corrections are small. Although not protected 
by Luke’s theorem, the decay B -+ D C Y thus allows for a reliable measurement of 
xb. 
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B. Determination of Vcb from B + D*l! v Decays 

It has been observed in Refs. [l, 261 that semileptonic B decays into D* vector 
mesons offer an almost model-independent measurement of I&,, since the l /mQ cor- 
rections to the decay rate vanish at zero recoil. In terms of the meson form factors 
one finds 

and hAl (1) is protected by Luke’s theorem [15]. Th us the determination of I& from 
an extrapolation of the spectrum to w 2 1 is model-independent up to terms of order 
l/m2. From Appendix B we obtain at second order 

h/t,(l) = 1 t (cc - &b) [&2(l) - cb-el(l)] t &c&b A, (54 

where 

A=el(l) t b(l) t w(1) t m(l) 
=- ; XI t 2X2 + 4 [04(l) t 2D5(1) t Ds(l)] . (5.7) 

Using (5.2), the first correction in (5.6) is estimated to be -3i2(~c - cb)2 z -3.9%. 
C-oncerning the second term we observe that, except for X1 and X2, the coefficient 
A depends only on form factors which arise from a double insertion of the chromo- 
magnetic moment operator of L1 in (2.4). We shall argue below that these terms are 
expected to be very small. Neglecting them, and using (2.15) as well as the sum rule 
estimate Xi M 1 GeV2 [17], we obtain &c&b A M 5.7%, and thus 

hA,(l) - 1 M 2%. (54 

The main uncertainty in this estimate arises from the uncertainty in Xr, as discussed 
at the end of Sec. II. In the extreme case X1 = 0 we would obtain hAl (1) - 1 M -3% 
instead of (5.8). H owever, in any case the second order correction is small because 
of a partial cancellation of the two terms in (5.6), suggesting that the theoretical 
uncertainty in this method of extracting Vcb is less than a few percent. 

It has been claimed in Ref. [36] that QCD sum rules would predict a second order 
correction to hA, (1) f o as much as -1O%.2 In view of our estimate (5.8) this assertion 
seems unacceptable. Even for Xi = 0 it would imply that l,(l) and e,(l) would have 
to exceed the quark model prediction (5.2) by a factor of three. 

aIt has been pointed out in Ref. [25] that the argument given in Ref. [36] has no theoretical 
foundation. 
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C. Second Order Corrections to Luke’s Theorem 

At the end of Sec. III, we discussed the fact that Luke’s theorem protects the 
meson form factors h+, hAI, hl, and h7 from first order power corrections at zero 
recoil. Although our results show that there is no such nonrenormalization theorem 
at second order, the structure of the l/ m2 corrections to these four form factors is 
particularly simple and allows for a semi-quantitative estimate. At zero recoil, the 
expression for h7 is 

with 

h7( 1) = 1 t (G - Eb)2&?( 1) t &c&b A’ (5.9) 

A’ = $ Xi - 2 X2 + 4 [D,(l) - Ds(l)] . (5.10) 

The other three form factors have been given in (5.1) and (5.6). We observe that 
there is always a correction involving ei( 1) or &(l), depending on whether one deals 
with a pseudoscalar or a vector meson, respectively, Using the quark model estimate 
(5.2), this term becomes approximately -470. It smallness naturally results from the 
squared difference (Ed - Eb) 2. In addition, for hAl and h7 there is a term proportional 
to c&b, which depends on the mass parameters Xi and X2 as well as on form factors 
arising from a double insertion of the chrome-magnetic moment operator. Neglecting 
these latter terms, this correction can be estimated based on a model calculation 
of Xl, since X2 is known from the experimentally observed mass splitting between 
vector and pseudoscalar mesons. QCD sum rules predict that X1 is positive, and 
the corresponding correction tends to cancel the terms proportional to e;, which are 
negative. As a result, the form factors hAl and h7 can only receive small l/m2 
corrections at zero recoil. 

D. Limit of Vanishing Chromo-Magnetic Interaction 

Detailed QCD sum rule analyses of the universal functions that appear at order 
l/m in the heavy quark expansion show that the form factors A2 and A3, which 
arise from the insertion of the chrome-magnetic moment operator in Lr, are much 
smaller than the other two functions, Al and Js [25,37]. The coarse pattern of the 
l/m corrections can be well described by setting A2 and A3 to zero, corresponding 
to the fictitious limit of vanishing field strength, Gap t 0. Let us see what kind of 
simplifications the same approximation implies at order l/m2. 

We start with the corrections to the current. In the limit G”P + 0 the functions 
$1, $2 and 43 vanish, and according to (4.10) th is implies the vanishing of Xi and X2. 
It then follows that 40 = ( w - 1) 4 vanishes at zero recoil, and all corrections to the A 
current can be described by the single function 4. Similar simplifications occur for 
t& corrections to the Lagrangian. Here all universal functions except B1, Cr, and D1 
vanish in the limit G”fl t 0. At tree level, one obtains from (4.39) the zero recoil 
condition 

24 



.- 

&(I) t C,(l) t‘; Di(1) = 0. (Gap + 0) (5.11) 

Finally, the combined corrections to the current and to the Lagrangian are entirely 
parameterized by the form factor E3, since E,, Es, Elo, and El1 vanish in the limit 
of vanishing field strength. 

In the fictitious limit of vanishing chrome-magnetic interaction, the set of thirty- 
four universal form factors is thus reduced to only five functions, a combination 
of which vanishes at zero recoil. Although we are aware of the fact that such an 
approximation can only give us a very simplified picture, we still believe that it might 
be useful for an analysis of the structure of the dominant terms. The expressions 
arising for the functions e; and m; in this limit can readily be obtained from the 
general formulas given in Appendix A. 

E. Summary 

Using the heavy quark effective theory, we have performed the expansion of matrix 
elements of heavy quark currents between pseudoscalar or vector mesons up to second 
order in inverse powers of the heavy quark masses. The general description of the 
power corrections arising at order l/m2 involves a set of thirty-four Isgur-Wise form 
factors, which are universal, mQ-independent functions of the kinematic variable w = 
u . v’. These form factors are defined in terms of matrix elements of higher dimension 
operators in the effective theory. 

Apart from some normalization conditions imposed by vector current conserva- 
tion, the universal functions are hadronic quantities which cannot yet be predicted 
from first principles. Nevertheless, we have argued that in certain cases of phenomeno- 
logical interest the l/ m2 corrections are parameterically suppressed. In particular, 
the corrections to the semileptonic decay rates for B --+ De u and B + D*lu at 
zero recoil are estimated to be small, not exceeding a few percent. Our results thus 
support the usefulness of the heavy quark symmetries for an accurate determination 
of the weak mixing parameter V&, from these decay modes. 

Although the structure of second order corrections to various decay rates is quite 
complex, we believe that a classification in terms of universal form factors is still a 
useful concept. In particular, this might provide a framework in which to analyze 
various models. For instance, we have shown that the second order corrections to 
elastic form factors arising from the mQ-dependence of the reduced mass of the light 
constituent quark in a nonrelativistic quark model are accounted for by our functions 
ei and &, and an estimate of the effect gives e,(l) M &(l) z -0.75 GeV2. This 
information can then be used to predict corrections to other form factors, whose de- 
pendence on e1 and f!, is known from heavy quark symmetry. We have also suggested 
that, for an estimate of the dominant corrections, one might consider the limit of 
v’anishing chrome-magnetic interaction, in which only five of the thirty-four universal 
form factors remain. The usefulness of such an approximation is supported by QCD 
sum rule calculations of the form factors appearing at order l/m in the heavy quark 
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expansion. 
The analysis presented here for mesons can straightforwardly be extended to other 

hadrons containing a single heavy quark. The particularly interesting case of the A 
baryons is discussed in Ref. [27]. 
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APPENDIX A: COMPUTATION OF THE MODIFIED WAVE FUNCTIONS 

According to (3.13), the general structure of the modified wave functions ey 
introduced in (4.34) is 

f$=m(-Y5)&, 

ey = da [p2 •t ev’e,] ) 

f = a(-+4 ) 

e” = diz [#, + ev’&] . (Al) 

The coefficients & are functions of w = u . v’. Similarly, we choose the following 
decomposition for the product wave functions rnyy’: 

rn:T = xhi?XF ml ( -y5) y5 = -diEiF ml , 

m:F = hE@ [m2 (-y5) f!” + m3 (-y5) t’*.‘~] , 

my: = xhi?iF [rni {ys •t rn; ~.dyj] = Fii~~, 

rn,Vy = diEiF [m4 f!f!‘* + m5 tee’* -I- m6 f?c’*.v + rn: {‘* c.v’ + m7 c.v’c’*. v] * ow 

An identical decomposition with functions ms to ml4 applies for m!!?. Finally, we 
define 

mpp +- = -dMW ml5, 

mT!f = d%EiF [ml6 (-75) #‘* t ml7 ( -y5) E’*.o] , t w 

m:P = hE@ [ml8 #y5 t 77219 c.v’y5] , 

my! = &EiF [m20 { &‘* •t rn21 c.c’* -I- m22 &c’*.v + rn23 {‘* 6-v $ m24 c.v’d*.v 
I 

, 

and rnyy’ is described by a set of related functions m:, since rn!y’ = i?iyI”. In 
these expressions a “bar” means Dirac conjugation combined with an exchange of 
velocities, polarizations, and meson masses. Also, because of radiative corrections 
the functions !i and m; depend logarithmically on the heavy quark masses, and rn: 
are related to m; by an interchange of mQ and mQ’ in the renormalization factors. 
At tree level there is no such difference, and e; and m; are universal, mQ-independent 
functions. 

The tree level expressions for these functions can be obtained by evaluating the 
&ious traces, as explained in Sec. IV. We find: 

e, = (A, t 3x2) [ t Bl t 2(w - l)B2 t 3B3 t Cl + 2(w - 1)C2 + 3C3 
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-3C4 - 9C5 - 6Cs + 2(w2 -‘l&c7 + cs) - 4(w - l)(cg + C,,) 
~2=(~l-~2)~tBl-B3tCl-C3-3C4-C5t2C6 

+2tw - l,[(w t l>G - c9 - Cl0 t 3Cll t Cl21 

[3=--2B2 -2c2+4(w+1)c7+2cg - 2ClO -lOC1l - 10C12 

l4= -ALl-w(&t 3$3)-(Wt1)& +4& +343 

-2E3 - 4(w t I)& - 6Eg + 2(w + l)EIo - 4Ell 

l5 = -AL2 - w($o - $3) - (W t I)$1 t 2d2 + 43 + 2(w + l)Elo - 2Ell 

&=-&[i\L2 $ f( w - lP3tGo - $3)t(wt1)& - 42 

- E3 t 2(w t 1)-G t Eg - 2(w t l)Elo t El,] (A4 

ml = D1-k 2(w - l)D2 + 3D3 - (2~ + l)D4 - 9D5 - 6DG 

-2(w - I)[@+ l)(2D7tDs)+& -8&o] 

m2 = D1 t (w - l)D2 t D3 t 04 t 305 t 2Ds - 2(w - l)(Dg t DIO) 

m3 = -202 t 2D4 + 2(w t l)(2D7 + Ds) - 209 - 10Dl0, 
m4 = D1 - 03 -I- (2~ - l)D4 - 05 - 2(2w - l)D6 

t2(w - l)[(w+1)Ds - 209 +2D10] 

m5 = -4wD4 + 4(2w - 1)DG - 4( w - l)[(wt I)& - 2&+2D10] 

m6 = -2D2 - 2D4 •t 406 - 2(w -I- l)Dg •t 6Dg - 2Dl0 
m7 = 4D4 - 806 - 407 + 4wDs - 809 -I- 8Dlo 

m8= 40 t Ah t 5 [(w t l)& - 642 - 21\,54] 

mg=$i[- w w-N2 - w)42+ 343 - A(w- 1)L4] 

m~~=d+ &[3$2 t ;d'3t11L4] 

m11=-$0 - (wt l)& t aqi, +2#i, 

m12 = 240 + 2wh - & [2w#J2 t (2w $ l)& t q, - l)L,] 

m13 = -4 t & [d2 + i&i t ii(L4 - 2L,)] 

m14=-~~t& [4(w + l>h - 2(3w i- 4)$2 $ (w + i?)d3 

t 4AL4 - 2&(4 - w)L5] 

w9 

t w 

-w5=-iZL1tJot 333 - 24, 
-2E3 - 4(w t l)E6 - 6Eg + 2(w + l)Elo - 4Ell 

ml6=-AL2t& - J3 -2E3 t 2Eg$2Ell 
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ml7 = -& [$(w - l)L3 - $2 - a& + l)& + (w + 1)&J + E,,] 

ml8 = -% + JO + ST3 - %j& 

rnlg=-& AL [- 1 - $0 - 36s + 24, - E3 - qw + l)& - 3& + (w + l)&) - 2&l] 

m20 = --AL2 + Jo - J3 - 2(7-u + l)Elo + 2E11 

m21= 4(w + l)Elo - 4E11 

m22 = -* [A(w - 1)L3 - 24, - 2(20 + l)Elo + 2Ell] 

m23=& [ - AL2 + $0 - $3 + E3 - Jr39 - (w + l)EIO] 

m24=-& [$J - l)L3 - 62 + (w + l)& + (w2 - 1)EuJ - t&] W) 

Eq. (4.32) ensures that there is no pole in m24 as w + 1. Note that the first term in 
eI and & compensates the mass renormalization performed in (4.34). 

APPENDIX B: MESON FORM FACTORS 

Let us set EQ = 1/2mQ. Then to second order in the heavy quark expansion the 
meson form factors 15; introduced in (3.17) are given by: 

eh+ = t + (&c + &b) L1 + (ez $ &t ) !I + EC&b (ml - m8) 
h- = (&c - &b) L4 + (E; - E;) l4 w 

hv = t + E, (L2 - L5) + &b (LI - L4) 

& (!2 - l5) •t $ (ll - 14) + &c&b [(m2 $ m9) - (ml6 -k ml8)] P4 

hAI = ( + &2 - eL5) + &b (LI - sL4) 

+&E (e2 - se5) + &i (tl - se4) + E&b [(m2 + mg) - s(mlf3 + m18)] 

hA2 = EC (&I -I Lc) + &,” (& + -%) -t &c&b [(m3 - ml0) - (ml7 - mlg)] 

hAg=~+Ec(L2-L3-L5+Lo)+Eb(L1-L4) 

+g (l, - e3 - l5 + 43) + &; (4 - e,> 

+wb[(m2 •t m9) - (m3 - ml0) - (ml6 + ml8) - (m17- mEI>] W) 

hl =t + (G + Eb) L2 + (Ez + $)e2 + &c&b [(m4 - %I) + (m5 - m12)] 

hz = (Cc - Eb) -b + (E,” - E;) -es 

,h3 = t + cc [L2 + (w - 1)L3 + L5 - (w + l)&] + Eb (L2 - L5) 

+g p2 + (w - q-e3 + !5 - (w + 1)&l + e; (-e, - e,> 

+wb Km4 - mll> + (m5 - m12) - (w - l)(m6 - m13) - (w + l)(m22 + m23)] 
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h4 = h&c * &b) 

h5 = EC CL3 - L6) + Ez (43 - e6) + E&b [(me - ml3) + (m7 - m14) - (m22 + ma3)] 

h6 = h&c * Eb) w 

h7 = [ + (EC + &b) L2 + (E; + $) l2 + &c&b (Q - mll) 

h8 = h2 ( w 

These relations are valid at tree level. The radiative corrections to the leading and 
subleading terms in the heavy quark expansion have been calculated in Refs. [3,38, 
391. 

APPENDIX C: MODIFIED WARD IDENTITIES 

Here we derive Ward identities which relate the derivative of the matrix elements 
in (3.10) to the matrix elements in (4.24), in which a derivative acts on the current. 
These identities are needed in Sec. IVC to express the universal functions EL in terms 
of Ei and other form factors. Let us consider the following matrix element: 

(M’I J(z) JM + 6M) = (M’I J(z) IM) + & (M’I i/dz T{ J(z), ,c,(z) } IM) . 

J(z) is a heavy quark current in the effective theory, IM) is an eigenstate of &JET, 
and IM + SM) d enotes an eigenstate of ,CHQET + &Cr. In contrast to (2.7), we have 

IA4 + SM), = exp 
[ 

- i(A + ~)zJ. *] I1M + SM)0. (C2) 

Using this fact, we find to order l /mQ 

if id; (M’I J(z) IA4 + SM) = id; (M’I J(z) IM) + $ WY M’I 44 IW 

dJ: U  44, U4 > IW - (C3) 

Collecting terms of order l /mQ, we thus obtain 

[it?; - A (w - w~)~] (M’I i/dz T{ J(z), ,C,(x) } lA4) = ArnL ‘uy (M’I J(z) lA4) . 

-c 
F4) 
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On the other hand, carrying out t&e derivative acting on the time-ordered product 
- gives 

id; (M’I iJdz T{ J(z),&(a) } IM) = (M’I iJdo T{ Z$J(z), L,(x) } IM) ( w 

-vy (M’I h’l? P+ [(ill)’ + 2 sapGaB] h IM) . 

Combining (C4) and (C5), we find for the universal form factors the relations given 
in (4.29). 
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FIGURES 

FIG. 1. Diagrams representing the first order power corrections to meson form factors 
in HQET: (a) corrections to the current, and (b) corrections to the effective Lagrangian. 
The squares represent operators of order l/mQ or l/mq. 

FIG. 2. Diagrams representing the second order power corrections to meson form 
factors in H&ET: ( ) a corrections to the current, (b) corrections to the effective Lagrangian, 
and (c) mixed corrections to the current and the effective Lagrangian. The black squares 
represent operators of order l/mQ or l/m*,, the open ones denote operators of order l/m$, 
l/m&, or l/mQmQ,. 

34 



I 

.- 

l/m l/m’ 

( > a 

l/m l/m’ 

u9 

Fig.1 



A : ..;:, 
l/m’* 

l/Ill2 l/m’* l/mm l/mm’ 

A 
l/mm’ 

Fig.2 


