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_ I. INTRODUCTION 

Quantum Chromodynamics (QCD), the generally accepted theory of strong 

interactions, has resisted detailed testing due to the extreme complexity even of 

perturbative calculations. W ith the next generation of hadron colliders on the 

horizon, it is of pressing importance to be able reliably to separate truly new 

physics from  QCD phenomenology; this demands a quantitative understanding of 

hadronic processes and of the proton structure at the amplitude level. 

The most sensitive probes of the proton structure are hard exclusive pro- 

cesses [l]. The analysis of such processes is hindered by the large number of 

Feynman diagrams contributing at tree level. To date, some of the simplest exclu- 

sive processes have been analyzed at leading order [2-4] and even at one loop [5]; 

however, the leading-order calculations have not quantitatively accounted for the 

“Sudakov suppression” [6] f o exclusive reactions by radiation from  isolated colored 

partons, which can have a substantial effect on the cross section. 

In this paper, we calculate the differential cross section for the process 

+yr -+ pj& taking into account the Sudakov suppression in the manner given by 

Sterman, Botts and Li [7-g]. 

The paper is organized as follows: Sec. 2 outlines the leading-order calcula- 

tion, and discusses the use of proton distribution amplitudes. Section 3 discusses 

the origin of the Sudakov corrections, and summarizes the method of [7] for their 

calculation. Section 4 outlines our computational method; in Sec. 5, we dis- 

play and comment on results for four candidate distribution amplitudes [lo-131, 

and describe the sources of theoretical uncertainty. Section 6 summarizes the com- 

putation of the proton form  factor, and presents results for the same distribution 

amplitudes. Finally, Sec. 7 cont.ains our conclusions and evaluates future prospects 

for measuring the cross sections, and the possibility of gaining information about 

the distribution amplitude. 
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_ II. THE TREE-LEVEL PROCESS 

To lowest order, the amplitude for a hadronic process is given by [l]: 

(1) 

where 

[dz] E dzl dz2 dxs 6(1 - Ci pi) , and [dg] E d2bl d2b2 d2bs S2(Ci bi) ; 

m and d are the indices of the wavefunctions and the hard-scattering Feynman 

diagrams, respectively; 

X1,2 are the photon helicities; 

h and h’ are the parton helicities within a hadron of helicity h or h’ ; 

& = m is the hard p recess 4-momentum transfer; and 

&(x, b,p) is the distribution amplitude for partons with momentum fraction 

2 and impact parameter b within the mth wavefunction at ‘separation scale’ 

p (the scale above which processes are deemed ‘hard’). 

A. Distribution amplitudes 

At leading twist, only the S-quark “valence” Fock state contributes to the scat- 

tering amplitude. The most general form of a distribution amplitude (neglecting 

transverse momentum) for this state is 

-t $3(x) Idt(d q(z2) Uf(Z3))) 

(2) 
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_ where f~ is a constant with units of GeV2, determined by the value of the trans- 

verse wavefunction at the origin. 

Note that 22 is always attached to the negative-helicity quark. The &, are 

not independent; rather, we have [lo] 

$3(Q,z2,x3) = d’l(x3,x2,~1) and 42(x) = -h(x) - $3(x) * 

Although the amplitudes $m are known exactly [l] only in the limit ~1 --$ 00, 

several estimates [lo-131 based on QCD sum rules have been advanced as models 

for 4 at p2 N- l-2 GeV2; they take the form 

hn.(Xl, $2, x3> = 120 21 x2 x3 %a(~l,~2, x3) , 

where Pm(z) is a quadratic polynomial. In Table 1, we show the decomposition 

of the model polynomials PI(X) into Appell polynomials, the eigenfunctions of the 

distribution amplitude evolution equation [l]. 

Table 1. Model distribution amplitude coefficients. 

Evolution Eigensolutions Coefficients in 

n bn AZ CZ[lO] COZ[ll] KS[12] GS[13] 

1 -1 1 1.0 1.0 1.0 1.0 

2 i Xl - 23 4.309 3.675 3.255 4.105 

3 1 3x2 - 1 -1.923 -1.484 -1.295 -2.060 

4 $ 3(X1 - X3)2 + X2(522 - 3) 2.248 2.898 3.969 -4.720 

5 g (~1 - x3) (4x2 - 1) -1.156 -2.205 0.315 1.667 

6 4 7x2 - 5 t y (xf $32123 + xi) 0.019 1.026 1.026 9.300 
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To minimize the effect of higher-order corrections, it is desirable to set the 

scale & so as to avoid large logarithmic contributions. In addition to determining 

q2 for each exchanged gluon, we must take into account the fact that the dis- 

tribution amplitudes depend somewhat on the momentum transfer Q2. For the 

eigenfunctions shown, their evolution equation becomes 

with m = (~CB b, + 3C~/2)/@ for the b, given in Table 1; here NC = 3 implies 

CB = 213, CF = 413, and ,8 = 11 - (2nf/3) [l]. Botts and Sterman have shown 

[7] that we should choose the momentum transfer scale Q = w z maxj{]&]-‘}, 

where bj are the transverse separations of the quarks in position space. Thus we 

can easily extract the distribution amplitude analytically for a given b. Note that 

this form for the running of the distribution amplitude takes into account the 

running of f~ and the quark anomalous dimension [l]. 

B. Hard-scattering amplitude 

Following [4], we classify the Feynman diagrams according to the topology of 

the gluon lines, as shown in Fig. 1. 

Class (g) contains 42 diagrams, from the distinct attachments of the photon 

lines, but the color factor is zero; classes (a)-(f) each contain 56 diagrams, and the 

color factor is 4/9. Thus there are 336 diagrams to be evaluated, 192 of which are 

nonzero. 

Fermion denominators in TH are either linear in x and y or of the form Zipj 

or xigj (throughout this work, we use & z 1 - xi), but never proportional to ziyj; 

thus soft propagators are less of a problem, and we neglect fermion transverse 
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Figure 1. Classes of hard-scattering Feynman diagrams. Arrows indicate 

fermion flow. 

momenta in Tf) [8]. S’ mce TH now depends only on sums of the form kl,i + ki,i, 

we obtain a factor in TH of S4(b’+ g), reflecting the heuristic notion that the pfj 

pair is created at a point (the sign in the delta function is conventional; it arises 

from the fact that the p and jj are back-to-back). 

It proves convenient to use 

Tit@) = 264(& a) C@) g4 $1 e2@'(d) p(d) , H (3) 

where e and g are the QED and QCD charges, and Ccd) and e$$ are the color factor 

and the product of the charges of the struck quarks, respectively; then G(d) is the 

product of the two gluon propagators, and Ted) is a (dimensionless) kinematic 
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_ quantity containing the numerator factors and Dirac propagators. To calculate 

pcd), we found it convenient to parametrize the photon polarization vectors by [4] 

~1 = CSI(T) t ,&(.L) , and ~2 = ~2(f) + h(l-) 7 

allowing us to calculate the four photon helicity amplitudes all in one piece. 

To leading twist, we may neglect quark masses so that the u and d quark 

differ only through their charge; then 5?cd) is flavor-independent, and the results for 

classes (b), (d), and (f) can be obtained from those of (a), (c), and (e), respectively, 

by the operation 

& : x1 4-b x3 , Yl * Y3 7 el i-b e3 . 

There is also a charge-conjugation symmetry 

which yields Tgd’ = C(Tf’) for a diagram d; and t c) u crossing symmetry 

XXYH’Y, (f?i-d, e-+8-7r 

gives Tgd’ = X(Tf’). 

We calculated all diagrams in (a) and (c), and used the symmetries X and 

[in class (a)] C o & to check th e results. Our kinematic conventions are described 

in Appendix A, and the values of 5?cd) are tabulated in Appendix B. 

We then derived the ‘subamplitudes’ 5? for classes (b), (d), (e), and (f) by 

application of 

E : (a> t-f (b) , (4 ++ (4 , ce> * (f) 9 
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C : (4 t+ W y (4 * (4 , (4 * (f) * 

Since we neglect the quark mass, helicity is conserved along each fermion line, 

and there are only eight nonzero helicity amplitudes. Because of the symmetry of 

the theory under P and C, only two of these amplitudes are independent. We will 

display results for r(T)(T) -+ P+F+ and r(T)r(i.) + P+F+. 

C. The gluon propagator 

The next problem which we face is the computation of G!, the gluon propagator 

of Eq. (3). To avoid difficulties in convergence and retain numerical tractability, 

we Fourier transform [8,9] only the unrenormalized propagator from (ql, qI> space 

to (a, bd space. 

In momentum space, the gluon denominator has the generic form 

where qI is the portion of the hard-scattering momentum transverse to the proton 

momentum (see Fig. 2), and Zl,i, Z’L,; are transverse momenta within the wave- 

functions. For spacelike ql, we take the Fourier transform to the hybrid (qi, bl) 

space and average over possible orientations of b to obtain 

D space = -J(o (lb - b,lG) Jo (lb; - bjllqI[) 1 

where KO is a modified Bessel function and i, j are the indices of the quark lines 

connected to the gluon [14,15] 
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Figure 2. Diagram A24. Here jq1,ll = lkll = ]Z] sin&,, while qL,2 = 0, 

To find the corresponding timelike propagator, we form the gluon momentum 

as a sum of on-shell outgoing parton momenta to obtain (p1+p2)~ = -(PI -p~)~; 

thus the timelike denominator has the same form as the spacelike denominator, 

Since ql f 0 for gluons of this type, we have the final form [16] 

Dtime(ql,  b) = I(0 (lblfi ) l (4 

For the running coupling constant, we use cys(max{ lqF[, 1/lb112}) [8]; we shall 

see that Sudakov suppression confines the wavefunction to lb/ < A-‘, so that no 

further cutoff is needed. The physical justification for this choice is that very soft 

gluon exchange is suppressed in color singlets, so that for b small the coupling does 

not become strong. The region in which Ibl + A  is strongly Sudakov suppressed, 

so that the divergence of the coupling there does not greatly disturb our results. 
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_ III. SUDAKOV EFFECTS 

A color singlet with zero transverse size is effectively colorless, and initial- 

or final-state radiation of gluons does not occur. However, the transverse size of 

a physical hadron cannot be neglected; for example, if in a pion the quark and 

antiquark are separated by a distance b, then gluons with transverse momentum 

down to l/b will distinguish the pair. The sum of one-gluon corrections to the 

baryon valence wavefunction is proportional to 

Q 
CF -J [ 7r 

%a “ir 
Q 

3-Cexp{-i(b;-bj)*ql} 

i-cj 1 J * KL 
The probability of no radiation is obtained by exponentiating this term [17], lead- 

ing to the Sudakov suppression of exclusive processes for large b. In hadron-hadron 

scattering, Botts and Sterman have shown [7] that the effects of this suppres- 

sion can, to leading-logarithmic order, be absorbed into the wavefunctions by the 

inclusion of a factor 

exp - C [,(,,&,&) - J !/ 71(P)]}* 
i 

l/ii 

(5) 

. 
Here bl z bz -ba, etc.; ~1 is the separation scale, rq the quark anomalous dimension, 

and 

,4(2) A(1) - -- 
4P,2 

z(2y-l-ln2) In f 1 0 
Ac1)P2 

-32p3 [1n2(2a) - ln2(28)] , 
1 
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_ where 

,4(2) =$-$-#nf+t&(,-ln2), 

and Euler’s constant y N 0.577. (Reference [8] defines 6 = + log(bA; our notation 

is otherwise identical.) 

It is the result (5) h h w ic we use to model the effects of the Sudakov suppres- 

sion. As in [8,9], we impose the constraint that s(tQ, b) > 0, so that the ‘suppres- 

sion’ does not lead directly to enhancement. Also, for very small b the function a 

becomes large; in this case, we set s = 0 since these contributions to s are from 

hard gluons (with momentum ;S b-l) and form a skewed subset of the higher-order 

hard-scattering contributions to TH. 

The advantage of this method is that it requires no unphysical parameters, 

such as a gluon mass, to retain finiteness. However, the method rests on an im- 

proved factorization obtained by retaining information about the transverse struc- 

ture of the proton; thus, to implement it, we must be able to model that structure 

(at least in the valence state). 

We can write 

so that dm(z) is the familiar longitudinal distribution amplitude and t,&(b) is 

an x-dependent transverse wavefunction. The definition of &(z) requires the 

normalization [ 181 

&(L 0) = 1 I (6) 
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The form of the noninteracting light-cone Hamiltonian PI 

leads us to consider a transverse wavefunction proportional to [18] 

We must determine the numerical value of a in a manner consistent with its use 

here. We use the virial theorem. A transverse resealing bl + Xbl affects the 

‘potential’ (gluonic) energy of the proton by an amount parametrized by n, E 

(X/(U)) (d(U)/dX). Thus by the virial theorem, we must have 

We Fourier transform in Icl space to obtain 

x (zlsz(bl,l - b1,2)2 t zm(b1,2 - b1,d2 t ~3db1,3 - b.d2) 
1 

1 2 
= exp - 

4(FtYi~) 
(rl22"b~t5223~:+232li)~) ' 

> 

Note that xi “bi = 0 and [d”b] = 9 [dbl. 

Previous calculations [8,9] have set n, = 0, neglecting the b-dependence of the 

proton wavefunction. We take n, = 3 [19] for the results presented here, and use 

n, + 0 to examine the sensitivity of our results. At J;j = 5 GeV, this substitution 

increases the overall normalization by 14%, and introduces variations of less than 

10% for the GS model [20] and 3% for the others. 
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At first glance, inclusion of this transverse wavefunction appears to aggravate 

the divergence at small 5, since the available volume of bl-space increases as any 

xi -+ 0. However, the Sudakov suppression [7] contains the wavefunctions to the 

region where ]&I < A-‘. 

IV. CALCULATIONS 

Combining the results of (2-6) with (l), we obtain 

X exp 
{ 

- C [S(XjQ, ij) - j 9 7q@)]} 
j 8;' 

x c 128n3 oqED e$) C@) cYs(q1; 6) a,(qa; “b) W) W(X1, x2; h, h’) 

(4 1 

(8) 
To obtain definite predictions, we must make some simplifying assumptions. 

First, we replace the running coupling constant od(p2) with the nf = 3 form 

aJlQ2) = (33 - 2,;;; @2/A2) + 
47r 

91n (p2/A2) ’ 

we take A E A$ = 200MeV. The range of momentum transfers which interest us 

runs from a few hundred MeV (b-l where b is a typical quark impact parameter) 

to several GeV (Jm, where zi and yi are typical parton momentum fractions 
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and fi ranges up to 7-8 GeV), which is almost exactly the region in which this 

approximation is viable. Certainly the resulting errors are minimal. 

This form for the coupling constant allows us to rewrite (8) as 

hh’ 37 aQED fi (In $7’” 

X 5 J [dx] [dy] x1x2x3 Pm(X) YlY2Y3 Pm(Y) 
m=l 

x km c J [ 2) D(q1, ij) o(42, k) 
(d) In (max{ $ ,&}) ln(max{$,&}) F(d)(X1’X2’h’h’) 1 

exP -s(xiQ, ii) - s(yiQ,“b;) - $$ (v + T) ai 
X > 

[ - ln(8fA2)]4’g 1 3 
where 

Pm(x) is a sum of Appell polynomials with weights determined by the 

input distribution amplitude and by o E maxi{ I&l-1}; 

(4 . em IS the product of QED charges; 

D(q,g) is the gluon propagator; 

ql, q2 are the gluon longitudinal momenta; 

“b. “b 3, k are the transverse separations of the corresponding quark lines; 

F(d) is the hard-scattering subamplitude of diagram d; 

s(xQ, b) is the Sudakov suppression of [7]; and 

3$/20 is the inverse mean impact parameter for the wavefunction 

in our ansatz. 
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_ Many of the individual subamplitudes F(d) diverge as CC;‘, and the gluon propaga- 

tors diverge as ln(si). However, the distribution amplitude and transverse wave- 

function contain factors of xi, so that the integral remains convergent. To increase 

the numerical stability of integration, we use the change of variables 

21 = t2 , x2 = 31 
1 -I- sin [7r(7j - l/2)] 

2 

and similarly for [dy]. 

We integrated the resulting form numerically, obtaining the results shown in 

Figs. 3-7; in all cases, the statistical errors of the numerical integration were less 

than 4%, small enough to make no discernible contribution to the overall theoretical 

uncertainties. 

V. RESULTS AND COMMENTS 

Three effects original to this paper cause our results to differ from those of 

its predecessors [2-31: the Sudakov suppression itself; the consideration of the 

transverse wavefunction; and the running of the distribution amplitude. 

The full amplitudes are shown in Fig. 3 for same-helicity photons and in Fig. 4 

for opposite-helicity, with s = 25 GeV2 in both cases. The same-helicity amplitude 

is odd in cos Ocm due to crossing symmetry. 

The effects of replacing the Sudakov correction with the cutoff CY~ 2 1 are 

shown in Fig. 5. It is notable that for some values of O,,, the “suppression” 

actually leads to an enhancement in rtrl --$ pjj. 
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Figure 3. Amplitudes for ytrt + pf& with s = 25 GeV2. 
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Figure 4. Amplitudes for ylrt + pj$ with s = 25 GeV2. 
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Figure 5. Effects of Sudakov suppression on M (rr + pp), with COZ wavefunction. 

Scaling of amplitudes is exhibited in Fig. 6(a) for same-helicity photons 

(remember that the amplitude is odd in cos8) and in Fig. 6(b) for opposite- 

helicity. Both adhere closely to the dimensional-counting expectation Q 0; ss4 

when s X  (5 GeV)2; th’ 1s is a sign that our method is trustworthy at these energies. 

Figure 7 presents our predictions for the timelike Compton cross section. The 

size is quite sensitive to the choice of distribution amplitude. Recall that the 

cross section is proportional to frtr; f~ has been determined only approximately 

[loI (fN = 5.1 f 0.3 x lo- 3 GeV2). This uncertainty, combined with inevitable 

experimental normalization uncertainities, means that the total cross section alone 

is not a good test of the validity of a distribution. A  more valid test, the shape of 

the cross section, is nearly the same for the three main distribution amplitudes we 

consider. 

Note the piece of the cross section shown for the asymptotic wavefunction, 

which resembles none of the candidates in this energy regime. 
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Figure 6. Violation of scaling in (a) rtrt + pp; 

(b) Tl-yt + pji, with COZ wavefunction. 
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Figure 7. Normalized unpolarized differential cross 

section for yr + pj.j (calculated at s = 25GeV2). Data 

are from the JADE Collaboration, Phys. Lett. 174B, 

350( 1986). 18 
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_ VI. THE PROTON TIMELIKE FORM FACTOR 

The methods discussed above can also be used to derive the timelike proton 

form factor 

Ff(q2 > 0) s 
M(e+e- + pp) 

M(e+e- + P”+P--) ’ 

In fact, the calculation of the form factor (neglecting F2) offers several simplifica- 

tions: 

l the number of hard-scattering Feynman diagrams is greatly reduced 

(to 42, 28 of which vanish). 

l all internal gluon momenta are timelike and purely longitudinal. 

l there is no nontrivial angular or spin dependence. 

The highest-energy currently available measurements of this form factor are those 

of FNAL E760 [21]. Figure 8 shows our predictions for the form factor and the data 

of [21] as a function of q 2. Again, the dimensional-counting rules are very accurate. 

Furthur experiments at FNAL E760 hopefully will extend the measurement of Ff 

to higher a. 

Figure 9 shows the dependence of the normalized form factor on a cutoff 

“b < b,,,. Note the upward kink at b,,, ZJ 0.9; in this region, the one-loop running 

coupling os begins to grow large for small ql, but the Sudakov suppression is not yet 

forceful. The interplay between factors contained in M at given b is illustrated in 

Fig. 10, in which we have chosen for definiteness qt = qz = 35A2, a typical gluonic 

momentum for fi 1! 5 GeV. At small b, the logarithmic divergence of I(o(b&) is 

cancelled by the lack of phase space; as b + A -l, the divergence of the coupling 

constant is overwhelmed by the Sudakov suppression, The dominant region in our 

example is around b,,, N 0.6A-l, while the threatening ‘kink’ region is just above 

b - 0.9A-‘. In the high-energy limit, this kink will entirely disappear as the max - 

Sudakov suppression begins to force bmax ,$ Q-l. 
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Figure 8. Normalized proton timelike form factor 

q4Ff(q2). Data are from Ref. [21 1. 
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Figure 10. Factors contributing to dM/dbmax. 
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Figure 11. Ratio da(ry + nfi)/da(ry + pp) 

for candidate distributions at s = 25 GeV2. 
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Table 2. Model distribution results for .&y,e+e- and Fit/J’:. 

Model cz [lo] coz [ll] KS [12] GS [13] Asymptotic 

wF,p 0.237 0.240 0.218 0.042 0.253 

Qe+ e- 5.55 8.9 12.4 19.1 200 

The size of the ‘kink contribution’ is a measure of the unreliability of our 

results; it is about 30% at $ = 3 GeV, but decreases to 10-150/o for fi = 5 GeV. 

This is comparable to the difference in the predictions for the COZ and CZ or KS 

wavefunctions; thus measurement of the form factor alone is not a powerful test of 

the proton distribution amplitude. 

The neutron form factor Fr and the amplitude for 77 + nii can be calculated 

in identical manner. It is unlikely that these measurements can be extended to 

such high energies, but proposed experiments at Frascati [21] may measure the 

cross section e+e- -+ nii at fi X 3 GeV. Thus we present here our predictions 

for the ratios F;IR/Ff (see Table 2) and a(~7 + nfi)/a(rr + pjj) (Fig. 11). 

Perhaps the most interesting quantity, due to its freedom from theoretical and 

experimental normalization uncertainties, is the ratio 

Figure 12 shows our predictions for this quantity. This ratio is much smaller 

for all of the candidate distributions than for the asymptotic, reflecting the strong 

suppression of the form factor using the asymptotic wavefunction. The values 

given include a correction of about 8% resulting from the running of ~QED. 
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Figure 12. Ratio Ry71ete- for candidate distributions 

at s = 25 GeV2. Part of the curve for the asymptotic 

wavefunction is also shown. 

The major source of model dependence in Ryylete- is the n,-dependence. 

The results presented here were obtained with nU = 3; using the flat wavefunction 

nu = 0 decreases the predictions by 14% at fi = 5 GeV (10% at fi = 7 GeV). 

Certainly the flat wavefunction represents an unphysical limiting case; we maintain 

that this difference can be treated as a generous upper bound on the uncertainty 

due to variation in n,. 

The overall ratio 

R-fy/e+e- z 
o(PF + 77; earn > 30’) 

a(p$ --$ e+e-;&, > 30’) 

is displayed in Table 2 for each candidate distribution. This ratio is highly sensitive 

to the choice of distribution; it is also much easier to measure than either the shape 

of the da/dR(pp + 77) or the running of Q4Ff. Hence, it is probably one of the 

best tests of the proton distribution amplitude. 
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_ VII. CONCLUSION 

The value of the formalism of [7] is that it allows a consistent perturbative 

treatment of hadronic processes without resorting to arbitrary cutoffs. Thus the 

results we have just derived are (to next-to-leading log) trustworthy predictions 

of QCD; the size of potential errors is estimated by the magnitude of the kink 

contribution in the form factor, and of scaling violations in pjj -+ yy. It is our 

belief that the model dependence of our main result, the prediction of Ryyletc-, 

is less than 15%, which is certainly adequate to allow tests of model distribution 

amplitudes. 

High precision measurement of R,,l,t e- may be attainable at FNAL E760, an 

antiproton accumulator experiment, or at the proposed SuperLEAR facility. This 

would open the door to @recision tests of the proton wavefunction, and set us on 

the road toward understanding QCD at the amplitude level. 

24 



. . 

_ ACKNOWLEDGMENTS 

I would like to thank M. Peskin, G. Sterman, and H. Lu for helpful conversa- 

tions, and S. Brodsky for invaluable advice. 

25 



I : 

.- 

_ APPENDIX A. KINEMATICS AND CONVENTIONS 

We computed all amplitudes in the center-of-momentum frame, with the out- 

going proton momentum along the positive z-axis, and the y-axis perpendicular to 

the scattering plane. That is, 

P = Jw, 0,0,1> proton ; 

p’ = E(l,O, 0, -1) antiproton ; 

Ic = E(l,sin6,0,cos0) photon 71 ; 

k’ = E(1, - sin 8,0, - cos 0) photon 72. 

For the photon polarization vectors, we chose 

El(T) = -$j(cos 0, i, - sin 6) , Cl(J) = &(-cos0,i,sin0) ; 

Q(T) = +(cos 0,-i, - sine) , Q(J) = -+0sO,-i,sinO) . 

We worked in the helicity formalism [22] in which the Dirac matrices are 

&-1, . 7i = TO’ . 

This yields 

$+=$I_ =-2E #- =$+=-2E 

,V+ =dt’- = -2E $- =dt’+ = -2E 
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_ where s =, sin(8/2), c E cos(O/2); the polarization vectors become 

es+ = -E,- =&ii 
SC7 - SC6 927 + c26 

-c27 - 526 -SC7 + SC6 >. 

For an external quark line, we need a factor s-~/~u*(zP) = u&(p). 

These spinors are 

u+(P)=m (1 0) 9 u-(p)=ds (0 1) ) 

for the outgoing quarks, and 

v+(p’) = AZ 
0 

> 1 ’ 
w-(p') = m 

( 
;l 

for the antiquarks [4]; the subscript denotes the helicity. 

We find it convenient to adopt the notation 

(xi, Yj) f (Sip + yjp' - k)2 = -lCigj S2 - rF'iYj C2 n 
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