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Abstract 

_ A finite element field solver for dipole modes in ax- 
isymmetric structures has been written. The. second-order 
e&men& used in this formulation yield accurate mode fre- 
quencies with no spurious modes. Quasi-periodic bound- 
aries are included to allow travelling waves in periodic 
structures. The solver is useful in applications requiring 
precise frequency calculations such as detuned accelerator 
structures for linear colliders. Comparisons are made with 
measurements and with the popular but less accurate field 
solver URMEL[l]. 

structure. They are connected by a L translation operator, 
R : I?left + r@,t. The fields in a periodic structure are 
decomposed into modes with phase advance $ in accor- 
dance with Floquet’s theorem. Symmetry boundaries are 
also available. 

Strong Formulation 

Combining Maxwell’s curl equations yields the follow- 
ing strong formulation for dipole modes: given the phase 
advance $, find the eigenvalues w2/c2 and eigenmodes B 
such that 

Introduction V x (V x B) - $B =0 in 0, (14 

The finite element field solver YAP[P] has been ex- 
tended to calculate dipole modes to aid the design of 
detuned accelerator structures. The detuned accelerator 
structure is a disk loaded waveguide with cell parameters 
(diameter 2b, disk aperture 2a and disk thickness t) vary- 
ing along the structure such that the lowest synchronous 
dipole modes of the cells have a gaussian density distribu- 
tion .while keeping the phase velocity of the accelerating 
mode constant. The fortiulatioh described here yields the 
synchronous dipole mode frequency with accuracy better 
than 30 ppm. An accuracy less than 10s4 is desired. Com- 
bined with YAP’s high accuracy monopole field solutions 
for the accelerating mode, the parameters of the detuned 
structure can be determined with errors less than machin- 
ing tolerances. This design process requires only minimal 
cold-testing and furthermore, with precision machining, it 
could eliminate the need to tune each cell of the structure. 

ii x (V x B) = 0 on rmetalr 
B, =0 and B@ = iB, on raxis, 

ii x (V x B)I,= = -ii x (V x B)l,e’” 
and B(Rx) = B(x)e’@  Vx E rleft. 

(lb) 
(lc) 

Pi 

This formulation does not include all of Maxwell’s equa- 
tions. In particular, there are irrotational solutions with 
w = 0. These unphysical solutions are separate from 
the desired solenoidal solutions which have w > 0. For 
solenoidal solutions, the boundary condition (lb) corre- 
sponds to G x E = 0 and also implies fz. B = 0 on rmetal. 
Boundary condition (lc) states that B is continuous at 
the axis, and boundary condition (Id) is the quasi-periodic 
boundary condition for periodic structures. 

Weak Formulation 

This paper describes the finite element formulation 
used to calculate the dipole modes and then presents some 
test results verifying its accuracy. 

The equivalent weak, or variational, formulation of 
the problem is: given the phase advance +, find w”/c’ and 
B E Y such that for all test fields C E V, 

Finite Element Formulation 

This paper describes an algorithm for finding the mag- 
netic field B. Changing the boundary conditions on the 
metal walls will yield the electric field E instead. The 
magnetic field B has three components B,, B, and B+ 
which have an assumed time dependence esiwt and az- 
imuthal dependence einid with m = 1. Modification of 
the boundary conditions and elements on the axis will al- 
low solutions for m # 1. The interior of the structure in 
the (z, p) pl&fie is R. Consider four types of boundaries: 
r metal, I’axis, rleft and rright. The last two boundaries 
are the left and right boundaries of one cell of a periodic 

J (VxC)**(VxB)-$C**BpdR=O (2a) 
n 

where 
V = {A E H(cur1) : 

A(&) = A(x)e’” VX E ITleft, (2b) 

A, = 0 and A@ = iA, on raxis}. 

* Work supported by Department of Energy, contract 
DE-AC03-7GSF00515. 

The set H(cur1) contains all vector fields A for which the 
integral (2a) with C = B = A exists. This condition con- 
strains the tangential component of A (i.e., B and C) to 
be continuous across an interface, for example between two 
elements. There is no such constraint on the component 
of the field normal to an interface, but the finite element 
solutions below yield normal components of the field which 
are near continuous. 
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Finite Element Formulation 

In order to solve for the fields on a computer, a finite 
dimensional subspace Yh c V is used in the weak formula- 
tion above. A field A f vh is a linear combination of basis 
functions. Texts such as Strang and Fix[3] and Hughes[4] 
describe the finite element method, where the basis func- 
tions-are assembled from simple functions on each element. 

-in YAP, the domain fl is partitioned into triangular 
element+ as in the example shown in figure l(a). For each 
element-there is a map xi : ti + R, which is used to 
t&~s~rm_s integrals over 52, to integrals over the master 
efeinent 0 shown in figure l(b). Quadratic maps are used 
to approximate curxed boundaries well. Let the coordi- 
nates of a point in R be T and s. The map for element e 
gives (T&p) = Xe(T,S). 

(4 
Fig. 1 (a) A sphere partitioned into elements. The dotted 

line is the axis and the dashed @e is a symmetry 
plane. (b) The master element 52 and its 6 nodes. 

,The finite element basis is inspired by the works of 
Crowley[5] and NedeleclG]. There are 14 basis functions. 
for elements which are not adjacent to the axis, such as 
RI, 02 and 03 in figure l(a). On such elements the field 
-ipB+ is represented by the usual quadratic lagrangian 
basis functions 

Fig. 2 Examples of vector basis functions for (B,, B,,). 
The size and direction of the arrows indicate the 
magnitude and direction of the basis functions. 

Then a set of vector fields easily assembled into H(cur1) 
are constructed. The fields Li satisfying Li . Vj = 6ij on 
the sides of the element are 

L1 = T&-sR~ L2 = sR1 -tR, L3 = tR2 -rRl. (6) 

Finally, the 8 vector basis functions are 

N7 = TL1 Nlo = tL2 N13 = -2sL3 

N6 = sL1 Nll = tL, N14 = -2tL1. (7) - 
NQ = sL2 N12 = TL3 

N,? 

AT1 = T(2T - 1) & = S(2S - 1) & = t(2t - 1) 

N4 = 4TS N5 = 4st NC = 4Tt 
(3) 

where t = 1 - T - s. In a typical application of the fi- 
nite element method, the lagrangian basis functions would 
also be used for B, and B,, but this leads to difficulties 
with spurious modes. Instead, YAP constructs vector ba- 
sis functions for (BL, BP) as follows. Given the element 
map x, : fi + R,, the vectors Vi tangential to side i are 

v1=-(V2+V3) v2=-2 

The reciprocal vectors Ri normal to side i are 

RI = --CR2 + R3) 

i x v2 *. R2= . 
4’(V2 x V3) 

R3= . 
i x v3 

4. (V2 x V3)’ 

(5) 
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Elements which touch the axis must enforce the 
boundary conditions there. Elements with one corner on 
the axis, such as 04 and Rs in figure l(a), have 11 basis 
functions. Assuming node 2 on axis, the basis functions in 
the form ((B,, BP), -ipB+) are 

N1 = (O,T(~T - 1) + TS) 
N2 = (0, t(2t - 1) + st) 
N3 = (0,4Tt) 

N4 = (-dq,TS) 

N5 = (sL2,st) 

Na = (Thy 0) 
N7 = (tL2,0) 

Ns = (&,O) 
Ns = (TL3,0) 

Nlo = (-2sL3,O) 
Nll = (-2tL1,O). 

(8) 

Elements with one side on the axis, such as & and 07 
in figure l(a), have 6 basis functipns. Assuming side 3 on 
axis, they are 

N1 = (0, s2) N4 = (&,O) 
Nz = (rR3,Ts) Ns = (sL2,O) (9) 
NJ = (tR3, st) N6 = (-2sL3,O). 



The field B is a linear combination of these basis func- quency error to 10 ppm. This is an estimated error of 
tions. Substituting these fields into (2a) yields a general- 150 KHz relative to the lowest dipole ?r mode frequency of 
ized eigenvalue problem which can be solved for the ap- 15 GHz. Measurements on a stack of six identical cells (five 
proximate eigenvalues w2/c2 and eigenvectors B. Careful cells with a shorted half-cell on each end) agree with the 
orientation of the vector basis functions is necessary to calculations. For example, the second lowest dipole 0 mode 
ensure that the tangential component of the field is con- frequency was calculated to be 16.764 GHz. Compared 
tinuous across the element boundaries. This and the quasi- with the measured frequency of 16.761 GHz, the error -ii ‘- 
periodic boundary condition are handled when assembling 3 MHz, or 200 ppm. This is consistent with the 100 ppm 

~th-e element matrices (the integral (2a) restricted to 0,) error estimate for the dimensions of the structure and the 
@to t&*global matrices (the integral (2a) over all of 0). 1 MHz error estimate for the frequency measurement. 
_ - _. Tests 

Tests on the lowest mode of a pillbox and the second 
lowest mode of a sphere are shown in figure 3. A pill- 
box lcm high with a lcm radius has eigenvalue w’/c” = 
13.25956212cmd2 for the lowest mode. A sphere with ra- 
‘dius of lcm has w’/c’ = 14.97874667cmw2 for the sec- 
ond lowest mode. The results show that YAP can provide 
higher accuracy by over an order of magnitude. The rel- 
ative error in the eigenvalue scales as O(h3.*) for YAP, 
0(h2) for URMEL on a pillbox, and O(h) for URMEL on 
a sphere. Inadequate modelling of curved boundaries is 
responsible for the poor scaling observed in URMEL on a 
sphere. 

These results demonstrate that YAP can find mode 
frequencies to a high degree of accuracy. In particular, it 
has sufficient accuracy to aid the design of detuned accel- 
erator structures. 
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Fig. 3 Test on a pillbox (solid line) and a sphere (dashed 

line). 

Careful choice of the basis functions makes this finite 
element formulation preserve the continuum result that all 
unphysical solutions have w = 0, so the spurious solutions 
which plague many field solvers are easily avoided[7]. A 
naive choice for the basis functions often leads to a finite 
element field solver which is unreliable due to the presence 
of spurious modes with w > 0. 

X Band Accelerator Structure 
*. 

An example of an x-band accelerator structure is 
shown in figure 4. The estimated relative error for the 
cdculated frequency for the lowest dipole 71 mode using 
this mesh is 0.0033, and refining the mesh reduces the fre- 

(b) 
Fig. 4 (a) Lowest dipole 7~ mode for an x-band acceler- 

ator structure and (b) magnified view of the right 
nose. The arrows represent the field (B,, B,,) and 
the circles represent the field -ipB$. The sizes of 
the circles and arrows indicate the magnitude of the 
fields. 
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