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ABSTRACT

Drees and Godbole have proposed that, at the interaction point of an e+e−

linear collider, one expects a high rate of hadron production by γγ collisions, pro-

viding an additional background to studies in e+e− annihilation. Using a simplified

model of the γγ cross section with soft and jet-like components, we estimate the

expected rate of these hadronic events for a variety of realistic machine designs.
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1. Introduction

One of the most important issues in the design of future e+e− colliders is the

effect of the beam-beam interaction on the physics environment. A linear collider

operating at a center-of-mass energy of 400 GeV and above requires a luminos-

ity in excess of 1033cm−2sec−1. Such a high luminosity can only be achieved by

colliding tiny, intense bunches of electrons and positrons. In this circumstance,

these bunches interact strongly with one another, producing large numbers of pho-

tons and electron-positron pairs.
[1,2]

This effect potentially creates troublesome

backgrounds for experiments on e+e− annihilation and must be controlled by ad-

justment of the collider parameters or the interaction region geometry.

In a recent set of papers, Drees and Godbole
[3,4]

called attention to another po-

tentially serious background due to the beam-beam interaction, in which photons

created by the bunch collision interact to produce hadronic jets. In some designs,

the rate of this process exceeds one jet pair per bunch crossing. Under these condi-

tions, each e+e− annihilation event would be superposed on an extraneous system

of hadronic jets. Thus, it is important to evaluate this background systematically

and determine its dependence on machine parameters.

In this paper, we will evaluate the rate of hadron and jet production for a

variety of accelerator designs which have been proposed for 500 GeV and 1 TeV

e+e− linear colliders. Three ingredients are needed for such a calculation. The

first is the photon-photon luminosity spectrum for the given linear collider design.

The second is the cross section for hadron production in photon-photon collisions.

The final ingredient is a realistic detector simulation to evaluate what fraction of

the produced hadrons are actually seen by the experiments. For the first two of

these ingredients, we will present an explicit model which can easily be applied to

other accelerator parameters sets. For the third, we will present some illustrative

Monte Carlo calculations. We hope that our analysis will make it straightforward to

incorporate the constraints of the Drees-Godbole background process in any future

proposal for a linear collider. We will also demonstrate that, with an appropriate
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collider design, the Drees-Godbole background can be reduced to a level where it

is quite unimportant.

In Section 2, we begin our study by reviewing the photon-photon luminosity

spectrum at linear colliders. This spectrum is by now well understood. It is given

by a sum of contributions from photons radiated from electrons in the scattering

process (bremsstrahlung photons) and photons created upstream of the photon-

photon collision by the coherent action of the electric field of one bunch on the

particles of the other (beamstrahlung photons). The bremsstrahlung contribution

depends almost entirely on the luminosity for e+e− collisions. The beamstrahlung

contribution depends on the accelerator parameters in a manner which is compli-

cated but which has by now been worked out in some detail. We will present an

explicit parametrization of the photon-photon luminosity spectrum which incor-

porates these two sources in a convenient form. We will also review the case of

a dedicated photon-photon collider, which may be constructed by backscattering

laser beams from the electron bunches of an electron linear collider.
[5−8]

The second ingredient, the value of the photon-photon hadronic cross section

is subject to considerably more uncertainty. One possible model is a vector meson

dominance picture in which the photon-photon cross section is taken to be propor-

tional to the ρ-ρ cross section. In their original work, Drees and Godbole
[3]

took a

very different picture, in which the photon-photon cross section originated from the

scattering of partons which are constituents of the two photons. This model leads

to a cross section which is small at low energies and increases rapidly with energy

above the center-of-mass energy of 100 GeV. Both of these features, we believe, are

unphysical. Their use of this model has led to considerable confusion, especially

in the accelerator physics community, as to the proper way to estimate the im-

portant new background source to which they have called attention. In Section 3,

we will attempt to clarify this issue and to present a physically reasonable scheme

for estimating the photon-photon hadronic cross sections. As Drees and Godbole

have stressed, two separate questions must be addressed. First, what is the total

cross section for hadron production? Second, what is the rate for hadron produc-
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tion accompanied by QCD jets of 5-20 GeV transverse momentum? Both cross

sections can potentially be large enough to lead to rates of order 1 event per bunch

crossing. In Section 3, we will argue that the total cross section is best estimated

using vector dominance ideas. This conclusion is in accord with recent high-energy

measurements of the of γp total cross section at HERA.
[9,10]

To estimate the cross

section for events with jets, we must also invoke the parton-parton cross section for

hard scattering. We will evaluate this partial cross section by introducing a very

simple model, which we call the Reference Model. We will explain why we consider

the Reference Model a better description of the structure of jet production than

the model of Drees and Godbole. This model follows the essential physics of the

‘eikonalization’ scheme of Forshaw and Storrow.
[11]

We have modified their model

so that it contains no free parameters and is straightforward to apply.

In Section 4, we will combine these models of photon spectra and the jet

cross section to estimate the rates of hadron and jet production by photon-photon

reactions for a wide variety of proposed machines. These calculations depend on

the parameters of the machine in a quite straightforward way. We hope that

the calculations of this section will be both sufficiently simple and sufficiently

informative that they can aid in the estimation of hadronic backgrounds for future

stages in the design of e+e− linear colliders.

However, as we have already noted, the full effect of hadronic backgrounds can-

not be understood without a generating hadronic events and passing them through

a realistic detector simulation. The detectors planned for future linear colliders typ-

ically have holes in the forward and backward directions and substantial masking

to avoid the e+e− pairs produced by the beam-beam interaction. Explicit studies

of the Drees-Godbole background have shown that much of the hadron production

either is lost through these holes or appears at very low energy.
[12,13]

In Section 5,

we will report at set of Monte Carlo simulations based on the model of hadron pro-

duction presented in Sections 2 and 3 of this paper. We will quantify the hadronic

backgrounds actually detected for some illustrative machine designs, and we will

show that these backgrounds are indeed minor effects.
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2. Photon spectra from bremsstrahlung,
beamstrahlung and Compton back-scattering

We will describe the spectra which enter γγ cross sections at e+e− linear col-

liders in terms of a photon-photon luminosity function Lγγ(x1, x2). Its parameters

x1, x2 are the fractions of the total energy of the initial electrons and positrons,

respectively, carried by the colliding photons. The luminosity function contributes

to cross sections as follows:

σ(e−(p1)e+(p2)→ X + anything)

=

1∫
0

dx1

1∫
0

dx2Lγγ(x1, x2) · σ(γ(x1p1)γ(x2p2)→ X).
(2.1)

As noted in the introduction, the luminosity function receives contributions

from two sources, beamstrahlung and bremsstrahlung, corresponding to real and

virtual photons. Assuming that the sources of the two photons are independent of

one another, we can write the luminosity functions for an e+e− collider as a sum

of components:

Lγγ(x1, x2) = fv(x1)fv(x2) +
[
fv(x1)fr(x2) + fr(x1)fv(x2)

]
+ fr(x1)fr(x2). (2.2)

In this equation, fv(x) is a modification of the Weizsäcker-Williams distribution

for radiation in a collision process, fr(x) is the average of the beamstrahlung spec-

trum over the process of interpenetration of the e− and e+ bunches. In the cross

term, there may be a geometrical suppression of the virtual photon distribution.

This effect is important in e+e− pair creation at the interaction point in linear

colliders.
[14]

However, the same logic predicts that this effect is negligible for the

process considered here.

To compute the jet production cross section at a jet transverse momentum of

order Q, Drees and Godbole have argued that one should use a modified version of
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the standard Weizsäcker-Williams formula. The standard formula integrates over

all photon transverse momenta. However, only those photons which are off-shell

by less than Q2, can produce jets with transverse momentum of order Q with an

unsuppressed rate. In addition, only a fraction cv of the partons in these photons

will be off-shell by an amount less than Q2. By integrating the formula for the

equivalent photon distribution given by Brodsky, Kinoshita, and Terazawa
[15]

up

to Q2 and applying the additional suppression factor, we obtain

fv(x,Q,E) = cv ·
α

2πx

[
(1 + (1− x)2)(log

Q2

m2
e

− 1)

+
x2

2

(
log

(1− x)

x2
+ 2
)

+
(2− x)2

2
log

(1− x)

(Q2/E2 + x2)

]
.

(2.3)

where E is the electron beam energy and
[3]

cv = 0.85. (2.4)

The distribution (2.3) modifies a simple dependence proportional to logQ2 to in-

clude the correct enhancement at small x and suppression at large x from the

electron kinematics.

In contrast to bremsstrahlung, beamstrahlung occurs in the situation where the

scattering amplitudes between the radiating particle and the target particles within

the characteristic length add coherently. Typically for the beam-beam collision in

linear colliders there can be over a million target particles involved within the

coherence length. The process can therefore be well described in a semi-classical

calculation where the target particles are replaced by their collective EM fields.

High energy e+e− beams generally follow Gaussian distributions in the three

spatial dimensions, and their local field strength varies inside the beam volume. In

the weak disruption limit, where particle motions have small deviations from the z

direction, it is possible to integrate the radiation process over this volume and de-

rive relations which depend only on averaged, global beam parameters. The overall
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beamstrahlung intensity is controlled by a global beamstrahlung parameter ,
[17,16]

Υ0 = γ
〈B〉
Bc

=
5

6

r2
eγN

ασz(σx + σy)
, (2.5)

where 〈B〉 is the mean electromagnatic field strength of the beam, Bc = m2
e/e '

4.4× 1013 Gauss is the Schwinger critical field, N is the total number of particles

in a bunch, σx, σy, σz are the nominal sizes of the Gaussian beam, γ is the Lorentz

factor of the beam, re is the classical electron radius, and α is the fine structure

constant. The collective fields in the beam also deform the other beam during

collision, by an amount controlled by global disruption parameters, which may be

different in the two transverse directions:
[18,19]

Dx,y =
2Nreσz

γσx,y(σx + σy)
. (2.6)

In the most general designs for linear colliders, the photon spectrum due to

beamstrahlung is not a factorized function of the electron and positron sources and

depends on the detailed evolution of the bunches in the collision process. In general,

then, the spectrum of radiation must be computed by detailed simulation.
[20,16]

However, typical beams in linear colliders are very long and narrow. Since all

particles oscillate within the focusing potential that is defined by the geometry

of the oncoming beam, the oscillation amplitudes are small compared with their

periodicity in z. Then the assumption of small deviations from the z direction

remains approximately valid. The main effect of disruption on beamstrahlung

is the change of effective EM fields in the bunch due to the deformation of the

transverse beam sizes. Thus, beamstrahlung is in practice still factorizable even

under a non-negligible disruption effect, if one computes its magnitude using an

effective beam size which takes the global disruption into account.

The proper value of this effective beam size can be found from the luminosity

enhancement factor, defined as the ratio of the effective luminosity to the nominal
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luminosity due to the change of beam size:

HD ≡
L̄
L =

σxσy
σ̄xσ̄y

, (2.7)

The luminosity enhancement factor is calculable analytically only in the D � 1

limit. Beyond this limit the dynamics of beam-beam interaction becomes nonlinear,

and one must use simulations. From the results of these simulations, we can extract

scaling laws for HD and thus for the effective beam size. For the case of round

beams (σx/σy = 1), simulations produce the behavior:
[19]

HD = 1 +D1/4
( D3

1 +D3

){
ln(
√
D + 1) + 2 ln(0.8/A)

}
, (2.8)

where A = σz/β∗, and β∗ is the Courant-Snyder β-function at the interaction

point. This scaling law is valid to about 10% accuracy. Thus for round beams, the

effective beam size is roughly given by σ̄ = σH−1/2
D

.

In realistic designs for high-energy e+e− colliders, the beams are intentionally

made quite flat, with R = σx/σy greater than 5 and as large as 100 in some designs.

In this case, there are separate β∗ values and separate disruption parameters (2.6)

for the x and y directions. Typically, HDx, computed from (2.8) with D = Dx and

A = σz/β
∗
x, is close to 1, while HDy, computed from (2.8) using the Dy and σz/β

∗
y ,

is large. Since the field strength in a flat charge distribution is mainly determined

by σx, this means that the disruption effect and its enhancement of beamstrahlung

will be relatively mild. However, it turns out that the effect of σy is quantitatively

important and cannot be neglected.

We therefore suggest the following prescription for computing the effective

beamstrahlung parameter: Let
[21]

σ̄x = σxH
−1/2
Dx

, σ̄y = σyH
−1/3
Dy

. (2.9)

The exponent (1/3) in the second term is determined from computer simulations

for very flat beams in which the horizontal particle motion is ignored (ref. 19);
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a theoretical basis for this scaling law has been proposed in ref. 22. Then the

effective beamstrahlung parameter is given by

Υ =
5

6

r2
eγN

ασz(σ̄x + σ̄y)
. (2.10)

This prescription gives beamstrahlung spectra which agree with the simulation

results to an accuracy of 10% for colliders with flat beams (R > 5).

Once one has an effective value of the beamstrahlung parameter, it is straight-

forward to derive the photon spectrum.
[23]

The number of soft photons radiated per

unit time, calculated by the classical theory of radiation, is

νcl =
5

2
√

3

α2

reγ
Υ . (2.11)

Note that for a given field strength νcl is independent of the particle energy. This

expression applies to the infrared limit of the spectrum where photon energies

approach zero. For a hard photon, up to the initial energy of the electron, the

quantum mechanical calculation gives a more general formula:

νγ = νcl[1 + Υ2/3]−1/2 . (2.12)

In a multi-photon radiation process, it was found useful to introduce a linear in-

terpolation between these two values. Let x be the energy fraction of the initial

electron carried by the photon. Then define

ν̄(x) =
1

1− x

1∫
x

dx′[x′νcl + (1− x′)νγ ] =
1

2

[
(1 + x)νcl + (1− x)νγ

]
. (2.13)

With these basic parameters introduced, fr(x) is given by
[23]

fr(x) =
1

Γ(1/3)

( 2

3Υ

)1/3
x−2/3(1− x)−1/3 exp

[
− 2x

3Υ(1− x)

]
·G(x) , (2.14)
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where Υ is given by (2.10),

G(x) =
1− w
g(x)

{
1− 1

g(x)nγ

[
1− e−g(x)nγ

]}
+ w

{
1− 1

nγ

[
1− e−nγ

]}
,

g(x) = 1− ν̄

νγ
(1− x)2/3 ,

(2.15)

and

w =
1

6

√
3Υ

2
, nγ =

√
3σzνγ . (2.16)

nγ is the mean number of photons radiated per electron throughout the collision.

The approximations are valid for Υ <∼ 5.

So far, we have been discussing the photon spectra associated with linear collid-

ers operating in a mode to study e+e− collisions. It is also possible to run a linear

collider in a mode dedicated to the study of γγ collisions, by backscattering a laser

beam from each electron beam just before the collision point. The luminosity for

photon-photon collisions should be essentially equal to the design luminosity for

e+e− collisions, without the enhancement factor (2.7). Ten years ago, Ginzburg,

Kotkin, Serbo, and Telnov
[5]

studied this possibility in some detail and displayed

many interesting characteristics of the photon-photon collider. In particular, they

computed the luminosity spectrum of each photon beam. Ignoring polarization

effects,

fc(x) =
1

N
[
1− x+

1

1− x −
4x

X(1− x)
+

4x2

X2(1− x)2

]
, (2.17)

where

N =
(
1− 4

X
− 8

X2

)
log(1 +X) +

1

2
+

8

X
− 1

2(1 +X)2
. (2.18)

The parameterX is related to the center of mass energy of the electron-laser photon

collision: X = (Ecm/me)2, and x is restricted to x < X/(1 + X). Telnov
[24]

has

argued that the optimal value of X is X = 2 +
√

8 ≈ 4.83, and we will use this
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value here. The luminosity function for the γγ collider is then simply

Lγγ(x1, x2) = fc(x1)fc(x2). (2.19)

The formulae tabulated in this section give a complete and rather straightfor-

ward method for computing the photon spectrum relevant to background processes

at future linear colliders.

3. The γγ total cross section

In order to compute hadronic backgrounds due to the photon spectrum de-

scribed in Section 2, we must fold this spectrum with a reasonable theory of the

photon-photon hadronic cross section. Unfortunately, this cross section has been

measured only at very low energies—energies below 20 GeV in the center of mass.

The extrapolation of these measurements even to 100 GeV in the center of mass de-

pends on the theoretical models. In this section, we will describe a simple, specific

model which we propose should be taken as a reference.

The simplest model of the energy-dependence of the photon-photon hadronic

cross section is that given by vector meson dominance. In this model, the photon

is considered to resonate, with some amplitude, to a hadronic state such as the

ρ. Then the photon-photon total cross section should be proportional to the ρ–ρ

total cross section as a function of energy. In practice, among the hadronic total

cross sections, only the pp and pp̄ cross sections are measured above 30 GeV in the

center of mass. We will estimate the energy-dependence of the photon-photon total

cross section by averaging these to remove the effects of baryon exchange. Using

the parametrization of Amaldi, et al.
[25]

(which continues to fit the more recent SPS

and Fermilab data), we have

σ(γγ → hadrons) = σ0 ·
{

1 + (6.30× 10−3)[log(s)]2.1 + (1.96)s−0.37
}
, (3.1)

where s is given in (GeV)2. The same formula, with σ0 = 80 µb, describes the new

high-energy determinations of the γp total cross section from HERA.
[9,10]

To de-
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scribe γγ scattering, the constant may be adjusted so that σ(γγ) = [σ(γp)]2/σ(pp)

in the region of approximately constant cross sections at Ecm ∼ 30 GeV:

σ0 = 200 nb (3.2)

The formula (3.1) is plotted in Figure 1 and compared to direct determinations of

the γγ hadronic cross section.
[26,27,28]

Comparing σ(γp) to σ(πp), we conclude that

the photon is a hadron a fraction (1/400) of the time.

A second model of the photon-photon cross section is one based on parton-

parton scattering. Many authors have speculated that the hard QCD processes

can make a significant contribution to the total cross section in hadron-hadron

scattering at high energies. Drees and Halzen
[29]

proposed that parton-parton scat-

tering could be the dominant process in the photon-hadron cross section above 100

GeV in the center of mass, and that this mechanism would lead to photon-hadron

cross sections which rise much faster than (3.1). This theory of the photon-hadron

cross section was then taken over by Drees and Godbole to describe the photon-

photon hadronic cross section. However, this theory has been criticized in both

contexts by many authors. Let us first write out a simple, quantitative version

of the Halzen-Drees-Godbole theory, and then explain how this theory should be

used in the calculation of hadronic backgrounds.

At the most naive level, the cross section for hadron production by hard parton-

parton scattering is given by folding the parton scattering cross sections computed

in QCD with the experimentally determined parton distributions. In general, this

cross section is infrared divergent and requires a cutoff at low momentum transfer

or transverse momentum. Halzen noted that one can obtain cross sections of the

order of the expected total cross section for hadron production if one takes this

cutoff to be a few GeV. In this calculation, the most important effect comes from

gluon-gluon scattering at small momentum fractions.

Let us define the jet yield Y(p∗) as the expected number of jets with p⊥ > p∗,

divided by the luminosity. The simplest hard-scattering theory of the total cross
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section would be to take

σ(γγ) = σ0 +
1

2
Y(p∗), (3.3)

where σ0 is a constant soft-scattering cross section and the cutoff p∗ is taken suffi-

ciently large that events contributing to the jet yield are not also accounted as part

of σ0. Let us first describe how we evaluate Y(p∗), and then discuss its relation to

the total cross section.

We compute Y(p∗) from the formula:

Y(p∗) =

1∫
0

dz1F (z1)

1∫
0

dz2F (z2)

1∫
−1

d cos θ
dσ

d cos θ
(gg → gg) · θ(p⊥ − p∗). (3.4)

In this formula, θ is the center-of-mass parton-parton scattering angle. We take

the parton distribution F (z) to be the sum of gluon and quark distributions

F (z) = fg(z) +
4

9

∑
i

[fqi(z) + fq̄i(z)] (3.5)

with the appropriate coefficient that we can approximate all of the parton cross

sections by the gluon-gluon cross section:

dσ

d cos θ
(gg → gg) =

9

16

πα2
s

ŝ

[(2 + cos2 θ)3

sin4 θ

]
, (3.6)

where ŝ = z1z2s is the square of the gluon-gluon center of mass energy. The

coupling constant αs is evaluated at the momentum scale p⊥. We compute αs

from leading-order evolution with 4 flavors and Λ = 400 MeV (αs(3 GeV) = 0.37),

the convention of Drees and Godbole.

For the parton distributions of the photon, we use the parametrization of Drees

and Grassie.
[30]

The gluon distribution in the photon is poorly known experimen-

tally. However, this distribution should be calculable theoretically to an accuracy

of about 30% by integrating the Altarelli-Parisi equations, taking as an initial
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condition the gluon distribution in a meson, multiplied by the probability (in vec-

tor dominance) that the photon resonates with a meson. Although Drees and

Grassie took their initial condition from the early photon-photon scattering data

from PETRA, their result actually agrees quite well with the result of this more

theoretical criterion.

The QCD result for the gluon-gluon scattering cross section at low momentum

transfer has much larger uncertainties. First of all, the lowest order QCD result

receives large perturbative corrections. There are further corrections which come

from outside the standard leading-log diagrams of QCD. On the one hand, the

summation of diagrams relevant to multiple gluon production reveals that gluon-

gluon scattering is controlled by a Regge pole which increases the cross section

proportional to a (small) power of the gluon-gluon center-of-mass energy.
[31]

On

the other hand, because the photon is a total color singlet, the amplitudes for

creating low transverse momentum gluons should exhibit cancellations between

the various color sources.
[32]

Both classes of corrections are beyond the scope of

this paper. From here on, we will consider (3.4) as a standard reference point for

the calculation of jet production. We expect that it yields a calculation of Y(p∗)

up to an uncertainty of about a factor of 2.

This said, we present in Fig. 2 the result of evaluating Y(p∗). From the

simplest point of view, this is a theory of the photon-photon hadronic cross section:

σ ∼ (1/2)Y(p∗), for an appropriately chosen value of p∗. This is, in fact, the theory

applied by Drees and Godbole, with the parameter choice p∗ = 1.6 GeV.
[4]

Notice

that for any value of p∗, this prediction for the cross section rises much faster at

high energy than the expectation from (3.1). In addition, this prediction for the

cross section is very small at low energy, since it does not include the effects of

soft hadronic reactions. The dependence of the jet yield on energy and p∗ is well

described by the parametrization

Y(p∗, Ecm) = A1
(Ecm)A2

(A3 + p∗)2
exp
{
− B(p∗)

(Ecm − p∗)C(p∗)

}
, (3.7)
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with A1 = 4000, A2 = 0.82, A3 = 3.0, and

B(p∗) = 14.2 tanh(0.43p1.1
∗ ) , C(p∗) = 0.48/p0.45

∗ . (3.8)

This parametrization fits our numerical evaluation to within 20% accuracy for p∗ <

10 GeV and Ecm < 10 TeV. As we have emphasized, the numerical evaluation itself

is considerably more uncertain. We used this parametrization in the computations

reported in Section 4.

However, it has been argued that the photon cross sections cannot rise as fast

as the jet yield is predicted to rise in Fig. 2.
[33,34]

The easiest way to argue to

this conclusion is to redo the analysis just described for pp̄ collisions and compare

the results to the data on the pp̄ total cross section. This comparison is shown

in Fig. 3(a). Notice that the jet yield calculation using the Drees-Godbole value

of p∗ is completely incompatible with the pp̄ total cross section in a region where

this cross section is well measured. A similar comparison can now be made in

photoproduction following the new HERA measurements, and this in shown in

Fig. 3(b).

In addition to the total cross section, The UA1 experiment has reported mea-

surements of the cross section for events with jet activity, by counting events with

a fixed deposition of transverse energy in a circle of radius 1 in the plane of rapidity

and azimuthal angle.
[36]

In this paper, the experimenters argued that such minijet

events are well defined only for values of the transverse energy of a cluster above 5

GeV. In Fig. 3(a), we show their results for the cross section for producing clusters

of 5 GeV transverse energy, and the comparision of this cross section to half the jet

yield for a parton transverse momentum cutoff p∗ = 3.2 GeV. At the time of these

mesurements, Pancheri and Srivastava
[37]

pointed out that this cross section could

be fit by a simple QCD estimate with a value of p∗ reduced from the observed

transverse energy. The comparision shown in Fig. 3 fixes the size of this reduction

for the Drees-Godbole conventions. To estimate the cross section for events with

clusters of 10 GeV transverse energy, we will use p∗ = 8 GeV.

15



The idea that minijets with only 5 GeV of transverse energy are produced

independently of the underlying minimum-bias multiple particle production is still

controversial. It is possible that a model with incoherently produced jets makes

sense at values of the transverse energy of 10 GeV or above. When we evaluate

jet cross sections later is this paper, we will also illustrate the dependence of our

results on the transverse momentum cutoff p∗.

We will now argue that, in photon-photon collisions, we should see the same

disagreement between the actual total cross section and the jet yield calculation

at high energy. At low energies, photon-photon collisions have an approximately

constant hadronic cross section from vector dominance: each photon resonates,

with a certain probability to a hadron, and these hadrons collide with a certain

total cross section. Taking the probability that the photon is a hadron to be the

value (1/400) given above, and taking the maximum hadronic cross section to be

that of a disc of radius 1 fm, we obtain an estimate

σT (γγ → hadrons) ∼ 300 nb (3.9)

which is in reasonable agreement with (3.1). In order to produce a significantly

larger cross section, either the photon must become larger or it must become a

hadron with higher probability. Resolving the hadronic components of the photon

into partons does not increase the size of the photon. Altarelli-Parisi evolution can

create new hadronic components of the photon, through the diagram in which the

photon off shell by an amount Q splits to a qq̄ pair. This diagram has a substan-

tial effect on the total number of gluons in the photon, but it has only a small

effect on the photon’s hadronic cross section, since the new hadronic component

has the very small size π/Q2. It is possible to explain a slowly rising cross sec-

tion by making a model in which the soft hadron is a grey scattering distribution

which becomes black as the gluon-gluon scattering becomes important. As the

disk becomes black, the effect of gluon-gluon scattering on the total cross section

must turn off. This physical effect can be implemented in a calculational scheme
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called ‘eikonalization’. For the case of γp scattering, models of this sort have been

constructed by Durand and Pi,
[33]

Forshaw and Storrow,
[38]

and Fletcher, Gaisser and

Halzen.
[39]

Forshaw and Storrow have also written an eikonalized model of the γγ

cross section.
[11]

Qualitatively, these eikonalized models have a slowly rising total

cross section similar to that of (3.1). An example of such a model which fits the

rise of the pp cross section has been given in ref. 40. On the other hand, it is possi-

ble that parton hard scattering has nothing to do with the observed rise in the pp

cross section at high energy. In this paper, we will adopt the most straightforward

course, that of taking the formula (3.1) literally as a first approximation to the

energy-dependence of the cross section for hadron production in γγ collsions.

However, we are also interested to know the cross section for hadronic reac-

tions which contain hard QCD jets. It is quite possible that ordinary, low-p⊥

hadronic events produce little complication when superposed on high-energy e+e−

annihilation events, but that hadronic events with jets produce troublesome com-

plications. Thus, we need to estimate backgrounds from events with jet production.

We emphasize that we are concentrating on the case of jets with transverse mo-

mentum below 20 GeV which appear as the result of a second collision at the same

beam crossing as the e+e− annihilation. Above this transverse momentum, parton-

parton scattering decreases in importances as a source of hadronic jets relative to

quark-photon and direct photon-photon scattering processes (the processes Drees

and Godbole call ‘once-resolved’ and ‘direct’).
[3]

However, these latter events are too

rare to appear superposed on a signficant number of e+e− annihilation events.

To a first approximation, the jet yield Y(p∗) computed from (3.4) should be

a valid estimate of the total number of jets produced even when the jet yield

substantially overestimates the total hadronic cross section. The reason for this is

that the individual parton-parton interactions are relatively weak, and it is only

because there are many gluons in a hadron that the sum of these cross sections

saturates the geometrical limit on the cross section. In other words, those events

in which the hadronic disks overlap typically contain a soft interaction plus gluon-

gluon scatterings; if Y(p∗)� σ, typical encounters contain many individual gluon-
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gluon collisions. If we assume that these collisions are completely independent, we

would expect the number of pairs of jets per event to follow a Poisson distribution,

such that the mean number of jets per event is

〈njet〉 = Y(p∗)/σ. (3.10)

The cross section for events with jets of p⊥ > p∗, in this model, is

σ(p∗) = σ ·
{

1− exp
[
− Y(p∗)/2σ

]}
. (3.11)

If the mechanism of scattering changes as a function of the impact parameter, as

is true in eikonal models, there will be small corrections to this simple model. We

will ignore them.

The combination of these ideas has an interesting implication. Y(p) increases

much more rapidly with energy than σ. However, in this picture, the main effect

of the increase in Y(p∗) is not to increase the hadronic cross section but rather

to increase the number of jets per event. For photon-photon collisions, and for

hadron-hadron collisions, above 1 TeV in the center of mass, we expect that the

typical event is bristling with jets of 10 GeV transverse momentum. In Fig. 4,

we illustrate the time structure of events at an e+e− collider in a naive model

and in what we feel is a more correct model of jet production. The latter case

casts the problem of hadronic jets underlying e+e− annihilation events in a quite

different form, and one which is probably much easier to ameliorate. In Fig. 5,

we show the energy dependence of the mean number of jets in γγ collisions with

hadron production, according to our model, for various values of the transverse

momentum. In Fig. 6, we show the corresponding predictions for the total cross

section for a γγ collision to produce events with parton scattering at these values

of transverse momentum. We have already noted that the results for the lowest

value of p∗ is probably academic, since such small minijets cannot be distinguished

in hadron-hadron collisions. The two curves with p∗ = 3.2, 8 GeV correspond to

events with clusters of 5, 10 GeV transverse energy.
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Since Fig. 5 predicts a relatively large number of jets per hadronic event, one

might hope that multiple jet events could be recognized experimentally in γp or

pp̄ collisions at accessible energies. Unfortunately, our model gives fewer jet-like

events in these processes, since the gluon distribution in the proton is softer than

that in the photon. For p∗ = 3.2 GeV, we estimate an average of 0.15 jet pairs for

γp collisions at 200 GeV, and an average of 0.6 jet pairs for pp̄ collisions at 2 TeV.

However, we expect 2 jet pairs per minimum bias event at the SSC energy of 40

TeV, so that the phenomenon of multiple minijets may become observable at the

SSC.

In our model, jet cross sections eventually saturate at the value of the total

cross section. Thus, we must give some thought to the value of Q we should use

in computing γγ total cross sections from the virtual photon distribution func-

tion (2.3). The logarithm in (2.3) comes from an integral over photon transverse

momentum. Ordinarily, to evaluate total cross sections due to soft processes, one

would cut of this integral at a momentum characteristic of the soft momentum

transfer, of order 1 GeV. To compute the cross section for a hard process, one

would run this integral up to the momentum transfer of the hard process and,

therefore, take Q = p∗. However, when the cross section for a hard process with

momentum transfer P is comparable to the total cross section, photons with trans-

verse momenta up to this value contribute strongly to the total cross section, and

we must take Q ∼ P also to compute the total cross section. Using (3.7), we esti-

mated this value as a function of energy. Thus, in evaluating virtual photon cross

sections for jets with transverse momentum p∗, we choose Q in fv(x,Q) according

to the prescription:

Q = max
[
p∗, QH(E), 1 GeV

]
, where QH = (E/10.0)0.43 , (3.12)

and E is the γγ center of mass energy in the collision.

We will refer to the model for the γγ hadronic cross section given in (3.1),

(3.4) or (3.7), (3.10), and (3.11) as the Reference Model (RM). We feel that this
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model is the best compromise available between simplicity and plausibility in the

theoretical extrapolation of the γγ hadronic cross section. We emphasize that the

results of this model related to jet production are expected to be uncertain to at

least a factor of 2.

At some points in the following section, we will compare the predictions of this

model to two additional models which represent the extreme behaviors possible for

this hadronic cross section. On the one hand, there is the Constant Cross Section

Model (CC), in which we take

σ(γγ → hadrons) = 300 nb , (3.13)

independent of energy. On the other hand, there is a model which we will call the

Minijet Dominance Model (MD):

σ(γγ → hadrons) = 300 nb +
1

2
Y(p∗), (3.14)

with the choice p∗ = 1.6 GeV. This is not exactly the model advocated by Drees

and Godbole; they omit the constant term, and, at the end of ref. 4, they argue

that the jet yield estimate should be modified in a manner similar to what we have

described above. However, this model captures the spirit of the explicit calculations

that they have preformed, in a way that can be easily compared with our reference

point.
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4. Hadron production rates

Having now specified our model completely, we can make use of it to predict

the rate of hadronic γγ events to be expected at future colliders. In this section,

we will present the results of applying this model to a variety of specific collider

designs, for center of mass energies of 500 GeV and 1 TeV, both for e+e− and for

γγ collisions. Our set of sample collider parameters is given in Tables 1 and 2.

Table 1 gives a set of designs for 0.5 TeV colliders presented at the 1992 Linear

Collider Conference.
[41]

Table 2 gives a set of designs corresponding to extensions

of the 0.5 TeV machines to 1.0 TeV in the center of mass.
[42]

Before beginning the analysis of specific designs, we would like to present some

results which appear as general scaling laws, independent of the details of the

collider. This will also give us an opportunity to compare our reference model

(RM) with the minijet dominance model (MD) and constant cross section (CC)

models defined at the end of the previous section.

In a linear e+e− collider, the rate of hadronic γγ events per bunch crossing is

obtained as a convolution of the photon spectra from bremsstrahlung and beam-

strahlung. If we ignore beamstrahlung and consider the rate from bremsstrahlung

alone, our results will be independent of the detailed collider design and, for a fixed

design energy, will simply be proportional to the luminosity per electron/positron

bunch crossing. This is also true for the full rate of hadronic events in the case

where the machine is converted to a γγ collider by backscattering laser beams,

since, in that case, the energy distribution of backscattered photons is fixed by the

physics of Compton scattering. As a reference point close to most current designs,

we will assume a design luminosity of

L = 1034 ·
( Ecm

1 TeV

)2
cm−2sec−1 . (4.1)

In typical designs, this luminosity is divided into pulses which are produced at a

repetetion rate of roughly frep ∼ 100/sec. In the most recent designs, which have
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been inspired by attempts both to raise the design luminosity and to reduce the

Drees-Godbole background, the electron and positron pulses are divided into trains

of order nb ∼ 100 bunches, which we will assume can be distinguished in time by

the detector. Thus, we take as our reference value a luminosity per bunch crossing

equal to 10−4 sec times (4.1), that is,

L1 = L/frep · nb = 10−3 ·
( Ecm

1 TeV

)2
nb−1. (4.2)

For any specific machine, the results for bremsstrahlung- or laser photon-induced

hadronic backgrounds can be obtained by scaling the luminosity per bunch crossing

up or down from this value.

The assumption that the hadrons produced at each bunch crossing can be

distinguished in time is crucial to our analysis and deserves some further comment.

This assumption is more or less restrictive depending on which of the specific

collider designs in the Tables is being considered. In designs such as TESLA, based

on superconducting RF cavities, the bunch spacing is typically of order 1 µsec, and

there is no problem timing tracks to much higher accuracy. However, in the designs

based on conventional cavities, the length of a bunch train cannot be greater than a

few hundred nsec, and so the spacing of bunches must be proportionately smaller.

In the NLC design, for example, the bunch spacing is only 1.4 nsec. However,

we do not feel that this is unreasonably small. The drift chamber of the Mark II

experiment at the SLC could time tracks to a resolution of 1 nsec, even though it

was not optimized for this feature. Energy clusters in a calorimeter can be given

time stamps with 1 nsec resolution or better by adding layers of timing detectors,

such as scintillation counters, to the calorimeter. The time between bunch train

crossings is quite long (5.6 milliseconds and 11.1 milliseconds for the 500 GeV and

1000 GeV NLC designs respectively) so that one can make use of timing detectors

with large recovery times.

Now we present our estimates of γγ background rates for the reference machine

defined above, as a function of its energy. We consider first e+e− colliders, ignoring
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beamstrahlung. In Fig. 7(a), we plot the total rate of γγ background events, as

a function of the design energy of the machine, assuming the specific luminosity

(4.2). The γγ cross section is integrated over all solid angle, and down to a γγ

center of mass energy Eγγ of 5 GeV. Notice that the MD model predicts a much

higher level of background, while the RM and CC models are actually quite close

in their predictions. Under the assumptions of the RM model, and assuming that

the multibunch operation called for in (4.2) is indeed feasible, the total rates of

hadronic background seem to be tolerable without a need for further analysis for

e+e− colliders of energy up to 2 TeV. Unfortunately, the assumption of ignoring

beamstrahlung breaks down well before this point.

In Fig. 7(b), we show the corresponding predictions for hadronic events with

observable QCD jets, using the MD and RM models with transverse energies above

5 GeV (computed at p∗ = 3.2 GeV) and 10 GeV (computed at p∗ = 8 GeV). Again,

we integrate over Eγγ > 5 GeV. As the jet transverse momentum increases, the

MD and RM models come into closer agreement. In addition, the number of events

is substantially smaller, especially at e+e− energies of 1 TeV and below.

At this point in the analysis, it is not clear whether the true figure of merit

for assessing the hadronic backgrounds at linear colliders is given by the total

rate of hadronic events or only the rate for events containing jets. In Section

5, we will report simulation results which indicate that both rates play a role

in determining the hadronic backgrounds. Events with jets are more effective in

depositing unwanted background energy, but events of the minimum bias type can

also have some effect. As we proceed to discuss specific collider designs, we will

present the total rate of hadronic events and also the rate of jet events for p∗ = 3.2

and 8 GeV. Taking these three numbers together, one can obtain a feel for the

general character of the hadronic background.

In Fig. 8(a) and (b), we show the results of calculations similar to those of the

previous figure for γγ colliders. Again we assume the luminosity per bunch (4.2);

essentially, we are assuming that high energy electrons can be converted 1-to-1 to
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photons. As Drees and Godbole pointed out, the results for this case are about

an order of magnitude higher than the bremsstrahlung contribution for 500 GeV

machines, rise faster with energy, and considerably more model dependent. It is

comforting, at least, that, according to our reference model, a 500 GeV γγ collider

based on most current e+e− collider designs should not have a serious problem

with its γγ background.

It is interesting not only to know the total number of γγ hadronic events but

also their distributions in the various kinematic variables. Of these, the most im-

portant is the distribution in the γγ center of mass energy Eγγ , since this quantity

determines the multiplicity of hadrons in the underlying event. In Figs. 9 and 10,

we display the center of mass energy spectrum

Eγγ
dn

dEγγ
(4.3)

per bunch crossing for the canonical machine design described above, for Ecm = 500

GeV and 1 TeV e+e− and γγ colliders. These calculations asssume the Reference

Model. Notice that the largest number of background events in e+e− colliders

involve relatively low-energy γγ scattering processes. On the other hand, in a γγ

collider, the luminosity spectrum of the background, like the spectrum of signal

processes, peaks at the highest available energy.

For e+e− colliders, beamstrahlung is an important source of photons. Unfortu-

nately, the results both for the number and the spectrum of beamstrahlung photons

depend on the details of the machine design, and, in particular, on the number of

particles per bunch and the bunch geometry. The disruption effect during beam-

beam collision further complicates the situation, as discussed in Section 2. Thus,

to assess the γγ backgrounds due to beamstrahlung, we must work with specific

parameter sets for proposed colliders. In Table 1, we list six proposed parameter

sets for 500 GeV colliders.
[43]

For each of these, we have computed the number of γγ

hadronic collisions per bunch crossing. In the table, we quote the values of Nhad,

the total number of hadronic events, Njet5, the number of hadronic events with 5
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GeV minijets (computed at p∗ = 3.2 GeV), and Njet10, the number of events with

10 GeV minijets (computed at p∗ = 8 GeV). Each of these numbers is integrated

over the range Eγγ > 5 GeV. We also quote the values of these parameters for the

case in which the electron beams are converted to backscattered photon beams,

assuming no loss of the nominal luminosity.
[44]

In Fig. 11, We show the distribution

of Eγγ for two representative cases, JLC and TESLA. The corresponding spectra

for the photon colliders can be obtained by scaling from Fig. 10(a), as we have

remarked above.

We see from Table 1 that disruption effects have two major impacts of dis-

ruption on beamstrahlung and the γγ backgrounds. First, disruption hardens the

beamstrahlung spectrum and increases its radiation rate. In addition, disruption

enhances the luminosity per bunch crossing. In machine designs such as CLIC,

DLC, and TESLA, for which the beams are not extremely flat, the horizontal

disruption Dx can be quite large. This leads to an effective luminosity and con-

comitant beamstrahlung substantially different from the nominal designed values.

Care must be taken to include these effects when evaluating beamstrahlung and

the backgrounds.

In estimating the size of the beamstrahlung-induced backgrounds, one should

pay special attention to the parameter nγ , the average number of beamstrahlung

photons radiated per electron. Since in the collider energy range of our interest the

hadron total cross section is reasonably constant in the γγ center-of-mass energy,

the total hadronic event rate Nhad scales roughly as the square of nγ when L̄1

is fixed. This is the source of the variation by almost two orders of magnitude

among the first five machines of Table 1 in the total rate of hadronic events per

bunch crossing. Since the minijet production comes dominantly from high energy

photons, the jet cross sections are less sensitive to nγ . The sixth machine, VLEPP,

has a very different design philosophy from the first five in having only one bunch

in a pulse train. This results in a luminosity per bunch crossing which is about

100 times larger than all other machines. When convoluted with a large number

of beamstrahlung photons (mainly due to a large σz), VLEPP tends to produce
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the most hadronic event rates among all the machines.

Since there are no beamstrahlung and disruption effects involved in the γγ

collision, the hadronic backgrounds in the γγ mode are very comparable among

the first five machines listed in Table 1.

In Table 2, we present some representative designs for 1 TeV colliders, and

our estimate of the γγ background rates both in e+e− and γγ collider modes. For

the e+e− collider designs, the Eγγ spectra for the four machines are shown in Fig.

12. Again in the case of DLC and TESLA designs, the relatively larger disruption

effects and nγ lead to a much higher rate of hadronic events. Although the γγ

reactions are mainly soft, one finds more than one jet-like underlying event per

bunch crossing in these two cases. In the 1 TeV γγ collision mode, it is true for

all four machines that typical events have underlying hadronic events with QCD

minijets. It is interesting to note that, with the differences from beamstrahlung

removed in the γγ mode, the hadronic and minijet event rates for DLC and TESLA

are comparable to those for JLC and NLC.

5. Simulation of hadronic backgrounds

Now that we have computed the fraction of e+e− or γγ events at a linear

collider which have underlying hadronic activity, we should still ask how these

underlying hadronic events affect the analysis of high-energy event on which they

may be superposed. There are good reasons to expect that the answer to this

question should further diminish the importance of the Drees-Godbole background

processes. The γγ collisions whose rates we computed in the previous section

typically occur between photons of unequal energy, leading to a highly boosted final

hadronic system. Even if this system contains minijets, it will include relatively few

high transverse momentum particles. Thus, most of the final hadrons will disappear

down the beam pipe in the forward or backward direction. Unfortunately, we

did not find a simple way to estimate the expectation for the resulting energy

distributions, except by direct simulation. In this section, we will describe the
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results of a simulation of the background hadronic energy deposition based on our

Reference Model.

According to Fig. 5, the qualitative form of hadronic background events will

be different for the different sets of colliders we have considered. For the 500

GeV electron colliders, not only are there relatively few hadronic events per bunch

crossing, but also those hadronic events are typically of minimum bias type without

minijets. On the other hand, the background events at a 1 TeV γγ collider typically

contain several minijet pairs, depending on the transverse momentum criterion for

a distinct minijet. We will present results for both of these cases.

To simulate the hadronic events, we first generate minijet pairs according to

the Reference Model, using a Poisson distribution with mean given by (3.10). The

energy and angle distributions of the minijets are computed according to (3.4), in

particular, using the gluon and quark distributions in the photon given by Drees

and Grassie.
[30]

This calculation requires a cutoff p∗ on the transverse momentum

transfer in the parton-parton collision; we have taken this cutoff to be either 3.2

or 8 GeV. As we explained in Section 3, the first of these values would assign the

production of clusters of 5 GeV transverse momentum to incoherent production

of minijets, while the second value would make this assignment only for clusters

of 10 GeV transverse momentum. The partons are fragmented into jets using the

Lund Monte Carlo, version 6.3 .
[45]

Following the formation of all minijet pairs, the

remaining energy is converted to hadrons using the minimum bias event generator

of the ISAJET Monte Carlo.
[46]

We modify this generator only in replacing the

leading baryons by ρ0’s. We restrict our analysis to events with hadronic invariant

mass at least 5 GeV.

To simulate the response of a detector to these events, we have used a model

based on the features and resolution of the SLD detector.
[47]

As an important mod-

ification from the design of the SLD, we have assumed that the detector is blind to

particles passing within 10◦ of the beamline (| cos θ| > 0.985). Planned detectors

for future linear colliders include masking in this region to control the effects of
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electron-positron pairs produced in the collisions of electron and positron bunches,

and simulations of physics signals at linear colliders incorporate this angular con-

straint.

From this model, we compute Edep, the total charged and neutral energy de-

posited in the detector by a single hadronic background event. We also compute

a number of subsidiary quanties: To assess the effect of a stronger angular re-

striction, we have examined the quantity Edep(0.9), the energy deposited in the

angular region | cos θ| < 0.9. Most physics analyses for future linear colliders are

insensitive to this restriction. Since missing transverse momentum signatures are

important for some physics processes, we have computed P⊥,miss, the missing trans-

verse momentum observed by the detector for the hadronic event. Finally, we have

recomputed the observed missing transverse momentum using the stronger angular

restriction, to define P⊥,miss(0.9).

The results of this analysis are shown in Table 3 for three cases which represent

the range of possibilities: first the background hadronic events at a 500 GeV e+e−

collider, second, the background hadronic events at a 1 TeV e+e− collider (in both

cases, assuming the NLC design) and, finally, the hadronic events from monochro-

matic γγ collisions at 1 TeV in the center of mass. Note that the last case involves

harder γγ collisions than one would find from the photon spectrum (2.17). In the

first two cases, it is relatively rare that a hadronic event will contain a minijet

pair, and so there is little difference between the results with p∗ = 3.2 GeV and

p∗ = 8 GeV. In the third case, however, a typical hadronic event contains a 5 GeV

minijet pair. Thus, there is a considerable difference between the results for the

two parameter choices, and this difference mainly reflects the explicit inclusion of

the minijets in the former case. We have presented the results from both choices

for comparison.

For the background events at e+e− colliders, we were surprised by the small

values that the simulation produces, both for the energy deposition and for the

missing transverse momentum. In Fig. 13, we display the distributions of Edep
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and Edep(0.9) computed for the 500 GeV NLC collider. The distributions fall off

exponentially, with mean energy depositions of 7.9 GeV and 3.3 GeV for Edep and

Edep(0.9) respectively. The event numbers in the histogram of Fig. 13 correspond

to an integrated luminosity of 0.5 pb−1. This yields 40,000 hadronic background

events, of which none has Edep(0.9) greater than 50 GeV. If we include in the

simulation hadronic events with invariant mass down to 1.6 GeV, this adds another

33,000 hadronic events, of which virtually all have Edep less than 8 GeV and

Edep(0.9) less than 4 GeV. The missing transverse momentum in our sample of

hadronic events is typically less than 1 GeV. Since the physics processes for which

this is a signature typically have missing transverse momentum of order mW , this

small uncertainty is quite unimportant. The qualitative features of the hadronic

background events, including the exponentially falling distribution in deposited

energy, are the same for the 1 TeV e+e− collider.

For 1 TeV γγ collisions, the hadronic background events have a more seri-

ous effect, and one which depends more strongly on the model used to generate

these events. In Fig. 14, we show the distribution in deposited energy for these

events corresponding to 10 nb−1 of integrated luminosity. In Fig. 14(a), we gen-

erate hadronic events using p∗ = 3.2 GeV. Then, typical events contain at least

one minijet pair. In Fig. 14(b), we assume p∗ = 8 GeV, corresponding to the

more restrictive hypothesis that minijets are not produced incoherently from the

minimum-bias hadronic production mechanisms until they acquire a more sub-

stantial transverse momentum. We put forward both calculations to illustrate the

possibilities. At a working γγ collider, it will of course be straightforward to mea-

sure this background and model it accurately. In either model, the background

events deposit significant amounts of energy, but mostly in the extreme forward

and backward directions. They add relatively little uncertainty to the determina-

tion of missing transverse momentum.

We argued in the previous section that, at e+e− linear colliders up to 1 TeV,

only a small fraction of the e+e− annihilation events should have underlying back-

ground hadronic events generated by γγ collisions. Now it seems that, when such
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a background event does appear, it makes only a minor modification of the event

pattern of the e+e− annihilation. For γγ colliders, especially at 1 TeV, the back-

ground problem is more serious. Though the modification of the energy deposition

in typical events is small, it is signficant and should be taken into account in physics

simulations.

6. Conclusions

Drees and Godbole have called attention to the large rate of photon-photon

collisions to be expected at future linear colliders and have suggested that the

presence of underlying γγ events might be a serious source of background. To

evaluate this claim, there are two issues that must be understood.

First, one must carefully evaluate the expected rate of soft and jet-like γγ events

to be expected for given collider parameters. In this paper, we have presented what

we feel is a useful solution to this problem. We have presented a physically correct

picture of the hard and soft components of the γγ total cross section, and we have

provided a set of formulae which allows this picture to be applied straightforwardly

to compute the γγ rate for any collider design.

Second, one must ask whether such underlying hadronic events actually affect

the experiments to be carried out at the next generation linear colliders. It is

possible that any underlying event will compromise some aspect of linear collider

physics. We have presented simulation results which indicate that the effect of

this background will be minor at 500 GeV e+e− colliders, but that it will be more

significant at higher energies, especially in γγ collision mode. Even in 1 TeV γγ

collisions, the Drees-Godbole background remains a relatively small perturbation

of a high energy reaction. In any event, we have given prescriptions which allow

the Drees-Godbole background to be correctly included in simulations of physics

processes to assess its effects directly.

As a final note, we should point out that there are strategies for reducing the

Drees-Godbole backgrounds in e+e− colliders by readjusting the beam parameters.
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For example, by increasing the collision rate while lowering the bunch population,

and by colliding extremely flat beams, one may decrease the γγ reaction rates while

retaining the total luminosity. We hope that the case studies and approximation

schemes presented in this paper will be useful in further optimizing the designs for

linear colliders.
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Table 1. Parameters and Hadronic Backgronds for 0.5 TeV Linear Colliders

Linear Colliders CLIC DLC JLC NLC TESLA VLEPP

L[1033cm−2sec−1] 2.7 2.4 6.8 6.0 2.6 12

frep[Hz] 1700 50 150 180 10 300

nb 4 172 90 90 800 1

L1[10−3nb−1] 0.40 0.27 0.50 0.37 0.33 40

N [1010] 0.6 2.1 0.7 0.65 5.15 20

σx/σy[nm] 90/8 400/32 260/3 300/3 640/100 2000/4

σz[µm] 170 500 80 100 1000 750

β∗x/β
∗
y [mm] 2.2/0.16 16/1 10/0.1 10/0.1 10/5 100/0.1

Dx/Dy 1.3/15 0.70/8.8 0.09/8.2 0.08/8.2 1.25/8.0 0.43/—

Ax/Ay 0.08/1.06 0.03/0.5 0.008/0.8 0.01/1.0 0.1/0.2 0.008/—

σ̄x/σ̄y[nm] 40/5.5 246/19 259/2.0 300/2.2 304/50 1587/4

HD 3.3 2.8 1.5 1.4 4.2 1.3

L̄[1033cm−2sec−1] 8.80 6.67 10.1 8.22 11.1 15.1

L̄1[10−3nb−1] 1.30 0.76 0.74 0.51 1.39 50.2

Υ0 0.16 0.043 0.15 0.095 0.031 0.059

Υ 0.35 0.071 0.15 0.096 0.065 0.074

δB 0.36 0.08 0.05 0.03 0.14 0.14

nγ 4.6 3.1 1.0 0.84 5.8 5.1

e+e− Mode

Nhad 1.37 0.32 0.07 0.04 1.57 45.3

Njet5[10−2] 5.80 0.44 0.22 0.10 1.62 56.2

Njet10[10−4] 16.4 1.16 0.69 0.31 3.90 139

γγ Mode

Nhad 0.15 0.10 0.19 0.14 0.13 15.2

Njet5[10−2] 6.90 4.72 8.61 6.43 5.68 685

Njet10[10−4] 32.4 22.3 40.7 30.4 26.9 3240

32



Table 2. Parameters and Hadronic Backgrounds for 1.0 TeV Linear Colliders

Linear Colliders DLC JLC NLC TESLA

L[1033cm−2sec−1] 2.5 8.8 12.8 10.6

frep[Hz] 50 150 90 10

nb 50 20 90 800

L1[10−3nb−1] 0.99 2.17 1.58 1.31

N [1010] 2.8 1.8 1.3 5.8

σx/σy[nm] 223/28.3 372/3.2 425/2 404/50.5

σz[µm] 500 113 100 1100

β∗x/β
∗
y [mm] 5/0.8 24.6/0.12 40/0.1 8/2.5

Dx/Dy 1.40/11.0 0.08/9.7 0.04/8.5 1.95/15.6

Ax/Ay 0.1/0.625 0.005/0.9 0.0025/1.0 0.14/0.44

σ̄x/σ̄y[nm] 100/17.1 372/2.2 425/1.5 172/27.0

HD 3.7 1.5 1.4 4.4

L̄[1033cm−2sec−1] 9.2 12.8 17.5 46.6

L̄1[10−3nb−1] 3.70 3.10 2.18 5.86

Υ0 0.20 0.38 0.27 0.10

Υ 0.42 0.38 0.27 0.24

δB 0.53 0.14 0.07 0.50

nγ 8.1 1.7 1.1 10.4

e+e− Mode

Nhad 15.3 0.83 0.34 40.1

Njet5 1.53 0.09 0.03 2.65

Njet10[10−2] 5.53 0.37 0.12 8.54

γγ Mode

Nhad 0.42 0.93 0.68 0.56

Njet5 0.31 0.68 0.50 0.41

Njet10[10−2] 2.50 5.61 4.10 3.40
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Table 3. Simulation Results on Hadronic Backgrounds

Linear Colliders NLC (500 GeV) NLC (1 TeV) γγ (1 TeV) γγ (1 TeV)

p∗ 3.2 3.2 3.2 8.0

Edep (GeV) 8.0 11.0 64. 33.

st. dev. 7.1 11.6 31. 25.

Edep(0.9) (GeV) 3.3 4.4 25. 12.

st. dev. 3.3 5.0 13. 11.

P⊥,miss (GeV) 0.6 0.9 4.7 2.4

st. dev. 0.5 0.9 3.2 2.9

P⊥,miss(0.9) (GeV) 0.7 0.9 5.0 2.3

st. dev. 0.6 1.0 3.6 3.1
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45. T. Sjöstrand, Comput. Phys. Comm. 39, 347 (1986); M. Bengtsson and
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FIGURE CAPTIONS

1) The parametrization of the photon-photon total hadronic cross section, eq.
(3.1), compared to data from refs. 26(circles), 27(squares), 28(dots).

2) Jet yields predicted by the formula (3.4), for p∗ = 1.6, 3.2, 5 and 8 GeV, shown
as a function of the γγ center of mass energy. The dotted curves show the
parametrization of this quantity given in (3.7).

3) (a) Comparison of the jet yield in pp̄ collisions to the observed total cross
section. The data is taken from ref. 36. The upper set of data points represents
measurements of the inelastic pp̄ cross section; these measurements are well fit
by the formula of ref. 25. The lower set of data points represents the UA1
measurements of the jet cross section, as described in the text. The two curves
show the energy-dependence of (1/2)Y(p∗) for pp̄ collisions, for p∗ = 1.6, 3.2
GeV. (b) Comparison of the jet yield in γp collisions to the observed total cross
section. The data is taken from refs. 35, 9, 10. The smooth curve through
these points is proportional to (3.1). The two rising curves show the energy-
dependence of (1/2)Y(p∗) for γp collisions, for p∗ = 1.6, 3.2 GeV.

4) Time structure of e+e− reactions in a linear collider. The dots represent in-
dividual bunch crossings. In the naive model (a), the minijets are distributed
evenly among bunch crossings. The model (b) has a much smaller γγ hadronic
cross sections, but the same large value of the jet yield.

5) Number of jets with transverse momentum greater than p∗ per hadronic γγ
event, for p∗ = 1.6, 3.2, 5, 8 GeV, according to the model of eq. (3.10). The
ordinate is the γγ center of mass energy.

6) Cross sections for hadron production in γγ collisions accompanied by jets of
transverse momentum greater than p∗, for p∗ = 1.6, 3.2, 5, 8 GeV, according
to the model of eq. (3.11). The ordinate is the γγ center of mass energy.

7) Comparison of the predictions of three models of the γγ total cross section for
the rate of hadronic background events in e+e− colliders. Beamstrahlung is
ignored, and the luminosity per bunch crossing is taken to have the canonical
dependence (4.2): (a) predictions of the RM, MD, and CC models (described
in the text) for the total rate of γγ events; (b) predictions of the RM and MD
models for the rate of events with observable minijets of transverse energy 5
and 10 GeV.

8) Comparison of the predictions of three models of the γγ total cross section for
the rate of hadronic background events in γγ colliders. The conventions are as
in Fig. 7.

9) Spectrum of γγ hadronic events in the γγ center of mass energy, dn/d logEγγ ,
produced in e+e− colliders at the canonical luminosity (4.2), from bremsstrah-
lung photons only. The three curves represent all γγ events, events with 5 GeV
minijets, and events with 10 GeV minijets. The two cases are: (a) 500 GeV
collider; (b) 1 TeV collider.
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10) Spectrum of γγ hadronic events in the γγ center of mass energy, dn/d logEγγ ,
produced in backscattered-laser γγ colliders at the canonical luminosity (4.2).
The three curves are as in Fig. 9. The two cases are: (a) 500 GeV collider; (b)
1 TeV collider.

11) Spectrum of γγ hadronic events, for two representative designs for 500 GeV
e+e− colliders, following the parameters given in Table 1. The three curves are
as in Fig. 9. The dotted curves are the corresponding results for bremsstrahlung
only. The two cases considered are (a) JLC; (b) TESLA.

12) Spectrum of γγ hadronic events, for two representative designs for 1 TeV e+e−

colliders, following the parameters given in Table 2. The three curves are as
in Fig. 9. The dotted curves are the corresponding results for bremsstrahlung
only. The figures correspond to (a) JLC; (b) TESLA.

13) Distribution of deposited energy for hadronic background events for a 500 GeV
e+e− collider with a detector angular coverage of | cos θ| < 0.985 (solid) and of
| cos θ| < 0.9 (dashed). The deposited energy is the sum of charged and neutral
energy recorded by a detector, which is modeled as described in the text. The
number of events corresponds to an integrated luminosity of 0.5 pb−1.

14) Distribution of deposited energy for hadronic events in 1 TeV monochromatic
γγ collisions, (a) computed with p∗ = 3.2 GeV, (b) computed with p∗ = 8 GeV.
The number of events corresponds to an integrated luminosity of 10 nb−1.
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