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- . Abstract 

The resultspf calculations and simulations of the vertical emittance in the KEK Accel- 
erator Test Facility damping ring are described. Both systematic and random  alignment 
tolerances and a skew correction scheme are presented which lim it the normalized vertical 
emittance to ~6~ < 4.8 x 10-s m -rad. Finally, the effect of intrabeam  scattering on the 
vertical emittance is calculated. 

1. Introduction 

In this paper, we will describe the results of calculations and simulations of the ver- 

tical emittance in the Accelerator Test Facility (ATF) damping ring being designed at 

KEK‘ [1,2]. The ATF project is designed to test many of the technologies needed in a 

future linear collider. The project consists of an S-band electron injector, a damping ring, 

a bunch compressor, and finally, an X-band accelerator, and a final focus test. One of the - , 

more strir&@ t requirements on a future linear collider is the generation and preservation 
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of beams with very small emittances. Thus, one of the principal goals of the ATF damping 

ring is the generation of beams with normalized rms emittances of rcZ 5 4 x 10D6 m-rad 

.and year 5 4.8x 10B8 m-r-ad. In this paper, we describe the results of calculations and sim- 

ulations of the vertical emittance in the ATF damping ring and we present the tolerances 

required-to achieve the desired emittance with a 95% confidence. 

In a damping ring, the vertical emittance is primarily determined by the vertical 

.‘dispersion and betatron coupling arising from alignment errors. We will calculate the 
_- 

random and systematic tolerances needed to achieve the design emittance and we will 

describe a skew quadrupole correction system designed to ease these tolerances. The 
_ -. _ 
calculations are .performed using a mixture of analytic formulas and simulations; the _. - 
analytic expressions provide insight into the sensitivities while the simulations are used 

to verify the results. Finally, we will briefly discuss the effect of intrabeam scattering on 

the vertical emittance; intrabeam scattering is a significant effect in this damping ring. 

We will not discuss any other current dependent effects, in general, they do not limit 

the vertical emittance [3], and we will not discuss the tolerances required to achieve the 

neces-sary beam position stability. 

2. ATF Damping Ring 

Before discussing the calculations, we need to briefly describe the ATF. damping ring. 

The principal parameters of the ATF damping ring design are listed in table 1 and the 

lattice functions for half of the ring are plotted in figure 1. The ring consists of 36 FOB0 
-. , 

cells whe &. . . emost of vertical focusing is provided by the combined function bending magnet 

located at the center of each cell. The ring is designed so that the horizontal phase advance 

per cell can be varied from 100’ to 140’) varying the equilibrium horizontal emittance from 
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rcZ = 6.6 x low6 m-rad to rcZ = 3.3 x 10D6 m-rad; the parameters in table 1 correspond 

to the case where the cell phase advance is 130’. 

The ring is designed in a racetrack form with two dispersion-free regions which contain 

the injection and extraction septa, the RF cavities, and 19.2 meters of damping wigglers 

tihich &ce the radiation damping rates by a factor of 2. The ring is designed to operate 

with a maximum current of 600 mA. Typically, it would damp multiple trains of bunches 

-‘*at once. The number of bunches per train varies from 10 to 60, depending on the single 

bunch charge, and the bunch-to-bunch separation is at least 1.4 ns; parameters listed in 

table 1 assume 20 bunches per train and 2 x lOlo particles per bunch. 
- - . 

. . 
3. Vertical D ispersion and Betatron Coupling 

As mentioned, the vertical emittance in the ring is determined primarily by the ver- 

tical dispersion and the betatron coupling induced by alignment errors. In particular, 

vertical dipole errors and a non-zero vertical orbit in the quadrupoles will directly intro- 

duce vertical dispersion. Furthermore, a non-zero vertical closed orbit in the sextupoles, 

vertical sextupole misalignments, or quadrupole rotations will couple the horizontal and 

vertical planes. This coupling generates vertical dispersion by coupling to the horizon- 

tal dispersion and it couples the z and y betatron motion; higher-order effects, such as 

rotated sextupoles, are less important. 

The contributions from the vertical dispersion and the betatron coupling to the ver- 

tical beam size and emittance have two components: one arises because the couplings 
-. , 

increase $& projection of the six-dimensional emittance in the vertical plane and the . 

other arises from a fundamental increase in the vertical emittance. The first occurs be- 

cause the- couplings locally rotate the eigenvectors of the particle motion. Although the 
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projection of the beam is increased, the beam emittance is not changed. A simple example 

of this projection increase is the beam size due to vertical dispersion and a finite energy 

spread. 

The second effect occurs because the noise due to the synchrotron radiation can couple 

into theJrertica1 plane when the eigenvectors are rotated in the bending magnets. This 

leads to a growth of the vertical emittance. Here, the effect is not local; it depends upon 

-the average of the coupling in all of the bending magnets. The important distinction 

between this effect and the former, is that the local rotations of the eigenvectors can 

be corrected even after the beam’is extracted from the damping ring. In contrast, the 

increase in- the beam emittance cannot be corrected after the beams are extracted; it must _. 
be reduced by correcting the sources of the coupling in the storage ring. 

In the ATk damping ring we are primarily interested in the fundamental beam emit- 

tance, not in the local projected emittance; again, the local coupling can be corrected 

after the beam has been extracted. The emittance due to the vertical dispersion can be 

written [5]: 
c 

J ds%(s)tG31 9 
0 

where we assumed that the vertical damping partition J.. equals one. In addition, C4 = 

3.84-x lo-l3 m, G(s) is the inverse bending radius, and finally, ‘MV is .,the dispersion 

invariant: 

- , s-l-c _ - -__- ..L 1 
-w . . = 

I/ 
dzf(I)~ei(~Y(S)--dy(X)+*yp) 2 . 

s 

(2) 

Here, o+, &,; and ra, are the ttiiss lattice parameters and the driving term f equals f(z) = 
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Y(K2% - Kl) - Krlz - G, where Kl, Fl, and K2 are the normalized quadrupole, skew 

quadrupole, and sextupole magnetic field strengths and G, is the inverse of the vertical 

-bending radius. 

. Next, we can find a similar expression for the emittance contribution due to weak 

betatr&?oupling [4]: 

where - - . 
. . 

s+C . 

CM> .= J dzg(z)J;i~ei[(~“(s)~~~(s))-(~.(r)fd,(z))++(YI~~~)] , 
a (4) 

Here, I = (Kzy - - Kl) and the sum over f denotes a sum over both the + term (sum 

resonance) and the - term (difference resonance) while Av+ = Y, + ZQ, and Av- = uZ - vy, 

In addition, the * is used to represent the complex conjugate and the operator “Re” 

yields the real portion of the expression. Finally, we should note that this definition of 

the coupling coefficient &k is similar to the more common definitions [6] which are found 

from the fourier component at the sum and difference resonance, but equation (4) includes 

all harmonics and thus is a functron of the azimuth S. 

ZLl RANDOM ALIGNMENT ERRORS 
, - -__- ..L 

-x . 

To calculate the effect of random errors, we can evaluate equations (1) and (3) as- 

suming that the errors are uncorrelated. For the vertical sextupole misalignments y and 
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the quadrupole rotational errors 0, we find expected values of the emittance: 

(y$‘lu) = yzb: 
4 sin2 7rvy [ . 

4 c (w)2v2Pd@2) + c (K2Q2d&(Y2) qUad sext. 1 
(5) 

(ycyp*) = rcxzT 
16 sin2 ?rA~h [? c (KIL)~Px&(@~) + ~(K2~)2/3z&,(~2)] , 

; -- quad. sext. 

where we have used the expression for the rms energy spread oC to simplify the expressions 

:*and we have neglected the cross-term in equation (3) since it is smaller by a factor of 

l/%G. 

Similar expressions for the effects-of vertical quadrupole misalignments or rotations 
--_ 
of the bending magnets are more complicated. These errors cause a non-zero closed orbit . . 

. 
which is then corrected with the dipole corrector magnets. After orbit correction, the 

residual orbit _ depends upon the errors, the corrector placement, and the alignment of 

the Beam Position Monitors (BPMs). Furthermore, the closed orbit is correlated across 

many magnets and this leads to cancellations of the contributions. Thus, to estimate 

these effects, we will resort to simulations. 

At this point, we can calculate the sensitivity of the various elements to random errors 

by calculating the normalized emittance assuming unit errors, (02) = (y2) = 1, and 

removing the tune dependence by multiplying by the resonant denominators: sin2 7rvY 

and-sin2 7rAvh. We use equations (5) to calculate the effect of the vertical sextupole 

misalignments and the quadrupole rotations: 

-. , s rc,” 
‘Ill . - = 4 4 c FlQ2dPy + ~(Kzq2dPa, 

-_.- ..L quad. sext. 
-x . 

SP = F [4 c (KIL)~P~P, + ~(K2L)2a,4 , 
quad. sext. 
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and we estimate values for the bend rotations and the quadrupole misalignments by aver- 

aging the results of 100 simulations. In the simulations, the random errors are generated 

-with gaussian distributions, cutoff at f2a, and the orbit is corrected in an rms sense with 

the dipole correctors. 

The sensitivities to these angular and vertical misalignments are listed in tables 2 

,and 3. The values are separated into the dispersive and the betatron coupling contribu- 

tions from the various magnet families; a value of ye z = 3.65 x 10D6 m-rad was used to 

calculate the betatron coupling contribution. Because the errors are random, the contri- 

butions are simply added to.find the net effect. Notice that the contributions from the 
. . 

vertical dispersion are-roughly.one order of magnitude larger than the contributions due 

to the betatron coupling. Also notice that a few elements are very important, namely the 

arc focusing quadrupoles and the sextupoles, and thus extra attention should be given to 

these magnets. 

-. At this point, we need to discuss the distribution of the emittance about the expected 

value. This is important because we wish to determine tolerances that will limit the 

vertical emittance with a high degree of confidence. In general, for given alignment 

tolerances, the value of the emittance that is exceeded in only 5% of the cases is two to 

three times larger than the expected value of the emittance [4]; the detailed value depends 

upon the tunes and the use of correction. 

-. , 
--To estimate the magnitude of the alignment tolerances, we can use the results in 

-%. . 
tables 2 and 3 to calculate uniform tolerances. To limit the emittance to 4.8 x 10S8 m-rad 

with a 95% confidence, we want to strive for expected values of roughly 1.6 x 10S8 m-rad. 
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Thus, we find 

O;,, S 550 pradl sin ?rAv 1 yrme S 35 pm1 sin ?rAv 1 , (7) 

where the tolerances depend upon the choice of tunes. To ease the tolerances as much 

as poss$&e, we need to restrict the operational tune space. Figure 2 is a plot of the tune 

diagram where we restricted Avar > 0.17, AZ+ > 0.15, and kept a reasonable distance 

:from the horizontal integer and the half-integer resonances; resonance lines up to order 

of-the. normal sextupole resonances are included for guidance. The shaded regions are 
_- 

inaccessible. 

--_ 
- These-alignment tolerances and the accompanying restrictions on the tunes are fairly . . 

. 
severe; they are smaller than 500prad and 30pm which are thought to be the limits 

. _ 
attainable in the ATF design. Fortunately, we will be able to ease the tolerances by 

roughly 50% with correction; we will describe the correction after discussing the effect of 

systematic errors. 

3.2 SYSTEMATIC ALIGNMENT ERRORS 

In general, the systematic tolerances are looser than the random tolerances. This 

occurs because the phase advance in equations (1) and (3) leads to cancellation of the 

contribution. In a simple periodic system, the contribution from the systematic errors 

has the form: 

1 
- , (systematic) oc 

r - sin2(7rV/Np) sin2 7rvC 
while (random) 0: L . 

sin2 7r~ (8) 
_: -- -w. . 

Here, v is the tune: r+,, Y, f +, NP is the number of superperiods, N is the number of 

cells, and-v;is the phase advance per cell: vyC, vzC f yyC. Thus, provided that the tune per 
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superperiod is far from resonance and Av, ,>> l/rfl, the emittance is less sensitive to 

systematic errors than random errors; in the ATF ring, V, M 0.14 while l/rfi M 0.05. 

To compare with the random sensitivities listed in tables 2 and 3, we calculate the 

ernittance contributions, assuming unit errors, at one of the possible working points for 

the ringTu, = 15.82 and vy = 9.37. These results are then scaled by sin2 ?TU and are listed 

in tables 4 and 5. Of course, because the relationship on the tunes is more complex, these 

-“values are not independent of tunes as are the values in tables 2 and 3. Furthermore, 
.- 

unlike the random sensitivities, the individual contributions are not simply additive; the 

sum depends upon the relative phase of the contributions. 
_ _. _ 

- The individual systematic sensitivities are over a factor of five smaller than the random 
- . 

sensitivities, but we have to decide how to sum the contributions. If we assume the worst 
. _ 

case, where all of the contributions are in phase, we find that the total is equal to the square 

of the sum of the square root of the individual terms: (total) = [C &GZZGQ’]2. In 

contrast, if we assume that the relative phase between errors is random, we find that the 

expected value is simply equal to the sum of the separate values. The total sensitivity for 

both-cases is listed in tables 4 and 5; the worst case values are roughly a factor of four 

worse than the random phase values. 

Finally, to obtain a rough estimate of the tolerances, we note that in the worst case, 

the total sensitivity is a factor four less than the sensitivity to random errors, implying 

tolerances that are a factor of two looser than the random tolerances. In the other case, 

where we assumed random relative phases, the sensitivities are more than an order of - , 
, - 

magnitu.&t&maller than the random sensitivities, implying tolerances that are a factor of 

three to four looser. 
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3.3 CORRECTION , 

In the ATF damping ring, the dominant contribution to the emittance is due to the 

dispersive errors. The vertical dispersion can be corrected with either skew quadrupoles 

in regions of horizontal dispersion or orbit bumps. Since we want to correct the dispersion 

without introducing betatron coupling, the ideal correctors are vertical orbit bumps in 

regions without sextupole magnets. Unfortunately, in the ATF, these regions are the . . 

wiggler and injection/extraction regions where the aperture may be limited. Thus, we will 

-use skew quadrupoles in regions of horizontal dispersion. Alternately (and additionally), 

we could use orbit bumps in the arcs. - - . Orbit bumps have the advantage of being more 

flexible than-the fixed positiorrskew quadrupoles but they have the disadvantage of being 

more comIjlex to implement and possibly reducing the ring acceptance. . _ 

In theory, using two correctors, separated in phase by 90”, one could reduce the 

expected value of the emittance by a factor proportional to the resonant denominator: 

2/3 sin2 7rr+, [4]; additional correctors should provide further reductions. Note that the 

restrictions on the operating tune space are reduced because the resonant denominator is 

cancelled. 

In simulations with vZ = 15.82 and vy = 9.37, four skew quadrupoles, located for 

optimal tuning of both the vertical dispersion and the betatron coupling sum resonance 

(the closest coupling resonance), reduced the vertical emittance by a factor of three; 

this is slightly better than the factor 2/3 sin2 7rvr,. Further reduction of the dispersion 

ispossible,. but, at this level, the betatron coupling induced by the skew quadrupole 
&- ‘,- 

correctors becomes significant. 

Finally, it should be noted that to correct the dispersion, one needs to measure either 
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the beam emittance or the dispersion in the ring; ideally, one would do both. To limit 

the emittance contribution to rear 5 4 x 10B8 m-rad, we need to keep the rms dispersion 

‘at the level of 3 mm. Assuming a &l% energy aperture, accurate measurements of the 

dispersion would require BPMs with a 15pm precision (reading-to-reading jitter). This 

measu?-ment should be readily achieved as the BPMs designed for the ATF ring have a 

1.5 pm precision [7]. 

3.4 TOLERANCES 

-At this point, we can specify the tolerances needed to achieve the desired vertical 
_ -. _ 
emittance; We will specify systematic tolerances that are a factor of two looser than the _. - 

random tolerances and we will assume that the relative phases of the systematic errors 

are random. -To calculate the tolerances, we start from the sensitivities in tables 2-5, 

and divide by the resonant denominators. Next, to include the correction, we multiply 

these values by the correction factor: 2/3 sin2 TV, Finally, to calculate the upper limit 

with a-95% confidence, we multiply by another factor which depends upon the tune and 
-_ 

the correction. Curves can be found in ref. ‘4, but for the purpose of approximation, the 

factor is equal to 2.5 when the fractional tune is equal to 0.25 and it decreases to 2.1 when 

either the fractional tune approaches the half-integer or when correction is used. 

Results are listed in tables 6 and 7 where we have calculated uniform tolerances with 

and without correction. The case without correction was calculated for tunes of Y, = 15.66 

and vY = 9.17; the tolerances could be eased by choosing the vertical tune closer to the 

half-inte,ev Both the expected values of the emittance and the 95% confidence level limit 

are listed. In addition, it is possible to calculate graded tolerances, where the sensitive 

elements -have tighter tolerances; obviously the determination of the relative weighting 
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is a matter of choice. This has not been done since the uniform tolerances seem quite 

reasonable. 

Finally, these tolerances have been compared with the results of 100 simulations with- 

out correction and 100 simulations where four skew quads were used to reduce the emit- 

tance. In-the simulations, we use the tolerances listed in table 7 plus a random tolerance 

on the magnetic field strength of ABIB,,, = 10B3. The random errors are found from 

-‘gaussian distributions, cutoff at f2a, and the sign of the individual systematic errors was 
_- 

chosen randomly in each simulation. The tunes in the simulations were Y, = 15.60 and _- 

uy F 9.25. 
--_ 

- Without .correction, the average emittance was found to be: (~6~) = 6.9 x lOa m-rad .I 
and the 95-% confidence maximum value is: rco g5% = 16.1 x 10D8 m-rad; a histogram of the 

. _ 
values found is plotted in figure 3(a). With correction, we found an average emittance: 

(7~) = 2.3 x 1O-8 m-rad and the 95% confidence maximum value is: rcars5% = 4.8 x 

10D8m-rad; a histogram of the emittance values is plotted in figure 3(b). These values 

are close to those calculated in table 7. 

4. Intrabeam Scattering 

When operating the ATF damping ring with large single-bunch currents, intrabeam 

scattering is expected to increase the beam emittance by a significant percentage. For 

example, with the parameters listed in table 1 and 2 x lOlo particles per bunchjntrabeam 

scattering increases the emittance by over 20%. -_- ..L 5.-I -;. 
It is standard [8] t o calculate the intrabeam scattering assuming that the emittance 

ratio cz/cY remains constant.~ This is valid when the vertical emittance is determined by 
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random coupling errors, but when the vertical emittance is determined by the vertical 

dispersion, this is no longer correct [3]. 

The reason can be simply understood by examining the emittance growth process. 

With intrabeam scattering, the prime mechanism for transverse emittance growth is sim- 

ilar to &at of the synchrotron radiation. When two particles scatter, the longitudinal 

momentum can change and this is coupled into the transverse planes through the dis- 

.‘$ersion. The main difference between the growth due to the synchrotron radiation and 
_~ 

that due to the intrabeam scattering, is that the radiation is only emitted in the bending 

magnetp while the scattering occurs everywhere around the ring. 

Thus, the.intrabeam scattering emittance growth is proportional to 
- 

‘Ai yIBS cc 
f 

ds%(s)lQ&)12 or &IBS cc 
f 

ds’FI,(s) 

and 

AC, IBS = d%(s) , -_ f 

while the synchrotron radiation emittance is proportional to 

eg oc 
J 

ds3-1x(s)lQ&)12 or Q, 0~ J ds% (4 
bends bends 

(9) 

(10) 

(11) 

- 1 ex @c 
< -. J ds’Flx(s) . (12) 

-_: ‘-l .w, .-. bends 

Both the betatron coupling and the vertical dispersion are due to errors and are random. 

Therefore, the expected values are independent of position and the average in the bending 
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magnets equals the average around the ring. But, the horizontal dispersion is not random; 

it is minimized in the bending magnets to reduce the horizontal emittance. Thus, we can 

-express the ratios: 

-. -4 

At: xIBS = AC~IBS 

CC ‘Y 
(betatron coupling) 

AwBS 
> 

&IBS 

EX % 
(vertical dispersion) . 

(13) 

. . 

The difIerence between the horizontal and vertical ratios, with vertical dispersion, depends 

.- upon the average of 3c, around the ring relative to the average in the bending magnets. 

--_ In the ATF damping ring, the vertical emittance is determined primarily by the 

vertical dispersion and-thus we.can expect intrabeam scattering to have a smaller relative 

growth in the vertical than in the horizontal. To calculate this, we modified the formalism 

-of Bjorken and Mtingwa [9] t o include the vertical dispersion and the weak betatron 

coupling as specified by &A(S); a more exact formalism for the intrabeam scattering 

with linear coupling is given in ref. 10. This calculation was performed after each of the 

200 simulations described in section 3.4 with a charge per bunch of 2 x lOlo e-; the results 

are listed in table 8. In the cases without correction, we see that the intrabeam scattering 

increases the-horizontal emittance 5 times more than the vertical. After correction of the 

vertical dispersion, this ratio drops to a factor of 2.5. 

-. , 
. - -_.- ..L 

-w* . 

14 



5. Discussion 

We have calculated the random and systematic alignment tolerances needed to achieve 

a normalized vertical emittance less than rear < 4.8 x 10D8 m-rad in the ATF damping 

ring. Without any skew correction, the tolerances and the restrictions on the operating 

tune sgc”Ek are tight. The rms tolerances are yrms 5 17 pm and O,,, 5 300 prad with 

systematic tolerances twice these values. 

_- These tolerances can be eased substantially with simple correction. There are two 

.-reasons for this: first, the correction decreases the expected value, and, second, it also 

-decreases the deviations about the expected value. With four skew quadrupoles in regions 

of dispersion; -random and systematic tolerances of yrms 5 50 pm, ysyr 5 100 pm, Or,, 5 

500 prad, and- OsYS 5 1 mrad will yield a vertical emittance less than 4.8 x 10D8 m-rad 

-with a 95% confidence; the expected value is roughly a factor of two smaller. 

The ATF alignment system is actually being designed to achieve random tolerances 

of yrms = 30 pm and Or,, = 500 prad. In this case, we would expect a vertical emittance 

less than 7~ < 3.4 X 10B8 m-rad with a 95% confidence; further reductions will likely be 

possible with additional correction using orbit bumps. 

We have also calculated the intrabeam scattering contribution to the vertical emit- 

tance. We find that the growth due to the scattering of the vertical emittance is less than 

half of the growth of the horizontalemittance. This occurs because the vertical emittance 

is determined by the vertical dispersion and not the betatron coupling. 
-. , 

‘Final. 
k 

;-we should note that we have calculated the fundamental emittance and not ‘a . . 

the full projected emittance which also includes contributions from the local couplings. In 

theory, these local effects can be removed after the beam is extracted from the damping 
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ring. Assuming that the vertical emittance in determined by the vertical dispersion, the 

local couplings will increase the expected value of the projected emittance by roughly 

.25%; if the emittance is determined by the betatron coupling, the local couplings would 

double the expected value of the projected emittance. 
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Table 1. Parameters of the ATF damping ring. 

Energy 1.54 GeV 

Circumference 138.6 meters 

Lattice FOB0 with CF bends 

Damping part. 3% 1.31 

Current 600 mA maximum 

7~~ w/o IBS 3.65 x 10e6 m-rad 

7~~ w/ IBS (2 x 101’/bunch) 4.39 x 10e6 m-rad 

crz,crc w/ IBS 5.2 mm, 0.81 x 10s3 
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Table 2. Sensitivities to random angular misalignments. 

1 Num. 1 S,,(0)[10-3 radB2 . m-rad] Sp(0)[10-3 rads2 e m-rad] 
I I I 

Bend (dipole field) 1 36 1 4.81 f 0.42 0.29 f 0.08 

Bend (quad field) 1 36 1 2.65 0.24 
I I I -- 

Arc QFs 1 26 1 7.25 0.46 

M&&ing Quads 1 40 1 

Insertion Quads 1 18 1 

3:20 

I - I 

19 



Table 3. Sensitivities to random vertical misalignments. 

Num. S,,,, (y)[ mD2 . m-rad] Sp(y)[ mD2 a m-rad] 

BPMs I 60 

:I 1nserti;Quads / 

_. 
. 

0.66 f 0.04 

0.82 f 0.11 

0.43f0.04 

0.15f0.01 

1.60 

2.75 

~ 6.41 

0.17 f 0.04 

0.22 f 0.01 

0.08f0.00 

O.O1fO.OO 

0.19 

0.15 

0.82 
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Table 4. Sensitivities to systematic angular misalignments. 

Berids 

Num. S,,(O)[lO -3 radB2 * m-rad] Sp( O)[10D3 radm2 * m-rad] 

36 0.71 0.14 

Arc QFs 26 0.36 0.09 

.Matching Quads 40 0.21 0.04 
; Cd 

Insertion Quads 18 0.18 0.03 

Total (worst case) - 7.13 1.43 

Tot al (random) - 1.46 0.30 
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Table 5. Sensitivities to systematic vertical misalignments. 

BPMs 

Num. Stl,(y)[ mD2 n m-rad] Sp(y)[ mm2 e m-rad] 

60 0.07 0.03 

I Arc QFs 1 26 1 0.00 0.00 

Matching Quads I 40 I 
[ Insertion Quads 1 18 1 0.02 I 0.01 

1 Total (worst case) I - I 

Total (random) - 0.42 0.15 
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Table 6. Uniform tolerances without correction; the tunes are 

assumed to be Y, = 15.66 and vy = 9.17. 

Tolerance (7~~) [10D8 m-rad] 7~~ 95%[10B8 m-rad] 

0 rms = 250 pad 0.5 1.4 

0 8Y8 = 500 prad I 0.2 0.5 

Yrms = 17pm 0.8 2.2 

Ysvs = 34 Pm 0.3 0.7 

Total 1.8 4.8 
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Table 7. Uniform tolerances with correction. 

Tolerance (79,) [10-s m-rad] 7~~95%[10-~ m-rad] 

Srns = 500 prad 0.3 0.7 

I 0 sys = 1 mrad 1 

Yrms = 50pm 1.2 2.6 

YSYS = 100pm 0.4 0.9 

I Total I 2.1 
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Table 8. Intrabeam scattering before and after 

correction of the vertical emittance. 

_ . 
, - _: -- _ *wi. 
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. 

Figure Captions 

1. Lattice parameters of half of the ATF damping ring. 

2. Tune space with restrictions due to coupling. 

3; Emittance values from simulations (a) with no skew correction and (b) with 4 skew 
-* c, 

quad correctors. 

. . 
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