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1. MEASUREMENT AS COUNTING 

1.1 SCALE INVARIANCE 

.^ Physics is often characterized as a science of measurement. In practice the 

_ _. .-. measurements are always subject to experimental error whether or not we are 

willing to recognize that fact. Unfortunately, as Segr6 often remarked, “You can’t 

measure errors.% When a physicist wants to make the most accurate measurement 

of some quantity that he can, he often tries to reduce it to a measurement of time 

recorded as the number of ticks of a standard clock. This is because in any situation 

where the numbered tick corresponding to the measurement is unambiguous, the 

accuracy of this part of the measurement is known. In the fortunate situation when 

measurements can be put into correspondence with the ordered integers, Segre”s 

dictum refers to the laboratory protocol rather than to the numerical data. 

The decision of the physics community to pick an integer as the reference speed 

by the convention 

c E 299 792 458 m set-’ (1.1) 

allows us to make contact with any system of units in which the ratio of any length 

to any time is a rational fraction. So long as there is no maximum or minimum 

quantity which theory and experiment in combination fix unambiguously, all such 

systems of units are freely interconvertible; they are scale invariant. Although the 

speed c serves as the upper limit for the transfer of information in both classical 

theory and any version of relativistic quantum mechanics for which the test is 

empirically meaningful, in dispersive media or for relativistic free particle deBroglie 

waves this unique speed is simply the geometric mean between phase and group 

velocity: 

VphVgf. = c2 (l-2) 

Hence, if we take the conventional step of setting c = 1, and call the rational 
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fraction velocities measured in this system of units ,B = V/C, we have that 

~- -:. - 
1.2 THE COUNTER PARADIGM 

We take as our basic paradigm for two distinct events the sequential firing of 

counters named “1” and “2” which are separated by a finite distance. Associated 

with each counter is a ticking clock. The clocks are synchronized by the Einstein 

or “radar distance” convention that the distance between any two counters is half 

the time it takes a light signal to go from one to the other and return. Assume 

counter 2 fires after counter 1 and that we wish to attribute these correlated firings 

to the passage of a “particle”. Further assume that when 1 fires, a light signal is 

sent from 1 through the position of 2 and on to a third counter 3 at position 3’ 

on that line; it is reflected back from 3’ to 2 and arrives at the same time as the 

particle. .Then,- if the (radar) distance .from 1 to 3’ is called 213’ and from 3’ back 

to 2 is called ~3’2, the velocity of the particle in units of c is given by 

P-4) 

In terms of the two integers rl = x13(,7-2 = $3’2, the square of the interval 712 

which is invariant under Lorentz boosts and the square of the dilation factor 712 

are given by 

2 
712 = c2 - xH2 = 4rlr2; $2 = 

1 (rl t r2j2 
1-/3f2 = 4737-a P-5) 

If counter 3 is not at rest with respect to counter’s 1 and 2 but is moving along 

the same line, moving from position 3 to position 4 in the time it takes a light 
es 
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signal to move from 3 to 3’ and back from 3’ to 4, using the same notation 

P X34-3’ 533’ - 23’4 r3 - r4 
34;3’ =L= =- 

i34;3’ X33’ + 23’4 r3 + r4 

_ - and _ ._. 

Ti4 = tg4 - xg4 = b-37-4; $4 = 
1 

1 - p32q 

= (‘3 + r412 

4r3r4 

(1.6) 

It follows immediately that the velocity of 3 relative to 1, called pr3, is given by 

p13 = t%2 + p23 

1 + h2p23 
(l-8) 

and the usual Lorentz boost transformations can be easily constructed. 

Note that the position 3’ to which we referred our velocities has dropped out. 

Note also that the accuracy to which we can check the Lorentz invariance of our 

results depends on the implicit assumption that we can compare our clocks to 

the nearest tick using some standard clock at rest with respect to some standard 

reference system such as a laboratory at rest with respect to the 2.7OK cosmic 

background radiation. This puts an upper limit on the velocities we can mea- 

sure because at high velocities this background is Doppler shifted to become hard 

gamma rays which will destroy any macroscopic clock. In principle, at least, these 

should also be included in any second quantized field theory calculation involving 

sufficiently high energies. 

The lower limit on the velocities we can discuss is set by the fact that, if rp,rj 

are integers with no common factor, then 

Pij = Y-IX* r; = Nijrp; rj = Nijr! 
ri + rj' 

is invariant to any upward change in scale, but scale invariance is broken once we 

try to go below Nij = 1 for any pair of events we consider. The velocity resolution 
. . 
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implied is 

A@=’ 
7-p + 7-7 

(1.10) 

^ We can only consider the finite set of rational fraction velocities this increment 

_ - _ , ._. allows and Lorentz boosts constructed from them allowed by this constraint as 

ezperimentdy meaningful no matter how this limit is postulated or determined. 

1.3 MASS RATIOS FROM ELASTIC SCATTERING 

In particle physics, we need to measure not only the velocity of a particle, but 

also its velocity change in scattering processes. The paradigmatic case is when we 

collimate a particle beam by two counters 1,2 where 2 is the entrance counter into 

the scattering region and detect a scattered beam at an angle 6 from this direction 

in a second counter telescope 1’2’ with 1’ the ezit counter from the scattering 

region. To some known or estimated experimental accuracy all 4 counters lie in 

the same plane, which is called the scattering plane. Elastic scattering is defined 

as the case when the entrance and. exit. velocities, ,8, are the same to some velocity 

resolution AD. If we assume that we can measure the length of the entrance 

telescope 212 to some accuracy Ax and the time interval between the two firings 

t12 to some accuracy At, we must also know the correlation error between these 

two measurements in order to calculate the velocity resolution. We do not attempt 

to give a general formula, but simply assume that our context sensitive uncertainty 

is summarized by saying that we know two integers br, b2 with an uncertainty of 

1. Then 

(1.11) 

The two lines which define the angle 0 also specify a region which we will 

call a vertex that lies in the scattering volume, and which is a distance Lv from 

either counter with an uncertainty ALv. Let Nb(bl + b2) be the nearest integer to 

Lv/ALv. Since we have assumed that we know bl and b;! to the nearest integer, 
. . 

5 



we can define the integral distance from 2 or 1’ to the vertex along the entrance 

and exit lines as & = Nb(bl + b2). 

A second distance we can measure using our beam of velocity p as the integer 

-^ calibration is the distance from the entrance counter 2 to the exit counter 1’. We 

_ -. .- call this R,‘= N,( bl + a,),. W e h ave defined an isosceles triangle with vertex angle 

?r - 0, sides Nb and base NC, assuming that the distances are long enough in terms 

of our beam resolution to define the two scale factors to the nearest integer. These 

two distances determine the scattering angle because 

N;sin2; = N; - f N,” (1.12) 

The velocity change pl is in the direction perpendicular to the base of the triangle 

and is of magnitude 

8 
PI = p( i - cos ~9) = 2/?sin2s (1.13) 

So far we have not given an explanation for the scattering. We now add to 

our paradigm two additional counter telescopes 34 and 3’4’ set at scattering angle 

0’ with the bisectors of the two scattering angles pointed to the same vertex. 

Assuming this to be at the center of the scattering volume, 21’43’ lie on a circle of 

radius NL = Nb. We assume that both counter telescopes have the same velocity 

resolution Ap. We further assume that the beam defined by 34 and 3’4’ has the 

same speed as that defined by 12 and 1’2’; note that Ni is parallel to NC. If we 

find that particles are scattered in coincidence and that NL = NC we say that the 

two beams contain particles with the same muss. If Ni # NC, we say that the ratio 

of the masses is inverse to these distances, i.e. 

if p12 = p1v = /?34 = ,b3141 then m’Nd s mN, (1.14) 

Empirically, we find that for two beams of the same or different composition this 

ratio is independent of the magnitude of their common speed, justifying our as- 

sumption that “mass” is an invariant property of the particles and not of their 

state of motion. 
. . 
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1.4 QUANTIZED LINEAR AND ANGULAR MOMENTUM 

In our elastic scattering paradigm, the velocity resolution Ap = l/(br + b), 

was set by the temporal and geometrical resolution of our entrance and exit counter 
.^ 

telescopes, independent of the dimensionless radius Nb of our scattering chamber 
_ - _ ._. referred to the velocity 8’ = (bl - b2)A.B. W e h ave measured the dimensionless 

distance NC of the straight line segment 

is equivalent to saying that if we send a 

to l’, it will arrive at the same time as 

velocity p, giving us the relationship: 

between 2 and 1’ in the same units. 

light signal from 2 to the vertex and 

a particle which moves from 2 to 1’ 

This 

back 

with 

h - b-2 pD------ = N&i& = h - k2 (Nb + +N,) - (Nb - $J 
h + b2 h + k2 = 2Nb 

where we have introduced the integers 

h = N&b + ;N,); k2 = NI;(NB - ;N,) 

(1.15) 

(1.16) 

We see that our measurement of mass implies a second set of integer parameters 

ICI, k2 defined in terms of velocity change which are related to the linear beam 

velocity parameters bl, b2 by equating the two velocities ,f3( bl, b2) = ,B(kl, ka). This 

is equivalent to the constraint on these four integers 

blk2 = b2k1 (1.17) 

Note that the velocities p(bl, b2) and ,B(kl, ka). could be defined on independent 

scales, but that our definition of mass ratios ties these two scales together. 

Once we have realized that there is a distinct experimental resolution implied 

by the invariance of mass ratios in elastic scattering, we can use it to quantize 

muss in terms of experimental resolution by defining Am = l/(kr + k2). Note that 

we have not defined mass in absohte terms but only relative to some standard 
.s 
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particulate mass. To relate it to macroscopic mass standards requires Avogadro’s 

number, or some conceptual equivalent, which we will not discuss here. However 

this is done, once we have quantized mass, we can relate it to energy, momentum 

and velocity in a Lorentz invariant way by 

E = (kl i kz)Am; P = (kl - k2)Am; E = ,&P 

E2 - P2 = s12Am2 = 4klk2Am2; $2 = 1 (kl + &I2 
1 - pl”z = 4klk2 

(1.18) 

Then the mass ratio measurement we have described can be derived from the 

translational invariance of the formalism and amounts to a relativistic version of 

Mach’s definition of mass ratios from Newton’s Third Law. 

Once we have introduced the -concept of mass, energy and momentum, we 

see that what “happens” in our paradigmatic scattering experiment is momentum 

transfer between two particles which occurs somewhere in the scattering volume. 

So far as the measurement process goes, this is “relativistic action at a distance” 

-relativistic because we have established the Lorentz invariance of the description 

of the measuring process. Momentum is conserved when the process is completed, 

but whether it is localizable in the intermediate steps is not under direct oper- 

ational control. We emphasize that, once we have “quantized” the macroscopic 

measurement process by introducing the limitations on experimental accuracy in 

terms of integers, this “non-locality” is inevitable. 

Our paradigmatic scattering experiment allows us to introduce a second con- 

served quantity, which is the angular momentum about the vertex defined by the 

intersection of our beam lines. Consider the motion of a particle which goes directly 

from the entrance to the exit counter along the line 21’ taking NC potentially ob- 

servable steps. The perpendicular distance from the vertex is fixed and its square is 

given by Nl - a Nz. Since the p oint takes the same time to move from nC to n, + 1 

(where 0 < n, < N,), the area swept out per step is the area of a triangle with 

this height and base 1 and is constant. This is a special instance of our quantized 
es 
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version of Kepler’s Second Law for a particle moving past a center with constant 

velocity. 

In our scattering paradigm, the maximum distance the particle can go in the 

.^ scattering volume on its way from 2 to 1’ is 2Nb(bl + b2) while the minimum 

_ ~- _ , ._. distance it can go is N,(bi + b2), so the ratio Nb/NC E J defines a scale invariant 

parameter independent of our velocity resolution. Then the total area swept out 

at constant velocity by the line to the particle as it moves the distance NC is 

N,2(J2 - ;) = N,2L(L + 1); I, - J _ ; (1.19) 

where we have introduced the parameter L to facilitate contact with relativistic 

quantum mechanics!” The area per step is just L(L + 1) and vanishes when the 

scattering angle- is zero, corresponding to NC = 2Nb. For Nb fixed, we can define 

2L + 1 values of an integer parameter & in the range -L 5 !, 5 +L and the same 

number of scattering angles O(nc) defined by 

& = [L(L + l)]fsin(O(n,) + %) (1.20) 

We see from these familiar relationships that we have gone from our elastic 

scattering and mass ratio paradigm to a scale invariant definition of angular mo- 

mentum per unit mass independent of the mass scale, using only the geometrical 

arrangement of counter telescopes and the correlated velocity resolutions. We could 

go on from this to a definition of quantized Mandelstam invariants and relativistic 

particle kinematics to replace the continuum version[21 and will do so elsewhere. All 

we need note here that is until we break scale invariance by an absolute definition 

of the unit of mass or of angular momentum, we still can talk about a quantized, 

but scale invariant, theory. Quantized linear and angular momenta are conserved 

in elastic collisions between any pair of particles in any Lorentz frame provided 

only we specify their states in terms of three of the four parameters bl, b2, kl, k2 

for one particle and three of the four parameters b3, bq, k3, k4 for the other particle 

defined and constrained as we have spelled out above. 
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2. CLASSICAL ELECTROMAGNETISM 
AND WEAK GRAVITY 

The scale invariant quantization of linear and angular momentum based on 

velocity resolution is, so far as we are aware, novel. Unfortunately, working it out _ - ,. ._. 
used up the time available for preparing this paper, so the actual application to 

classical electromagnetism and weak gravitation will have to be deferred to another 

occasion. We intend to extend our description of scattering to piecewise continu- 

ous straight line trajectories obeying the quantized but scale invariant conservation 

laws we developed in chapter 1. We could then define force per unit mass as im- 

pulsive change of momentum and define “fields” as a theoretical construct which 

provide a quasi-local model for that momentum change. Fields interpolate conser- 

vation laws for linear and angular momentum that, from an operational point of 

view, can only be given empirical content by measuring changes in momentum of 

the “sources” and “sinks” of the radiation. Since these measurements necessar- 

ily involve finite space and time intervals they are necessarily non-local and often 

non-commutative. 

Historically, our approach is related to that of Bohr and Rosenfeld, who showed 

that the uncertainty in the measurement of electromagnetic fields due to the quan- 

tum uncertainty in their detection can be used to derive the commutation relations 

between & and ‘FI that are usually obtained by second quantizing the fields. It is 

also related to the “relativistic action at a distance” theory that Feynman devel- 

oped for classical fields in his graduate work with Wheeler, but unfortunately did 

not extend to the quantum case in the way we propose here. He came close in an 

unpublished proof of the Maxwell Equations starting from Newton’s Second Law 

and the non-relativistic commutation relations for position and velocity which was 

reconstructed by Dyson after his death13’. We have discussed elsewhere why this 

proof is valid in bit-string physics!“’ 

What became apparent in the course of writing the paper you are reading 

is that there are four different types of non-locality involved in the measurement . . 
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of the momentum changes usually attributed to the classical fields. They are 

operationally distinct, but require more than one type of measurement before they 

can be assigned properly to one or another of the various possible fields. 

1) The first type of non-local interaction is an acceleration of one particle to- 

ward a second along the line of centers; the three examples which concern us are 

attraction or repulsion between two electric charges (Coulomb interaction) or at- 

traction between two masses (Newtonian gravitation). These are “local” because 

the change in position and velocity of a particle starting from rest measures an 

average force. Newton attributed this acceleration to gravity. If we measure onZy 

momentum change in a straight line starting from rest, we cannot tell the grav- 

itostatic field from an electrostatic field. In the case of gravitation, Galileo also 

used circular motion by measuring the time it takes a body to fall some distance 

from rest compared to the time it takes a pendulum of the same length to swing 

to the vertical through a small arc!] His measurement provides a geometric and 

scale invariant definition of local acceleration that, subsequent to Newton, can be 

viewed as a dynamical measurement of 7r.[” 

2) We can measure a velocity dependent interaction which defines a radius 

of curvature proportional to momentum. This can be circular motion about a 

gravitating or charged center, or motion of a charged particle in a magnetostatic 

field. Magnetostatic and gravitostatic cases can be distinguished once we have test 

charges and can correlate attraction and repulsion in the electrostatic case and 

with the right or left handed curvature of the circle with respect to the direction 

of the magnetic field. The measurement of a radius of curvature requires at least 

three counters not in a line, and can be velocity dependent, so is less “local” than 

the first case. We can extend the discussion to elliptical orbits with these three 

pieces of information, if the context allows. 

3) When we go to scattering, we go from elliptical to hyperbolic trajectories and 

the type of non-local measurements we discussed in the first chapter. In themselves 

these do not distinguish electrostatic from gravitostatic cases without further ex- 
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perimentation, which can be quasi-local. In general, for the electromagnetic case, 

the trajectories we encounter are no longer confined to simple momentum transfer 

but can include “emission” and “absorption” of radiation. These effects can be 

measured quasi-locally and used to derive Maxwell’s equations for a hypothetical ^ 

_ - field connecting. sources and sinks. The corresponding detection of gravitational 
_ . . 
-- radiation remains a hard sought goal. 

4) In the case of Mercury, we find that the gravitostatic orbit analysis fails to 

predict the observed perihelion precession. The direction of precession compared 

to the direction of orbital motion defines a chirality and hence indicates that an- 

gular momentum is being transferred. That this precession is a factor of 6 greater 

than that predicted by the relativistic mass increase near perihelion shows that the 

quanta of the weak gravitational field have spin 2, as we observed in our presen- 

tation at PIRT I. This detection system is not only “non-local” and macroscopic 

but literally astronomical in size. 

We have found that these effects are somewhat difficult to disentangle by op- 

erational analysis. Nevertheless, we are confident that we can extend the approach 

used in Chapter 1 to a general treatment of conic section trajectories in that scale 

invariant but quantized context. We can characterize the strength of the attrac- 

tion or repulsion by the velocity at perihelion for either closed orbits or hyperbolic 

trajectories (scattering). Our treatment of differs from the conventional discussion 

because it is relativistic as well as quantized. Consequently we must restrict our 

interaction strengths to those which do not produce perihelion and/or asymptotic 

velocities greater than c. This still does not break scale invariance. 

Whatever the phenomenon we choose to use to quantize momentum and angu- 

lar momentum measurements we find that position and momentum measurements 

in the same direction and that three angular momentum measurements not in 

the same plane do not commute. Therefore the Feynman-Dyson derivation of the 

Maxwell equations can be carried through, showing that it can be thought of arising 

just from limitations in the accuracy of measurement without invoking quantum 
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mechanics explicitly. The corresponding derivation of the weak field Einstein equa- 

tions should follow in the same way, but we have not been able to prove it in time 

for this paper. 
.- 

.^ The study of Rutherford scattering allows us to discover that electric charge 
_ - _ ._. is quantized, using chemically identified ions and counter measurements. This 

relates charge quantization to angular momentum quantization by the scale break- 

ing length ?-g&r = h2/me2, even in a non-relativistic theory. Because we are 

precluded from discussing orbital or escape velocities which exceed c, this also 

defines the dimensionless scale constant o = e2/fic x l/137, the QED scale 

length rcompton = orBohr = h/me and the nuclear scale length rnuc = h/m,c m 

+TCompton = e2/2mc2. Hence, in any relativistic theory specified by c, the quan- 

tization of charge e, or the absolute quantization of angular momentum ti or pair 

creation specified by h/2mc, or nuclear size specified by e2/2mc2, or the Planck 

mass [hc/G]i break scale invariance. 

3. -BREAKING .SCALE INVARIANCE BY 
DEBROGLIE WAVE INTERFERENCE 

3.1 QUANTUM MECHANICAL MASS QUANTIZATION 

Bastin once remarked”’ that the basic quantization is the quantization of mass. 

As we saw in the first two chapters, it takes some work to see how this scale breaking 

is accomplished in terms of a realistic analysis of laboratory measurements starting 

from the counter paradigm and classical field experiments. But by making use of a 

specific quantum phenomenon, we can get there more quickly. A detailed discussion 

lies outside the scope of a paper of this length, but will be presented elsewhere!’ 

Assume that some source of moving particles with uniform mass illuminates 

a collimator and counter telescope which restricts the emerging beam to some 

measured velocity ,L? with appropriate accuracy. Let the beam be incident on a 

double slit with spacing w followed by a detector array a distance D behind the . . 
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screen. We find a double slit interference pattern. The spacing s between the 

interference maxima measures the deBroglie wavelength h/P = A in terms of 

laboratory length standards thanks to the relation 

(34 

We abstract from this experience the postulate that counters recording particulate 

events due to particles with uniform velocity can produce correlated firings only 

when separated by an integral number of deBroglie wavelengths. The positions of 

the interference maxima then follow from the assumption that the paths from the 

two slits to the detector differ by an integral number of deBroglie wavelengths. Of 

course a more detailed discussion is required to explain the line shape and other 

diffraction phenomena. 

We are now able to extend our measurement of deBroglie wavelength to a 

measurement of mass ratios. Assume we have a second source producing another 

type of particle which, using the same geometrical arrangement, produces the 

same velocity but a different spacing s’ between the interference maxima. Then a 

measurement of the distance s’ to the same maximum amounts to a measurement 

of the mass m’ of the particles in this beam relative to the mass m because, in our 

theory, 

m’ = [;]m P-2) 

Note that neither the concept of mass (m) nor the concept of momentum (P) have 

acquired ubsolnte significance as yet; note that “h” also remains undefined. Note 

also the equivalence in form of the defining paradigm to the operational definition 

of mass ratios developed in Chapter 1. Both use comparison at the same velocity 

so that relativistic kinematics is avoided at the level of the paradigm. 

Although we now have invoked empirical evidence for “quantization” of mass 

which correlates with the quantized masses of chemistry, we have yet to relate this 

to “counting” in a fundamental way. To do this we postulate that there is a limit *. 
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to the local accuracy of our measurements set by the shortest length Al and the 

longest time TZ which we can, with confidence, count to the nearest integer. Then 

there will be a best velocity resolution given by A@ = Al/T,. Since our mass 

measurement paradigm rests on the comparison of velocities with our standard 
.^ 

mass m, the maximum mass to which we can give experimental meaning under 

these circumstances is given by Mz = m/Ap. This in turn allows us to define a 

minimum unit of mass Am = m2/Mz. 

In discussing space-time measurements in Chapter 1, we found that two light- 

cone coordinates rl, r2 sufficed to specify the basic Lorentz invariants. Once we 

have quantized mass, we can play the same game in momentum-energy space by 

defining two integers kl, k2 in terms of any system of particulate energy and mo- 

mentum measurements by 

E = (h + h)A m; P = (ICI - k2)Am; E = p12P 

s12 = 4klk2; 7F2 = 
1 

1 - PF2 

= (kl + kd2 

4h k2 (3.3) 

Our basic postulate that events can take place only when they are separated 

by an integral number of deBroglie wavelengths has the immediate consequence 

that two masses, each moving with constant velocity with respect to a common 

center have equal and opposite momenta when the motion starts from that center, 

Suppose particle 1 with mass mrAm is rr Compton wavelengths h/me from the 

center and has velocity pr. By hypothesis it took a time tl = q/PI to reach rl. If 

this is the place where an event can occur it will be n1 = plrl deBroglie wavelengths 

from the center. Hence plrl/tl = &pl = el = nl(t)/t independent of the time. 

Consequently if particles 1 and 2 are nl(t) and nz(t) deBroglie wavelengths from 

the center at some time t, the ratio nl(t)/na(t) = er e:! will remain the same until / 

their energies, momenta, or velocities change. But by our definition of mass ratios, 
*. 
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the ratio nl/n2 will be in inverse ratio to their masses. Hence if we define 

R12 = 
mm + mar:! map1 

; P12 = 
- mm 

ml+m2 ml+ma 
(3.4) 

_ - the first quantity will move with constant velocity, and the second will remain 
_. _. 

constant with respect to any arbitrary origin. This allows us to describe a two- 

body system as a single particle of mass ml2 = mlm2/(ml + m2) at a distance 

rl2 = rl - r2 from a fixed center in the usual way. As we extend the theory 

to more and more phenomena, we may be able to revise the limits defining mass 

quantization upward or downward by indirect argument, but until we hit some new 

phenomenon which gives a different kind of maximum or minimum quantity, our 

quantization remains determined by our technology, and in that sense our theory 

is still scale invariant. 

In conventional theories, this momentum conservation law is derived from 

“translational invariance”. We emphasize that in our theory, it follows directly 

from mass quantization and our definition of mass ratios in terms of deBroglie 

wave double slit interference. In the conventional theories mass-ratios can be de- 

fined either from macroscopic 3-momentum conservation, as advocated by Mach, or 

by deBroglie wave interference. Then their equivalence requires a separate postu- 

late. Our approach removes this potential source of ambiguity by making deBroglie 

wave interference the basic phenomenon. 

If the two directions of motion do not pass through a common center and the 

two speeds are not the same, they obviously define a couple, and hence an angular 

momentum, around some common center. For free particle motion the angular 

momentum so defined is also conserved. Thus, as in conventional theory, angular 

momentum conservation follows from linear momentum conservation. 
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3.2 ANGULAR MOMENTUM QUANTIZATION AND CONSERVATION 

-^ 

@antizing angular momentum in terms of the absolute unit tL rather than the 

scale invariant angular momentum per unit mass used for Kepler’s Second Law, 

does. in fact. break scale invariance, as we now show. We proved above that the 
_ -, .-. angular momentum of a free particle moving past a center, or the relative angular 

momentum of two free particles about a center, is a constant. Change in angular 

momentum can occur when either the direction or the magnitude of the velocity 

changes, or both. 

As our paradigm, we consider a scattering region with diameter r,h/mc which 

a free particle enters at counter 1, exits at counter 2, and traverses with velocity 

pr2. If the time it takes a light signal to cross the region is t2 - tl = rS, and the 

time it takes the particle to cross is tl + t2, we define 

pi2 = tz = & = l-3 t1 + t2 , rl3 + r32 
(3.5) 

where r13 is the distance from counter1 to reference counter 3, r32 is the distance 

from counter 2 to counter 3, and T 12~3 is the time it takes a light signal emitted 

from position 1 when the particle fires counter 1 to go from counter 1 to counter 

3 and trigger a light signal from 3 to 2 which arrives at the same time that the 

particle fires counter 2. 

In practice, we must calibrate our scattering chamber and counters to insure 

that the particle also had velocity pr2 before it entered the scattering region and 

after it leaves the scattering region. One way to do this is to add a counter 1’ 

upstream from the entrance counter 1 and 2’ downstream from counter 2, all four 

counters lying on the same line. Then our calibration beam is defined by the 

requirement 

Clearly either 1’ or 2’ could serve the same function as 3 in the initial description. 
.s 
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Now we have four counts rather than 3, and a consistency check. This is useful for 

eliminating the false counts usually called “background”. 

Unfortunately, in high energy physics, life is not so simple. We have guaranteed 

^ that the emerging particles have the same velocity as the incident particles, but 

_ - our initial paradigm relied on the fact that particles with the same velocity can 

have different masses and hence different quantum interference effects. So we need 

to make sure that the emerging beam has the same mass as the incident beam. 

To do that, in addition to our counter telescopes 1’1 an 22’, we can add devices 

that measure energy and momentum. For instance, if the particles are charged the 

momentum is proportional to the radius of curvature of the trajectory in a constant 

magnetic field; if they are stopped in a calorimeter, the heat rise is proportional to 

the energy. We assume all these checks have been made. We summarize the result 

by assuming that we end up with two space-time integers rl, r:! and two momentum- 

energy integers ICI, k:! (as defined in Eq. 3.3) which satisfy the constraint 

rl - r2 - = p12 = ;: ; ;; 
rl + r2 

and hence 

(rl + ra)(h - b) = (h + ka)(rl - r2) + rlk2 = r2kl = j,, 

P-7) 

Of the four integers kl, k2, rl, r2 which describe the connectivity between two par- 

ticulate events, only three are independent. Since the simplest form of the con- 

straint is the product of a distance times a momentum we give it the conventional 

symbol j for angular momentum. 

So far all we have succeeded in doing is to calibrate our scattering equipment. 

To measure anything of interest we must provide another exit counter, 4, backed 

up by a counter telescope 44’ which defines the scattering angle 0, backed up by 

energy and momentum measuring devices which define the mass of the emerging 

particle. Once we have done this and selected out the appropriate kinematics for 
. . 
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elastic scattering, we still have to relate the results to a model for the scattering 

process that depends only on energy and angle. We shrink down the geometry 

to the minimum in which the free particle momentum change occurs a some point 

half-way between two (possible) events a distance X apart at the apex of an isosceles .^ 
triangle with this base and angles x - 6, whose sides lie along the initial and final _ ~- _ , ._. 

-- directions, i.e similar to the macroscopic counter geometry discussed in Chapter 

1. Since the momentum is unchanged in magnitude, the momentum transfer to 

or from the particle is of magnitude P(l - cos 0) = 2Psin2$ along the altitude. 

This direction passes through a sequence of centers which define a sequence of 

isosceles triangles with sides r and the common base and altitude a, determined 

by a2 = r2 - X2/4. Note that we have exploited scale invariance down as far as we 

can. This distance a is called the impact parameter, and since it is parallel to the 

momentum change, the angular momentum is Pa = J in appropriate units. 

Assume that a light signal to the center and back takes the same time as it takes 

to particle to go the distance X Then the square of the area A swept out by the line 

from the center to a point moving along the base is A2 = X2[(u/X)2 - 41 = l(l+ 1) 

where e = j - f = ph - f. This, eventually, gives us the quantized version of 

Kepler’s second law, as we showed in Chapter 1 without using Planck’s constant. 

3.3 HYDROGENIC BOUND STATE SPECTRA 

We now consider the basic orbital situation for two particles of mass ml and 

ma, reduced mass m = ~~;“!, , and bound state mass ~1 = m-c, which we discussed 

from the Kepler-deBroglie point of view in our paper on the fine structure spectrum 

of hydrogen ‘lo1 using the detailed apparatus of our new fundamental theory!11-131 

We present here yet another way to arrive at the same result. 

We consider the bound system with mass p interacting with a larger system 

which can have a maximum mass-energy MZ = Nm where N is an integer to 

be fixed by the intent of the modeling exercise. Our first assumption is that the 

bound state is stable against spontaneous decay. However, in a “second quantized” 
.- 
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t heory’14’ virtual transitions up to this maximum can occur. Assuming that “ex- 

ternally” ,!J is at rest, these fluctuations can be interpreted as massless radiation 

whose energy and hence whose momentum is p = Np. However, since ml + ma 

.^ must have the same non-spatial conserved quantum numbers as p, a fluctuation 

Ieading to Eh’ 1s radiation and a system of Nm masses will have energy E = Nm 
-- But for the overall system E2 - p2 is invariant and equal to the square of the rest 

energy of the bound state with which we started: 

p2 = ( Nm)2 - (NP)~ W) 

To recover our previous result, we rewrite this as 

p2 + ($)” = m2 

or 

( 7)2[1 + (h),, = 1 

(3.10) 

(3.11) 

If we take N = 137n, with n =.e +‘l the principal quantum number and 137 

an approximation for tic/e 2, this is Bohr’s relativistic generalization of his model 

for the energy levels of the hydrogen atom!15’ Non-relativistically, or to order 

a = e2/hc x l/137, the energy levels given by this formula are c(n) x 6. 

The orbital velocity is ,& = 1/137n = l/N and the radii of the orbits are R, = 

nh2/me 2 = niilomc. 

Sommerfeld added a second quantized degree of freedom by treating the orbits 

as elliptical as well as circular and explained the fine strzlcture of the spectrum 

of hydrogen, that is the doubling of the Bohr levels (for 0 < ! 5 n + l), which 

is proportional to the fine structure constant cr = e2/fic. The same formula was 

obtained by Dirac in an entirely different way a decade and a half later. This 

paradox is discussed by Biedenharn”61 Our combinatorial derivation 121 should make 

it clear that a still better understanding of the situation lies deeper than the orbit 

or the spin pictures of older models. 
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We can extend our general model immediately to two charges of magnitude 

f&e, T.Z2e by taking N = 137n/Z122. Clearly no “hydrogenic” system can have 

2122 2 137 because this would give an orbital velocity 2 c. Similarly, we cannot 

assemble more than 137 charge particle- anti-particle pairs in a volume whose ef- 
.^ 

fective radius is less than h/2mc. Following an old paper of Dyson’s[“’ I used this 

fact to explain why we cannot count more than 137 charged particle pairs at short 

distance using electromagnetic measurements in my first paper on the combinu- 

torial hierarchy.““’ I also pointed out that this suggests that the neutral pion is 

137 electron-positron pairs, predicting a first approximation to its mass as 274m,. 

Adding an positron and a neutrino gives the rrIT+ while adding an electron and 

anti-neutrino gives a X--; either has mass of approximately 275m,. The isotriplet 

character of the pion is explained. 

Our version of the relativistic Bohr model explains weak quantum gravity when 

we take N = nhc/Gmlmz, consistent with the Dyson-Noyes argument given above. 

In our finite and discrete theory this number has to be integral, and allows us a 

universal particulate mass quantization in terms of the Planck mass. 

3.4 “FIELDS” 

The extension of the discussion to fields can now follow the lines sketched 

out in Chapter 2. One advantage of the quantum treatment is that we can now 

relate the difference between interactions which change angular momentum, and 

hence are velocity dependent, to the spin of the quanta which are “exchanged”. 

Coulombic and Newtonian forces between two spin a particles act independent of 

the spin state and hence only depend on the line of centers. The spin 1 exchanges 

which we encounter in the fine structure of hydrogen correlate the spin-flip and 

no spin-flip transitions with the change of orbital angular momentum by zero or 

1. This is velocity-dependent but not extremely non-local because the quasi-local 

radius of curvature can be calibrated using magnetostatic fields, as has long been 

the practice in particle physics. But the spin 2 quanta involved in the gravitational 

analog of the fine structure of hydrogen have only so far shown up experimentally in 
a. 
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the five states they can have relative to the macroscopic plane defined by Mercury’s 

orbit around the sun, as we discussed at PIRT I. We look forward to putting all of 

this together in a more coherent way for PIRT IV. 
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